JP2010122403A - Fine-positioning mechanism equipped with ultrasonic motor - Google Patents

Fine-positioning mechanism equipped with ultrasonic motor Download PDF

Info

Publication number
JP2010122403A
JP2010122403A JP2008295020A JP2008295020A JP2010122403A JP 2010122403 A JP2010122403 A JP 2010122403A JP 2008295020 A JP2008295020 A JP 2008295020A JP 2008295020 A JP2008295020 A JP 2008295020A JP 2010122403 A JP2010122403 A JP 2010122403A
Authority
JP
Japan
Prior art keywords
moving body
fine movement
vibration
movement mechanism
pressing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008295020A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kami
喜裕 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008295020A priority Critical patent/JP2010122403A/en
Publication of JP2010122403A publication Critical patent/JP2010122403A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To achieve stable drive by suppressing resonance vibration as well as suppressing deformation of a driven part. <P>SOLUTION: A fine-positioning mechanism equipped with an ultrasonic motor includes: a fixed base 1; a moving body 3 supported so as to be movable in the direction of a moving axis relative to the fixed base 1; a slide member 6 disposed on one face of the moving body 3; a vibrating body 8 that includes a three-dimensional shape and excites a plurality of vibration modes by the application of a high frequency voltage signal; a holding mechanism 7 holding the vibrating body 8 relative to the fixed base 1 and pressing the vibrating body against the moving body 3; a driver 9 disposed on the vibrating body 8 and in frictional contact with the sliding member 6. A part (pressing member 4) of the moving body 3 is configured as a separate body, and the sliding member 6 is provided on one face of the part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超音波モータを備えた微動機構に関する。   The present invention relates to a fine movement mechanism provided with an ultrasonic motor.

半導体や生体試料など微細構造の観察に顕微鏡がよく利用されている。このような観察に利用される顕微鏡では、観察対象の任意位置を顕微鏡観察下に位置づけるためにXYステージが利用されており、観察対象となる微細構造と同等以上の送り分解能や静止時の安定性が求められている。また、観察位置については高いスループットで複数か所を観察する必要がある場合も多く、高速動作も求められている。   Microscopes are often used to observe fine structures such as semiconductors and biological samples. In the microscope used for such observation, an XY stage is used to position an arbitrary position of the observation target under the microscope observation, and the feeding resolution equal to or better than the microstructure to be observed and the stability at rest Is required. In many cases, it is necessary to observe a plurality of observation positions with high throughput, and high-speed operation is also required.

このようなニーズに対応するアクチュエータの一つとして超音波モータが注目されている。例えば特許文献1には、顕微鏡用XYステージのアクチュエータとして超音波モータを採用する装置が提案されている。   Ultrasonic motors are attracting attention as one of actuators that meet such needs. For example, Patent Document 1 proposes an apparatus that employs an ultrasonic motor as an actuator for an XY stage for a microscope.

このようなステージに使用される超音波モータの一例として、直方体形状を利用したリニア駆動型超音波アクチュエータがある。このような超音波モータの多くは積層型圧電体で構成されており、内部に屈曲振動用電極と縦振動用電極を有し、夫々の電極に位相が90°ずれた正弦波信号が印加されることで駆動する。   As an example of an ultrasonic motor used in such a stage, there is a linear drive type ultrasonic actuator using a rectangular parallelepiped shape. Most of such ultrasonic motors are composed of a laminated piezoelectric material, and have a bending vibration electrode and a longitudinal vibration electrode inside, and a sine wave signal whose phase is shifted by 90 ° is applied to each electrode. To drive.

図8は、このようなリニア駆動型超音波アクチュエータを備えたステージ移動機構の一例を模式的に示す図である。
同図に示した例では、屈曲振動用電極101(101a、101b、101c、101d)と縦振動用電極102とを有する積層型圧電体からなる超音波振動子(以下単に「振動子」という)103と2つの駆動子104(104a,104b)とを有する超音波モータ105において、縦振動用電極102に正弦波信号である縦振動信号が印加され、屈曲振動用電極101に縦振動信号とは位相が90°異なる正弦波信号である屈曲振動信号が印加されると、ガイド106に沿って可動体(ステージ)107が移動する。
FIG. 8 is a diagram schematically showing an example of a stage moving mechanism provided with such a linear drive type ultrasonic actuator.
In the example shown in the figure, an ultrasonic vibrator (hereinafter simply referred to as “vibrator”) made of a laminated piezoelectric material having a bending vibration electrode 101 (101a, 101b, 101c, 101d) and a longitudinal vibration electrode 102. In an ultrasonic motor 105 having 103 and two driver elements 104 (104a, 104b), a longitudinal vibration signal which is a sine wave signal is applied to the longitudinal vibration electrode 102, and the longitudinal vibration signal is applied to the bending vibration electrode 101. When a bending vibration signal that is a sine wave signal having a phase difference of 90 ° is applied, the movable body (stage) 107 moves along the guide 106.

同図において、屈曲振動用電極101と縦振動用電極102の「+」又は「−」の符号は、圧電体の分極方向を示している。例えば、電極にプラス電圧を印加した場合、「+」符号の電極部分の圧電体は長手方向に伸長するように変形し、「−」符号の電極部分の圧電体は長手方向に縮小するように変形する。このため、屈曲振動用電極101に正弦波的な信号を印加すると図9(a) に模式的に示すような屈曲変形振動が励起され、縦振動用電極102に正弦波的な信号を印加すると同図(b) に模式的に示すような長手方向に伸縮する縦振動が励起される。なお、同図(a),(b) において、点線矢印は圧電体の変形方向を示し、実線矢印は駆動子104の移動方向を示している。このように、2種類の振動の位相を90°ずらして同時に励起させると、駆動子104が図8の矢印に示すような楕円(同図点線参照)の軌跡を描くような振動となる。このとき、駆動子104が可動体107と接触する際に生じる力の垂直方向成分で摩擦力を減らし、水平方向成分の力で可動体107を移動させる。   In the figure, the sign “+” or “−” of the bending vibration electrode 101 and the longitudinal vibration electrode 102 indicates the polarization direction of the piezoelectric body. For example, when a positive voltage is applied to the electrode, the piezoelectric body of the “+” sign electrode portion is deformed to extend in the longitudinal direction, and the piezoelectric body of the “−” sign electrode portion is shrunk in the longitudinal direction. Deform. Therefore, when a sinusoidal signal is applied to the bending vibration electrode 101, bending deformation vibration as schematically shown in FIG. 9A is excited, and when a sinusoidal signal is applied to the longitudinal vibration electrode 102. Longitudinal vibration extending and contracting in the longitudinal direction as schematically shown in FIG. In FIGS. 4A and 4B, dotted arrows indicate the deformation direction of the piezoelectric body, and solid arrows indicate the movement direction of the driver element 104. In this way, when the two types of vibration phases are shifted by 90 ° and excited simultaneously, the driver element 104 vibrates so as to draw an elliptical locus (see the dotted line in FIG. 8) as shown by the arrow in FIG. At this time, the frictional force is reduced by the vertical component of the force generated when the driver element 104 contacts the movable member 107, and the movable member 107 is moved by the force of the horizontal component.

