JPH0222134A - Process tube for heat-treatment of semiconductor - Google Patents

Process tube for heat-treatment of semiconductor

Info

Publication number
JPH0222134A
JPH0222134A JP17045988A JP17045988A JPH0222134A JP H0222134 A JPH0222134 A JP H0222134A JP 17045988 A JP17045988 A JP 17045988A JP 17045988 A JP17045988 A JP 17045988A JP H0222134 A JPH0222134 A JP H0222134A
Authority
JP
Japan
Prior art keywords
tube
cristobalite
powder
quartz glass
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17045988A
Other languages
Japanese (ja)
Inventor
Masatoshi Takita
滝田 政俊
Takaaki Shimizu
孝明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP17045988A priority Critical patent/JPH0222134A/en
Publication of JPH0222134A publication Critical patent/JPH0222134A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To prevent contamination of a silicon wafer by heating a silica gel obtained by a sol-gel method to provide cristobalite, pulverizing the resultant cristobalite, forming the obtained powder into a tubular shape, thermally fusing the tube, pulverizing the fused tube and converting the resultant powder into synthetic quartz glass. CONSTITUTION:A solution of an aloxysilane, such as tetramethoxysilane or tetraethoxysilane, is hydrolyzed to form a sol, which is then heated at 30-60 deg.C, gelatinized and dried at 50-70 deg.C. The obtained dried gel is subsequently heated stepwise to 1000-1600 deg.C at 10-100 deg.C/hr heating rate and transformed into cristobalite, which is then pulverized in a ball mill, etc., preferably sieved to regulate the particle diameter to 50-250 mesh average particle diameter. The glass powder is then formed into a tubular shape by a tube forming method, etc., and thermally fused. The resultant powder is subsequently converted into synthetic quartz glass with <=0.1ppm content of metallic impurities, such as Na, K, Li or Cu, and >=10<13>P viscosity value at 1200 deg.C and excellent in devitrification resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体熱処理用プロセスチューブ、特には金属
不純物含有量が0.1ppm以下で、1゜200℃にお
ける粘性値が1013ポイズ以上であり、かつ耐失透性
もすぐれていることから半導体熱処理用に有用とされる
プロセスチューブに関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a process tube for semiconductor heat treatment, in particular, a process tube having a metal impurity content of 0.1 ppm or less and a viscosity value of 1013 poise or more at 1° 200°C, The present invention also relates to a process tube that is useful for semiconductor heat treatment because of its excellent devitrification resistance.

(従来の技術) 半導体熱処理プロセスチューブについては合成石英ガラ
ス製とするとこのものは高温における粘性値が低く、し
たがって高温における熱処理時に変形するため、これに
は高温における粘性値が高い、天然石英ガラス管、5i
C−8i管またはSiC管の内面にSiCをCVDコー
ティングした管が使用されており、この天然石英ガラス
管は1゜200℃以下で、また5iC−8i管は1,2
00℃以上で使用されている。
(Prior art) Semiconductor heat treatment process tubes made of synthetic quartz glass have low viscosity at high temperatures and are deformed during heat treatment at high temperatures. , 5i
A C-8i tube or a SiC tube whose inner surface is coated with SiC by CVD is used, and this natural quartz glass tube can be heated to 1° or less than 200°C, and a 5iC-8i tube can be heated to temperatures of 1 or 2 degrees Celsius or less.
Used at temperatures above 00°C.

しかして、この天然石英ガラス管は天然の水晶を酸水素
火炎で溶融してインゴットを作り、ついで管状に加工し
て製造されているが、このものは天然水晶にAlが20
ppm、Feが1ppm、Na、Kが2ppm程度含ま
れているためK、この管状体を半導体拡散炉のプロセス
チューブとして使用すると、Na、Liなどが1,10
0℃において10−5CIJ/秒程度の拡散常数をもつ
ものであることからこれがプロセスチューブからシリコ
ーンウェーハに飛散してシリコンウェーハに微少欠陥を
つくる要因となるし、このものはまたOH基含有量も数
百ppmであるために1,100℃における粘性値が5
 X 1014ポイズ程度で高温においてたわみを発生
するという欠点があるほか、これにはさらに不純物が多
く含まれているためにクリストバライトへの変態時に剥
離、割れが起き、長期使用が難しいという不利がある。
However, this natural quartz glass tube is manufactured by melting natural quartz with an oxyhydrogen flame to make an ingot, which is then processed into a tube shape.
If this tubular body is used as a process tube for a semiconductor diffusion furnace, it will contain about 1.10 ppm of Fe, 1 ppm of Na, and 2 ppm of K.
Since it has a diffusion constant of about 10-5 CIJ/sec at 0°C, it scatters from the process tube to the silicon wafer and causes micro defects on the silicon wafer, and it also has a high OH group content. Because it is several hundred ppm, the viscosity value at 1,100°C is 5.
In addition to the disadvantage that it warps at high temperatures at around 1014 poise, it also contains many impurities, which causes peeling and cracking during the transformation into cristobalite, making it difficult to use for a long period of time.