ところで、このようにして超音波モータが駆動、振動すると、可動体は励振される。ここで、可動体の固有振動数が超音波モータの駆動周波数近傍に存在すると、可動体が共振を起こして大きな振動を発生させてしまうため、駆動効率を著しく低下させてしまう。この場合、可動体が一体部品で構成されヤング率が高いものほど共振の振幅は大きくなり、駆動効率の低下が著しくなる。   By the way, when the ultrasonic motor is driven and vibrated in this way, the movable body is excited. Here, if the natural frequency of the movable body is present in the vicinity of the driving frequency of the ultrasonic motor, the movable body will resonate and generate large vibrations, so that the driving efficiency is significantly reduced. In this case, the higher the Young's modulus is made of an integral part and the higher the Young's modulus, the larger the amplitude of resonance, and the lower the drive efficiency becomes.

そこで、特許文献2には、このような振動発生を低減させるための方法が提案されている。
特開2008−187768号公報 特開2000−324865号公報
Therefore, Patent Document 2 proposes a method for reducing such vibration generation.
JP 2008-187768 A JP 2000-324865 A

しかしながら、特許文献2に記載の方法において、不要な振動を除去するために用いられる振動吸収部材は、一般的に剛性が低いため、超音波モータの押圧力で被駆動体が変形して接触状態に変化が生じやすい。このような接触状態の変化は、駆動効率の低下を引き起こす。特に、顕微鏡用ステージなど大きな駆動力を必要とする超音波モータの場合には大きな押圧力が必要となるため、超音波モータの押圧力を受ける被駆動体には高い剛性が求められる。   However, in the method described in Patent Document 2, since the vibration absorbing member used for removing unnecessary vibration generally has low rigidity, the driven body is deformed by the pressing force of the ultrasonic motor and is in a contact state. Changes are likely to occur. Such a change in the contact state causes a decrease in driving efficiency. In particular, in the case of an ultrasonic motor that requires a large driving force, such as a microscope stage, a large pressing force is required, so that a driven body that receives the pressing force of the ultrasonic motor is required to have high rigidity.

本発明は、上記実情に鑑み、被駆動体の変形を抑えながら共振振動をも抑制し、安定した駆動を可能にする、超音波モータを備えた微動機構を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a fine movement mechanism including an ultrasonic motor that suppresses resonance vibration while suppressing deformation of a driven body and enables stable driving.

上記目的を達成するため、本発明の第1の態様に係る装置は、超音波モータを備えた微動機構であって、固定台と、前記固定台に対して移動軸方向に移動可能に支持された移動体と、前記移動体の一面に設けられた摺動部材と、立体的形状を有し、高周波電圧信号の印加により複数の振動モードを励起する振動体と、前記振動体を前記固定台に対して保持すると共に前記移動体に押圧せしめる保持機構と、前記振動体に設けられ、前記摺動部材と摩擦接触する駆動子と、を備え、前記移動体は一部分が別体として構成され、当該一部分の一面に前記摺動部材が設けられる、ことを特徴とする。   In order to achieve the above object, an apparatus according to a first aspect of the present invention is a fine movement mechanism provided with an ultrasonic motor, and is supported by a fixed base and movable relative to the fixed base in a movement axis direction. A moving body, a sliding member provided on one surface of the moving body, a three-dimensional vibration body that excites a plurality of vibration modes by applying a high-frequency voltage signal, and the vibration body is fixed to the fixed base. A holding mechanism that is held against the moving body and pressed against the moving body, and a driving element that is provided on the vibrating body and frictionally contacts the sliding member, and the moving body is partially configured as a separate body, The sliding member is provided on one surface of the part.

また、本発明の第2の態様に係る装置は、上記第1の態様において、前記移動体は、前記一部分が2面以上の平面で密着するように固定されることにより、構成される、ことを特徴とする。   In the apparatus according to the second aspect of the present invention, in the first aspect, the moving body is configured such that the part is fixed so as to be in close contact with two or more planes. It is characterized by.

また、本発明の第3の態様に係る装置は、上記第1又は2の態様において、前記移動体の一部分は、振動減衰材料を含む、ことを特徴とする。
また、本発明の第4の態様に係る装置は、上記第1又は2の態様において、前記移動体の一部分は、前記保持機構による押圧方向に対して垂直な方向に複数の金属材料が積層されて構成される、ことを特徴とする。
An apparatus according to a third aspect of the present invention is characterized in that, in the first or second aspect, a part of the moving body includes a vibration damping material.
The apparatus according to a fourth aspect of the present invention is the apparatus according to the first or second aspect, wherein a part of the moving body is formed by laminating a plurality of metal materials in a direction perpendicular to a pressing direction by the holding mechanism. It is constituted by that.

また、本発明の第5の態様に係る装置は、上記第1又は2の態様において、前記移動体の一部分は、前記保持機構による押圧方向に対して垂直な方向に、金属材料と振動減衰材料とが交互に積層されて構成される、ことを特徴とする。   The device according to a fifth aspect of the present invention is the apparatus according to the first or second aspect, wherein a part of the moving body has a metal material and a vibration damping material in a direction perpendicular to a pressing direction by the holding mechanism. And are alternately laminated.

また、本発明の第6の態様に係る装置は、上記第4又は5の態様において、前記移動体の一部分は、2種類以上の金属材料を含む、ことを特徴とする。   An apparatus according to a sixth aspect of the present invention is characterized in that, in the fourth or fifth aspect, a part of the moving body includes two or more kinds of metal materials.

本発明によれば、被駆動体の変形を抑えながら共振振動をも抑制して、安定した駆動を可能にし、駆動効率を改善することができる。   According to the present invention, it is possible to suppress resonance vibration while suppressing deformation of the driven body, to enable stable driving, and to improve driving efficiency.

以下、図面を参照しながら本発明の実施の形態を説明する。
<第1の実施形態>
図1は、本発明の第1の実施形態に係る、超音波モータを備えた微動機構を模式的に示す斜視図である。図2(a) は本実施形態に係る微動機構の一部上面図であり、同図(b) は同図(a) に示したA−A´断面図である。図3は、プランジャの断面図である。図4は、図1に示した本実施形態に係る微動機構のXZ平面における断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 is a perspective view schematically showing a fine movement mechanism provided with an ultrasonic motor according to the first embodiment of the present invention. FIG. 2A is a partial top view of the fine movement mechanism according to this embodiment, and FIG. 2B is a cross-sectional view taken along the line AA ′ shown in FIG. FIG. 3 is a cross-sectional view of the plunger. 4 is a cross-sectional view in the XZ plane of the fine movement mechanism according to the present embodiment shown in FIG.

図1に示したように、固定台1上には、ガイド2(2a,2b)によって固定台1に対して移動軸方向となる1軸方向に移動可能に支持された移動体3が保持されている。なお、ガイド2は、例えばリニアボールガイド等のガイドである。   As shown in FIG. 1, a movable body 3 supported by a guide 2 (2a, 2b) so as to be movable in one axial direction, which is a moving axis direction, is held on the fixed base 1. ing. The guide 2 is a guide such as a linear ball guide.

移動体3は、その一部分が別体として構成されている。以下の説明においては、その一部分を押圧部材4と称し、残りの部分を移動体3と称して説明することにする。
移動体3には、当該移動体3に対して2面で接するように押圧部材4が5つの固定ねじ5(5a,5b,5c,5d,5e)によって固定されている。なお、本実施形態において、押圧部材4は例えばアルミニウム等の剛性の高い金属材料で構成されている。押圧部材4の、移動体2と接していない面の一つには、例えば摩擦摺動に強いセラミック等の硬い材料で作られた摺動部材6が設けられている。なお、この摺動部材6は、表面処理等によって形成された摩擦摺動に強いコーティング材であっても構わない。
A part of the moving body 3 is configured as a separate body. In the following description, a part thereof will be referred to as a pressing member 4 and the remaining part will be referred to as a moving body 3.
The pressing member 4 is fixed to the moving body 3 by five fixing screws 5 (5a, 5b, 5c, 5d, 5e) so as to come into contact with the moving body 3 on two surfaces. In this embodiment, the pressing member 4 is made of a highly rigid metal material such as aluminum. One of the surfaces of the pressing member 4 that is not in contact with the moving body 2 is provided with a sliding member 6 made of a hard material such as ceramic that is resistant to frictional sliding. The sliding member 6 may be a coating material that is resistant to frictional sliding formed by surface treatment or the like.

保持機構7には、立体的形状を有する振動体8が接着固定されており、その振動体8には駆動子9(9a,9b)が接着固定されている。また、保持機構7は、駆動子9が摺動部材6に接するように、2つの固定ねじ10(10a,10b)によって固定台1に固定されている。   A vibration body 8 having a three-dimensional shape is bonded and fixed to the holding mechanism 7, and a driver element 9 (9 a, 9 b) is bonded and fixed to the vibration body 8. Further, the holding mechanism 7 is fixed to the fixing base 1 by two fixing screws 10 (10a, 10b) so that the driver 9 is in contact with the sliding member 6.

ここで、保持機構7に関し、図2(a),(b) 及び図3を用いて更に詳細に説明する。
保持機構7は、例えばアルミニウム等の金属材料で構成され、詳しくは図2(a) に示したように、ワイヤ放電加工等により切り欠き穴部11を設けることによって形成された薄板ばね部12(同図(a) では斜線で示した部分)を有する。薄板ばね部12の中央にはばねとして作用しない厚肉部12aが形成されていて、厚肉部12aと振動体8とが例えばエポキシやセラミック系接着材等の強度の高い接着剤で接着されている。このとき、薄板ばね部12と振動体8は平行に近接して設けられるように構成されている。また、振動体8の接着位置は、振動体8の接着面中央付近である。
Here, the holding mechanism 7 will be described in more detail with reference to FIGS. 2 (a), (b) and FIG.
The holding mechanism 7 is made of a metal material such as aluminum, for example. Specifically, as shown in FIG. 2 (a), the thin plate spring portion 12 (formed by providing a notch hole portion 11 by wire electric discharge machining or the like. In FIG. 5A, there is a hatched portion. A thick portion 12a that does not act as a spring is formed at the center of the thin plate spring portion 12, and the thick portion 12a and the vibrating body 8 are bonded to each other with a high strength adhesive such as epoxy or ceramic adhesive. Yes. At this time, the thin plate spring portion 12 and the vibrating body 8 are configured to be provided close to each other in parallel. Further, the bonding position of the vibrating body 8 is near the center of the bonding surface of the vibrating body 8.

振動体8において、保持機構7の厚肉部12aが接着された面と反対の面には駆動子9(9a,9b)が2個設けられている。駆動子9は、例えば強化繊維を含むポリアセタールやセラミック等の、摩擦係数の比較的小さな樹脂を母材とした材料で形成されている。保持機構7は、駆動子9が2個とも摺動部材6に接する状態で、2つの固定用ビス穴13(13a,13b)を通して2つの固定ねじ10(10a,10b)により固定台1に固定される。このとき、薄板ばね部7のたわみは殆ど無い状態で、移動体3側への押圧力はゼロ近傍であることが望ましい。   In the vibrating body 8, two driver elements 9 (9a, 9b) are provided on the surface opposite to the surface to which the thick portion 12a of the holding mechanism 7 is bonded. The driver element 9 is formed of a material whose base material is a resin having a relatively small friction coefficient, such as polyacetal or ceramic containing reinforcing fibers. The holding mechanism 7 is fixed to the fixing base 1 by two fixing screws 10 (10a, 10b) through two fixing screw holes 13 (13a, 13b) in a state where both of the driver elements 9 are in contact with the sliding member 6. Is done. At this time, it is desirable that the pressing force to the moving body 3 side is in the vicinity of zero with almost no deflection of the thin leaf spring portion 7.