(発明の構成) 本発明は前記した天然石英ガラス製プロセスチューブの
不利を解決した合成石英ガラスで製られた半導体熱処理
用プロセスチューブに関するものであり、これはアルコ
キシシラン溶液を加水分解して得たゾル液をゲル化し、
乾燥したのち、1゜000〜1,600℃に加熱してク
リストバライトに転移させて粉砕し、管状成形法でチュ
ーブ状に成形し、ついで溶融してこの粉末を合成石英ガ
ラスとしてなることを特徴とするものである。
(Structure of the Invention) The present invention relates to a process tube for semiconductor heat treatment made of synthetic quartz glass that solves the disadvantages of the process tube made of natural quartz glass, which is obtained by hydrolyzing an alkoxysilane solution. Turn the sol into a gel,
After drying, it is heated to 1°000 to 1,600°C to transform it into cristobalite, which is crushed, formed into a tube shape using a tubular molding method, and then melted to form the powder into synthetic quartz glass. It is something to do.

すなわち、本発明者らは半導体熱処理用プロセスチュー
ブに使用される石英ガラスを高純度でかつ高温における
粘性値の高いものとする方法について種々検討した結果
、合成石英ガラスを高純度とするためには始発材とされ
るけい素化合物を蒸留などで充分精製すればよいし、高
温における粘性値を高くするためには合成石英ガラス中
のOH基含有量、C1含有量を減らすことがよいという
ことは公知とされているけれども、本発明者らはこれだ
けでは不充分であり、このけい素化合物が5i−X結合
(XはOH基、ハロゲン原子を示す)または5i−OR
基(RはNa、Li、になどの金属原子を示す)を有す
るものであるとこれらの結合、基が合成石英ガラスの粘
性値を下げ、この粘性値を下げる影響の大きさはイオン
結合の割合が共有結合に比べて大きい場合、F基>OH
基〉C1基の順K、またL i > N a > Kの
順となることを見出し、したがって高温における粘性値
の高いものを得るためにはOH基濃度を例えば1100
pp以下、C1含有量を10ppm以下とし、Li、N
a、にな、どの不純物金属含有量を0.1ppm以下と
すべきであることを確認すると共K、この粘性値を高め
るためには原子結合のフレキシビリティを少なくするこ
とも重要なポイントであり、したがってこれには溶融原
料の少なくとも1部をクリストバライトに転移させてお
くべきであることを見出し、このためには原料とされる
けい素化合物をできるだけ充分に精製すると共にゾル−
ゲル法で得ら九たアルコキシシランの加水分解で得たゲ
ルを加熱によりクリストバライトに転移させることがよ
く、さらにこの方法をアルコキシシラン溶液の加水分解
により得たゾルをゲル化してシリカを得るゾル−ゲル法
で行なうとこれから作られたガラスが結晶化温度の低い
ものとなること、また結晶化したものは剥離、破壊せず
に形状を保っており、後の工程での粉砕、篩別時の粒度
調整がし易いということを確認して本発明を完成させた
That is, the present inventors have studied various ways to make quartz glass used in process tubes for semiconductor heat treatment highly pure and have a high viscosity value at high temperatures. The silicon compound used as the starting material needs to be sufficiently purified by distillation, etc., and in order to increase the viscosity value at high temperatures, it is better to reduce the OH group content and C1 content in the synthetic quartz glass. Although this is known to be publicly known, the present inventors found that this alone was insufficient, and found that this silicon compound is a 5i-X bond (X represents an OH group or a halogen atom)
If it has a group (R represents a metal atom such as Na, Li, etc.), these bonds and groups lower the viscosity value of the synthetic silica glass, and the magnitude of the effect of lowering this viscosity value is due to the ionic bond. If the proportion is large compared to covalent bonds, F group > OH
It was found that the order of K for group>C1 group is the order of L i > Na > K. Therefore, in order to obtain a product with a high viscosity value at high temperature, the OH group concentration should be set to 1100, for example.
ppm or less, C1 content is 10 ppm or less, Li, N
In addition to confirming that the impurity metal content of a, n, etc. should be 0.1 ppm or less, it is also important to reduce the flexibility of atomic bonds in order to increase this viscosity value. Therefore, it was discovered that for this purpose, at least a part of the molten raw material should be transferred to cristobalite, and for this purpose, the silicon compound used as the raw material should be purified as thoroughly as possible, and the sol-
The gel obtained by hydrolysis of alkoxysilane obtained by the gel method is often converted to cristobalite by heating, and this method is also used to gel the sol obtained by hydrolysis of an alkoxysilane solution to obtain silica. If the gel method is used, the resulting glass will have a low crystallization temperature, and the crystallized glass will maintain its shape without peeling or breaking, making it easier to crush and sieve in later processes. The present invention was completed after confirming that particle size adjustment is easy.