また、保持機構7にはメネジが形成されていて、詳しくは図2(b) に示したように、外周にオネジが形成されたプランジャ14をねじ込むことによって厚肉部12aを押圧できるようになっている。プランジャ14の内部には、詳しくは図3に示したように、コイルばね15が内蔵されており、先端部材16が押し込まれることにより押圧力が発生する。このため、プランジャ14の先端部材16の移動量(同図のΔW)に応じた押圧力が厚肉部12aに負荷される。このとき、振動体8も駆動子9と共に摺動部材6に押圧される。なお、プランジャ14のコイルばね15のばね定数は、薄板ばね部12の押圧方向ばね定数よりも小さく構成されている。このため、プランジャ14によって、より細かい押圧力の調整が可能になっている。   Further, the holding mechanism 7 is formed with a female screw. Specifically, as shown in FIG. 2 (b), the thick portion 12a can be pressed by screwing a plunger 14 having a male screw formed on the outer periphery. ing. As shown in detail in FIG. 3, a coil spring 15 is built in the plunger 14, and a pressing force is generated when the tip member 16 is pushed. For this reason, a pressing force corresponding to the amount of movement of the tip member 16 of the plunger 14 (ΔW in the figure) is applied to the thick portion 12a. At this time, the vibrating body 8 is also pressed against the sliding member 6 together with the driver element 9. The spring constant of the coil spring 15 of the plunger 14 is configured to be smaller than the pressing direction spring constant of the thin plate spring portion 12. For this reason, the plunger 14 enables finer adjustment of the pressing force.

なお、本実施形態に係る微動機構において、振動体8は、例えば図8に示した振動子103と同様の構成を有し、不図示の駆動回路により駆動信号として所定の高周波電圧信号(例えば上述の図8及び図9(a),(b) を用いて説明したような信号)が印加されることにより、複数の振動モードを励起することが可能になっている。そして、振動体8に複数の振動モードを励起させることによって、振動体8に設けられている駆動子9に接触している摺動部材4と共に押圧部材4に固定されている移動体3を移動させることが可能になっている。   In the fine movement mechanism according to the present embodiment, the vibrating body 8 has the same configuration as that of the vibrator 103 shown in FIG. 8, for example, and a predetermined high-frequency voltage signal (for example, the above-described) 8 and 9 (a) and 9 (b) are applied), it is possible to excite a plurality of vibration modes. Then, by exciting the vibration body 8 with a plurality of vibration modes, the movable body 3 fixed to the pressing member 4 is moved together with the sliding member 4 in contact with the driver 9 provided on the vibration body 8. It is possible to make it.

また、本実施形態に係る微動機構において、超音波モータは、少なくとも振動体8及び駆動子9を含んで構成されている。
以上のような構成の、本実施形態に係る微動機構において、プランジャ14による押圧力は、図4に示したように、厚肉部12a、振動体8、駆動子9、摺動部材4を介して、押圧部材4によって受け止められる。この場合、押圧部材4は上述のとおり剛性の高い金属材料であり、押圧方向は移動体3と面で密着するように接しているため、その押圧力を高い剛性で受け止めることができる。
In the fine movement mechanism according to the present embodiment, the ultrasonic motor includes at least the vibrating body 8 and the driver element 9.
In the fine movement mechanism according to this embodiment configured as described above, the pressing force by the plunger 14 is transmitted through the thick portion 12a, the vibrator 8, the driver 9, and the sliding member 4 as shown in FIG. And is received by the pressing member 4. In this case, the pressing member 4 is a metal material having high rigidity as described above, and the pressing direction is in contact with the moving body 3 so as to be in close contact with the surface, so that the pressing force can be received with high rigidity.

また、振動体8に駆動信号が印加されたときに押圧部材4に共振振動が発生した場合、当該押圧部材4と移動体3との接触面の摩擦によって振動エネルギーが消費され、共振振動の振幅を減衰させることができる。この場合、接触面積が大きいほど振動の減衰は大きくなることから、本実施形態のように、移動体3と押圧部材4との接触面である2面、すなわち、固定ねじ5の締結面と押圧方向の接触面の2面で振動エネルギーの消費がなされることにより、振動減衰効果を高めることができる。このように振動振幅が減衰により小さくなることで、駆動子9と摺動部材6との接触状態が安定し、駆動効率を向上させることができる。   Further, when resonance vibration is generated in the pressing member 4 when a driving signal is applied to the vibrating body 8, vibration energy is consumed by friction of the contact surface between the pressing member 4 and the moving body 3, and the amplitude of the resonance vibration. Can be attenuated. In this case, the larger the contact area, the greater the damping of vibration. Therefore, as in this embodiment, two surfaces that are the contact surfaces of the moving body 3 and the pressing member 4, that is, the fastening surface of the fixing screw 5 and the pressing surface. Since vibration energy is consumed on the two contact surfaces in the direction, the vibration damping effect can be enhanced. Thus, the vibration amplitude becomes smaller due to attenuation, so that the contact state between the driver 9 and the sliding member 6 is stabilized, and the driving efficiency can be improved.

以上のように、本実施形態に係る微動機構では、押圧部材4への押圧力に対する剛性が高いため不要な変形を生じず、また、押圧部材4に励起される振動は、移動体3との密着面にて摩擦減衰されるので、駆動効率を改善することができる。   As described above, in the fine movement mechanism according to the present embodiment, since the rigidity with respect to the pressing force to the pressing member 4 is high, unnecessary deformation does not occur, and the vibration excited by the pressing member 4 Since friction is attenuated at the contact surface, driving efficiency can be improved.

なお、本実施形態に係る微動機構において、移動体3と押圧部材4を、アルミニウム等の同一の金属材料を用いて構成することは勿論のこと、異なる金属材料を用いて構成することもできる。また、固定台1、移動体3、押圧部材4、保持機構7を、アルミニウム等の同一の金属材料を用いて構成することにより、温度変化による悪影響(バイメタル効果による変形等)を無くし、熱的な安定性を得るのに有利な構成とすることもできる。
<第2の実施形態>
図5は、本発明の第2の実施形態に係る、超音波モータを備えた微動機構の断面図である。なお、同図は、図1に示した第1の実施形態に係る微動機構のXZ平面における断面図(図4)に対応する図である。
In the fine movement mechanism according to the present embodiment, the moving body 3 and the pressing member 4 can be formed using the same metal material such as aluminum, but can also be formed using different metal materials. Further, by configuring the fixed base 1, the moving body 3, the pressing member 4, and the holding mechanism 7 using the same metal material such as aluminum, there is no adverse effect due to temperature change (deformation due to the bimetal effect, etc.), and thermal It is also possible to adopt a configuration that is advantageous for obtaining stable stability.
<Second Embodiment>
FIG. 5 is a cross-sectional view of a fine movement mechanism equipped with an ultrasonic motor according to the second embodiment of the present invention. In addition, the figure is a figure corresponding to sectional drawing (FIG. 4) in XZ plane of the fine movement mechanism which concerns on 1st Embodiment shown in FIG.

本実施形態に係る微動機構は、押圧部材4の構成のみが第1の実施形態に係る微動機構と異なっている。すなわち、本実施形態に係る微動機構では、図5に示したように、押圧部材4の内部に、当該押圧部材4への押圧方向であって移動体3と密着している面の中央部に振動吸収部材(振動減衰材料ともいう)4aが設けられている。なお、振動吸収部材4aは、押圧部材4に発生した共振振動の振幅を減衰させるための、例えばゴムやゲル等の粘性体である。   The fine movement mechanism according to this embodiment is different from the fine movement mechanism according to the first embodiment only in the configuration of the pressing member 4. That is, in the fine movement mechanism according to the present embodiment, as shown in FIG. 5, in the pressing member 4, the pressing direction to the pressing member 4 and the central portion of the surface that is in close contact with the moving body 3. A vibration absorbing member (also referred to as a vibration damping material) 4a is provided. The vibration absorbing member 4a is a viscous material such as rubber or gel for attenuating the amplitude of resonance vibration generated in the pressing member 4.

このような構成により、移動体4と、振動吸収部材4aが設けられている側の押圧部材4の金属面とが密着して接しているため、押圧部材4への押圧力を高い剛性で受け止めることができる。   With such a configuration, since the moving body 4 and the metal surface of the pressing member 4 on the side where the vibration absorbing member 4a is provided are in close contact with each other, the pressing force on the pressing member 4 is received with high rigidity. be able to.

また、振動体8に駆動信号が印加されたときに押圧部材4に共振振動が発生した場合、第1の実施形態の説明で述べた移動体3と押圧部材4との密着面における摩擦によるものに加え、更に振動吸収部材4aにより、共振振動の振幅を減衰させることができる。このように共振振動の振幅が減衰されることで、駆動子9と摺動部材6との接触状態が安定し、駆動効率を向上させることができる。   Further, when resonance vibration occurs in the pressing member 4 when a drive signal is applied to the vibrating body 8, it is caused by friction on the contact surface between the moving body 3 and the pressing member 4 described in the description of the first embodiment. In addition, the amplitude of the resonance vibration can be attenuated by the vibration absorbing member 4a. As the amplitude of the resonance vibration is attenuated in this way, the contact state between the driver 9 and the sliding member 6 is stabilized, and the driving efficiency can be improved.

以上のように、本実施形態に係る微動機構でも、押圧部材4への押圧力に対する剛性が高いため不要な変形を生じず、また、押圧部材4に励起される振動は、移動体3との密着面にて摩擦減衰されると共に振動吸収部材4aにより減衰されるので、駆動効率を改善することができる。
<第3の実施形態>
図6は、本発明の第3の実施形態に係る、超音波モータを備えた微動機構の断面図である。なお、同図も、図1に示した第1の実施形態に係る微動機構のXZ平面における断面図(図4)に対応する図である。
As described above, even in the fine movement mechanism according to the present embodiment, unnecessary deformation does not occur because the rigidity against the pressing force to the pressing member 4 is high, and vibration excited by the pressing member 4 is Since it is attenuated by friction at the contact surface and also attenuated by the vibration absorbing member 4a, driving efficiency can be improved.
<Third Embodiment>
FIG. 6 is a cross-sectional view of a fine movement mechanism provided with an ultrasonic motor according to the third embodiment of the present invention. This figure also corresponds to the cross-sectional view (FIG. 4) in the XZ plane of the fine movement mechanism according to the first embodiment shown in FIG.

本実施形態に係る微動機構も、押圧部材4の構成のみが第1の実施形態に係る微動機構と異なっている。すなわち、本実施形態に係る微動機構では、図6に示したように、押圧部材4が当該押圧部材4への押圧方向に対して垂直な方向(同図では上下方向)にヤング率が異なる2種類の金属が交互に積層されて構成されている。ここでは、その押圧部材4として、第1の金属材料(例えば第1の実施形態に係る押圧部材4と同一の金属材料)からなる層4bを、第2の金属材料からなる層4cにより挟み込んだ、3層構造の押圧部材を示している。また、各層の厚みは同一である。   The fine movement mechanism according to this embodiment is also different from the fine movement mechanism according to the first embodiment only in the configuration of the pressing member 4. That is, in the fine movement mechanism according to the present embodiment, as shown in FIG. 6, the Young's modulus is different in the direction in which the pressing member 4 is perpendicular to the pressing direction to the pressing member 4 (vertical direction in the figure) 2. It is constructed by laminating various kinds of metals alternately. Here, as the pressing member 4, a layer 4b made of a first metal material (for example, the same metal material as the pressing member 4 according to the first embodiment) is sandwiched between layers 4c made of a second metal material. A pressing member having a three-layer structure is shown. Moreover, the thickness of each layer is the same.

このような構成により、押圧部材4を構成する各層の金属は、断面2次モーメントが大きくなる方向と当該押圧部材4への押圧方向とが一致するため、押圧部材4への押圧力を高い剛性で受け止めることができる。また、押圧部材4の不要な変形を生じ難くすることもできる。   With such a configuration, the metal of each layer constituting the pressing member 4 has a highly rigid pressing force to the pressing member 4 because the direction in which the cross-sectional secondary moment increases and the pressing direction to the pressing member 4 coincide. You can catch it. Further, it is possible to make it difficult to cause unnecessary deformation of the pressing member 4.

また、振動体8に駆動信号が印加されたときに押圧部材4に共振振動が発生した場合、第1の実施形態の説明で述べた移動体3と押圧部材4との密着面における摩擦によるものに加え、更にヤング率が異なる2種類の金属を積層したことによる押圧部材4の各層の積層面における摩擦により、共振振動の振幅を減衰させることができる。このように共振振動の振幅が減衰されることで、駆動子9と摺動部材6との接触状態が安定し、駆動効率を向上させることができる。   Further, when resonance vibration occurs in the pressing member 4 when a drive signal is applied to the vibrating body 8, it is caused by friction on the contact surface between the moving body 3 and the pressing member 4 described in the description of the first embodiment. In addition, the amplitude of the resonance vibration can be attenuated by the friction on the laminated surface of each layer of the pressing member 4 by laminating two kinds of metals having different Young's moduli. As the amplitude of the resonance vibration is attenuated in this way, the contact state between the driver 9 and the sliding member 6 is stabilized, and the driving efficiency can be improved.

以上のように、本実施形態に係る微動機構でも、押圧部材4への押圧力に対する剛性が高いため不要な変形を生じず、また、押圧部材4に励起される振動は、移動体3との密着面及び押圧部材4の積層面にて摩擦減衰されるので、駆動効率を改善することができる。   As described above, even in the fine movement mechanism according to the present embodiment, unnecessary deformation does not occur because the rigidity against the pressing force to the pressing member 4 is high, and vibration excited by the pressing member 4 is Since frictional damping is performed on the contact surface and the laminated surface of the pressing member 4, driving efficiency can be improved.

なお、本実施形態に係る押圧部材4において、積層数は3層に限らず、その他の複数の積層数でもよい。また、ヤング率が異なる金属の種類の数は2つに限らず、3つ以上でもよい。さらに、積層順は上述の積層順に限らず、その他の積層順でもよい。また、各層の厚みは同一に限らず異なってもよいし、一部の複数の層のみの厚みが同一又は異なるものであってもよい。
<第4の実施形態>
図7は、本発明の第4の実施形態に係る、超音波モータを備えた微動機構の断面図である。なお、同図も、図1に示した第1の実施形態に係る微動機構のXZ平面における断面図(図4)に対応する図である。
In the pressing member 4 according to the present embodiment, the number of stacked layers is not limited to three, and may be a plurality of other stacked numbers. Further, the number of types of metals having different Young's moduli is not limited to two, and may be three or more. Furthermore, the stacking order is not limited to the above-described stacking order, and other stacking orders may be used. In addition, the thickness of each layer is not limited to the same, and may be different, or only some of the plurality of layers may have the same or different thickness.
<Fourth Embodiment>
FIG. 7 is a cross-sectional view of a fine movement mechanism provided with an ultrasonic motor according to the fourth embodiment of the present invention. This figure also corresponds to the cross-sectional view (FIG. 4) in the XZ plane of the fine movement mechanism according to the first embodiment shown in FIG.

本実施形態に係る微動機構も、押圧部材4の構成のみが第1の実施形態に係る微動機構
と異なっている。すなわち、本実施形態に係る微動機構では、図7に示したように、ヤング率が異なる2種類の金属と振動吸収部材とを用いて、押圧部材4が当該押圧部材4への押圧方向に対して垂直な方向(同図では上下方向)に金属と振動吸収部材とが交互に積層されて構成されている。ここでは、その押圧部材4として、第1の金属材料(例えば第1の実施形態に係る押圧部材4と同一の金属材料)からなる層4bを振動吸収部材(例えば第2の実施形態に係る押圧部材4における振動吸収部材4aと同一材料の部材)の層4dにより挟み込み、それらを更に第2の金属材料からなる層4cにより挟み込んだ、5層構造の押圧部材を示している。また、各層の厚みは同一である。
The fine movement mechanism according to this embodiment is also different from the fine movement mechanism according to the first embodiment only in the configuration of the pressing member 4. That is, in the fine movement mechanism according to the present embodiment, as shown in FIG. 7, the pressing member 4 uses the two kinds of metals having different Young's moduli and the vibration absorbing member, so that the pressing member 4 is pressed against the pressing member 4. The metal and the vibration absorbing member are alternately laminated in a vertical direction (vertical direction in the figure). Here, as the pressing member 4, the layer 4b made of the first metal material (for example, the same metal material as the pressing member 4 according to the first embodiment) is used as the vibration absorbing member (for example, the pressing according to the second embodiment). A pressing member having a five-layer structure is shown in which the member 4 is sandwiched between layers 4d of members of the same material as the vibration absorbing member 4a) and further sandwiched between layers 4c made of a second metal material. Moreover, the thickness of each layer is the same.

このような構成により、押圧部材4を構成する各層の金属は、断面2次モーメントが大きくなる方向と当該押圧部材4への押圧方向とが一致し、且つ、押圧部材4が当該押圧部材4への押圧力を振動吸収部材のみで受け止めるような部分も含まないことから、押圧部材4への押圧力を高い剛性で受け止めることができる。また、押圧部材4の不要な変形を生じ難くすることもできる。   With such a configuration, the metal of each layer constituting the pressing member 4 matches the direction in which the cross-sectional secondary moment increases and the pressing direction to the pressing member 4, and the pressing member 4 moves to the pressing member 4. Therefore, the pressing force applied to the pressing member 4 can be received with high rigidity. Further, it is possible to make it difficult to cause unnecessary deformation of the pressing member 4.

また、振動体8に駆動信号が印加されたときに押圧部材4に共振振動が発生した場合、第1の実施形態の説明で述べた移動体3と押圧部材4との密着面における摩擦によるものに加え、更に、ヤング率が異なる2種類の金属と振動吸収部材とを積層したことによる押圧部材4の各層の積層面における摩擦と振動吸収部材により、共振振動の振幅を減衰させることができる。このように共振振動の振幅が減衰されることで、駆動子9と摺動部材6との接触状態が安定し、駆動効率を向上させることができる。   Further, when resonance vibration occurs in the pressing member 4 when a drive signal is applied to the vibrating body 8, it is caused by friction on the contact surface between the moving body 3 and the pressing member 4 described in the description of the first embodiment. In addition, the amplitude of the resonance vibration can be attenuated by the friction and vibration absorbing member on the layered surface of each layer of the pressing member 4 formed by laminating two kinds of metals having different Young's modulus and the vibration absorbing member. As the amplitude of the resonance vibration is attenuated in this way, the contact state between the driver 9 and the sliding member 6 is stabilized, and the driving efficiency can be improved.

以上のように、本実施形態に係る微動機構でも、押圧部材4への押圧力に対する剛性が高いため不要な変形を生じず、また、押圧部材4に励起される振動は、移動体3との密着面及び押圧部材4の積層面にて摩擦減衰されると共に振動吸収部材により減衰されるので、駆動効率を改善することができる。   As described above, even in the fine movement mechanism according to the present embodiment, unnecessary deformation does not occur because the rigidity against the pressing force to the pressing member 4 is high, and vibration excited by the pressing member 4 is Since the frictional damping is performed on the contact surface and the laminated surface of the pressing member 4 and the vibration absorbing member is used, the driving efficiency can be improved.

なお、本実施形態に係る押圧部材4において、積層数は5層に限らず、その他の複数の積層数でもよい。但し、少なくとも最上層(固定ねじ5の締結面を形成する層)は、金属材料の層とするのが望ましい。また、ヤング率が異なる金属の種類の数は2つに限らず、3つ以上でもよい。さらに、積層順は上述の積層順に限らず、その他の積層順でもよい。また、各層の厚みは同一に限らず異なってもよいし、一部の複数の層のみの厚みが同一又は異なるものであってもよい。   Note that in the pressing member 4 according to the present embodiment, the number of stacked layers is not limited to five, and may be a plurality of other stacked numbers. However, it is desirable that at least the uppermost layer (the layer forming the fastening surface of the fixing screw 5) be a layer of a metal material. Further, the number of types of metals having different Young's moduli is not limited to two, and may be three or more. Furthermore, the stacking order is not limited to the above-described stacking order, and other stacking orders may be used. In addition, the thickness of each layer is not limited to the same, and may be different, or only some of the plurality of layers may have the same or different thickness.

以上、本発明について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の要旨を逸脱しない範囲において、各種の改良及び変更を行っても良いのはもちろんである。   Although the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and it is needless to say that various improvements and changes may be made without departing from the gist of the present invention.

第1の実施形態に係る、超音波モータを備えた微動機構を模式的に示す斜視図である。It is a perspective view which shows typically the fine movement mechanism provided with the ultrasonic motor based on 1st Embodiment. (a) は第1の実施形態に係る微動機構の一部上面図であり、(b) は同図(a) に示したA−A´断面図である。(a) is a partial top view of the fine movement mechanism according to the first embodiment, and (b) is a cross-sectional view taken along line AA ′ shown in FIG. プランジャの断面図である。It is sectional drawing of a plunger. 図1に示した微動機構のXZ平面における断面図である。It is sectional drawing in the XZ plane of the fine movement mechanism shown in FIG. 第2の実施形態に係る、超音波モータを備えた微動機構の断面図である。It is sectional drawing of the fine movement mechanism provided with the ultrasonic motor based on 2nd Embodiment. 第3の実施形態に係る、超音波モータを備えた微動機構の断面図である。It is sectional drawing of the fine movement mechanism provided with the ultrasonic motor based on 3rd Embodiment. 第4の実施形態に係る、超音波モータを備えた微動機構の断面図である。It is sectional drawing of the fine movement mechanism provided with the ultrasonic motor based on 4th Embodiment. リニア駆動型超音波アクチュエータを備えたステージ移動機構の一例を模式的に示す図である。It is a figure which shows typically an example of the stage moving mechanism provided with the linear drive type ultrasonic actuator. (a) は屈曲変形振動が励起されたときの様子を模式的に示す図、(b) は縦振動が励起されたときの様子を模式的に示す図である。(a) is a diagram schematically showing a state when bending deformation vibration is excited, and (b) is a diagram schematically showing a state when longitudinal vibration is excited.

符号の説明Explanation of symbols

1 固定台
2 ガイド
3 移動体
4 押圧部材
5 固定ねじ
6 摺動部材
7 保持機構
8 振動体
9 駆動子
10 固定ねじ
11 切り欠き穴部
12 薄板ばね部
13 固定用ビス穴
14 プランジャ
15 コイルばね
16 先端部材
101 屈曲振動用電極
102 縦振動用電極
103 超音波振動子
104 駆動子
105 超音波モータ
106 ガイド
107 可動体
DESCRIPTION OF SYMBOLS 1 Fixing base 2 Guide 3 Moving body 4 Pressing member 5 Fixing screw 6 Sliding member 7 Holding mechanism 8 Vibrating body 9 Driver 10 Fixing screw 11 Notch hole part 12 Thin plate spring part 13 Fixing screw hole 14 Plunger 15 Coil spring 16 Tip member 101 Electrode for bending vibration 102 Electrode for longitudinal vibration 103 Ultrasonic vibrator 104 Driver element 105 Ultrasonic motor 106 Guide 107 Movable body

Claims (6)

超音波モータを備えた微動機構であって、
固定台と、
前記固定台に対して移動軸方向に移動可能に支持された移動体と、
前記移動体の一面に設けられた摺動部材と、
立体的形状を有し、高周波電圧信号の印加により複数の振動モードを励起する振動体と、
前記振動体を前記固定台に対して保持すると共に前記移動体に押圧せしめる保持機構と、
前記振動体に設けられ、前記摺動部材と摩擦接触する駆動子と、
を備え、
前記移動体は一部分が別体として構成され、当該一部分の一面に前記摺動部材が設けられる、
ことを特徴とする微動機構。
A fine movement mechanism equipped with an ultrasonic motor,
A fixed base;
A movable body supported so as to be movable in the movement axis direction with respect to the fixed base;
A sliding member provided on one surface of the moving body;
A vibrating body having a three-dimensional shape and exciting a plurality of vibration modes by application of a high-frequency voltage signal;
A holding mechanism that holds the vibrating body against the fixed base and presses the moving body;
A driver provided in the vibrating body and in frictional contact with the sliding member;
With
A part of the moving body is configured as a separate body, and the sliding member is provided on one surface of the part.
A fine movement mechanism characterized by that.
前記移動体は、前記一部分が2面以上の平面で密着するように固定されることにより、構成される、
ことを特徴とする請求項1記載の微動機構。
The moving body is configured by being fixed so that the part is in close contact with two or more planes.
The fine movement mechanism according to claim 1.
前記移動体の一部分は、振動減衰材料を含む、
ことを特徴とする請求項1又は2に記載の微動機構。
A portion of the moving body includes a vibration damping material;
The fine movement mechanism according to claim 1 or 2, characterized by the above.
前記移動体の一部分は、前記保持機構による押圧方向に対して垂直な方向に複数の金属材料が積層されて構成される、
ことを特徴とする請求項1又は2記載の微動機構。
A part of the moving body is configured by laminating a plurality of metal materials in a direction perpendicular to a pressing direction by the holding mechanism.
The fine movement mechanism according to claim 1 or 2, wherein
前記移動体の一部分は、前記保持機構による押圧方向に対して垂直な方向に、金属材料と振動減衰材料とが交互に積層されて構成される、
ことを特徴とする請求項1又は2記載の微動機構。
A part of the moving body is configured by alternately laminating metal materials and vibration damping materials in a direction perpendicular to the pressing direction by the holding mechanism.
The fine movement mechanism according to claim 1 or 2, wherein
前記移動体の一部分は、2種類以上の金属材料を含む、
ことを特徴とする請求項4又は5記載の微動機構。
A part of the moving body includes two or more kinds of metal materials,
The fine movement mechanism according to claim 4 or 5, wherein
JP2008295020A 2008-11-19 2008-11-19 Fine-positioning mechanism equipped with ultrasonic motor Withdrawn JP2010122403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295020A JP2010122403A (en) 2008-11-19 2008-11-19 Fine-positioning mechanism equipped with ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295020A JP2010122403A (en) 2008-11-19 2008-11-19 Fine-positioning mechanism equipped with ultrasonic motor

Publications (1)

Publication Number Publication Date
JP2010122403A true JP2010122403A (en) 2010-06-03

Family

ID=42323812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295020A Withdrawn JP2010122403A (en) 2008-11-19 2008-11-19 Fine-positioning mechanism equipped with ultrasonic motor

Country Status (1)

Country Link
JP (1) JP2010122403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313978A (en) * 2010-06-30 2012-01-11 索尼公司 Stage system and microscope
JP2014014256A (en) * 2012-06-05 2014-01-23 Canon Inc An oscillatory wave drive unit, a two-dimensional drive unit, an image blur correction device, an interchangeable lens, an imaging apparatus, and an automatic stage
JP2022040911A (en) * 2020-08-31 2022-03-11 キヤノン株式会社 Vibration type driving device and imaging apparatus
US11516407B2 (en) 2020-08-31 2022-11-29 Canon Kabushiki Kaisha Vibration driving device and image pickup apparatus using this

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313978A (en) * 2010-06-30 2012-01-11 索尼公司 Stage system and microscope
JP2014014256A (en) * 2012-06-05 2014-01-23 Canon Inc An oscillatory wave drive unit, a two-dimensional drive unit, an image blur correction device, an interchangeable lens, an imaging apparatus, and an automatic stage
CN104350673A (en) * 2012-06-05 2015-02-11 佳能株式会社 Vibration type driving apparatus, two-dimensional driving apparatus, image-blur correction apparatus, interchangeable lens, image-pickup apparatus, and automatic stage
US9647576B2 (en) 2012-06-05 2017-05-09 Canon Kabushiki Kaisha Vibration type driving apparatus, two-dimensional driving apparatus, image-blur correction apparatus, interchangeable lens, image-pickup apparatus, and automatic stage
CN104350673B (en) * 2012-06-05 2017-11-24 佳能株式会社 Vibration type driving apparatus, two-dimentional driving equipment, image blur collection, Interchangeable lens, image pick up equipment and automation objective table
JP2022040911A (en) * 2020-08-31 2022-03-11 キヤノン株式会社 Vibration type driving device and imaging apparatus
US11516407B2 (en) 2020-08-31 2022-11-29 Canon Kabushiki Kaisha Vibration driving device and image pickup apparatus using this
JP7183225B2 (en) 2020-08-31 2022-12-05 キヤノン株式会社 Vibration type driving device and imaging device

Similar Documents

Publication Publication Date Title
US11073913B2 (en) Device for producing haptic feedback
Uchino Piezoelectric ultrasonic motors: overview
TWI286122B (en) Microelectromechanical system actuator
JP5184811B2 (en) Vibration type actuator
EP2587343A1 (en) Method of generating 3d haptic feedback and an associated handheld electronic device
JP4209465B2 (en) Drive device
US8633632B2 (en) Vibration actuator and method for manufacturing the same
US7960925B2 (en) Ultrasonic motor driving method and ultrasonic motor
JP5655861B2 (en) Piezoelectric generator and manufacturing method thereof
WO2007069682A1 (en) Ultrasonic actuator
JP2009017735A (en) Ultrasonic motor
JP4072518B2 (en) Vibration wave drive
JP2010122403A (en) Fine-positioning mechanism equipped with ultrasonic motor
JP2007325466A (en) Driving apparatus
JP4373449B2 (en) Fine movement mechanism and ultrasonic body holding mechanism equipped with ultrasonic motor
JP2009027865A (en) Micromotion mechanism and microscope device equipped with the same
KR101653826B1 (en) Ultrasonic motor and method for manufacturing the ultrasonic motor
Ci et al. A square-plate piezoelectric linear motor operating in two orthogonal and isomorphic face-diagonal-bending modes
JP2011024397A (en) Piezoelectric generator
US8525388B2 (en) Vibration wave driving apparatus and manufacturing method of vibration body
US9065036B2 (en) Vibration-type driving apparatus and image pickup apparatus
JP5776269B2 (en) Piezoelectric actuator, robot and robot hand
US20130034252A1 (en) Transducer module
JP6107894B2 (en) Piezoelectric actuator, robot and robot hand
JP2012120370A (en) Ultrasonic transducer and ultrasonic motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207