以下、本発明をさらに詳述する。The present invention will be described in further detail below.

本発明の方法における溶融原料の製造は公知のゾル−ゲ
ル法で行なわれる。したがって、これは式(RO)、S
iで示され、Rが1価炭化水素基であるアルコキシシラ
ンが始発材とされるが、このものは前記した金属原子な
どの不純物を極少とするために蒸留などによって充分精
製したものとする必要がある。このアルコキシシランと
してはテトラメトキシシラン、テトラエトキシシラン、
テトラプロポキシシラン、テトラブトキシシラン、メト
キシトリエトキシシラン、ジメトキシジェトキシシラン
、トリメトキシエトキシシランなどが例示されるが、加
水分解性、入手のし易さ、価格の点からはテトラメトキ
シシラン、テトラエトキシランとすることがよい。
The molten raw material in the method of the present invention is produced by a known sol-gel method. Therefore, this is the formula (RO), S
The starting material is alkoxysilane represented by i, where R is a monovalent hydrocarbon group, but this material must be sufficiently purified by distillation etc. to minimize impurities such as the metal atoms mentioned above. There is. Examples of this alkoxysilane include tetramethoxysilane, tetraethoxysilane,
Examples include tetrapropoxysilane, tetrabutoxysilane, methoxytriethoxysilane, dimethoxyjethoxysilane, and trimethoxyethoxysilane, but tetramethoxysilane and tetraethoxysilane are preferred in terms of hydrolyzability, availability, and price. It is better to use a run.

このアルコキシシランはまず加水分解によってゾル液と
されるが、この加水分解は公知の方法にしたがって塩酸
などの酸性触媒溶液またはアンモニアなどの塩基性触媒
溶液の存在下で行えばよい。
This alkoxysilane is first converted into a sol by hydrolysis, and this hydrolysis may be carried out in the presence of an acidic catalyst solution such as hydrochloric acid or a basic catalyst solution such as ammonia according to a known method.

このようにして得られたゾル液はこれを加温してゲル化
させたのち、乾燥し、加熱してクリストバライト化する
のであるが、このゲル化はゾル液を30〜60℃に加温
すればよく、この乾燥は急激乾燥するとクラックが生じ
るので湿性ゲルに含有されている水分と残存アルコール
の揮発速度を抑えて徐々に行なわせることがよく、した
がってこれは開口率が0.1〜5%である容器中で50
〜70℃の温度に乾燥することがよい。また、このクリ
ストバライト化はこのようにして得た乾燥ゲルを1,0
00〜1,600℃に段階的に昇温しで行えばよいが、
この昇温速度は10〜b/時とすることがよい。
The sol obtained in this way is heated to gel, then dried and heated to form cristobalite. Since rapid drying will cause cracks, this drying should be done gradually by suppressing the rate of volatilization of the water and residual alcohol contained in the wet gel. 50 in a container with
It is preferable to dry to a temperature of ~70°C. In addition, this cristobalite conversion is performed by converting the dried gel obtained in this way into 1.0
It can be carried out by raising the temperature in stages from 00 to 1,600 °C,
This heating rate is preferably 10 to 10 b/hr.

このようにして得られたクリストバライト化されたガラ
スはOH基含有量が1100pp以下とされるし、CI
基量は始発材がアルコキシシランで01基を含まないも
のとされているのでLoppm以下のものとされ、これ
はまた始発材としてのアルコキシシランが充分精製され
たものであるので不純物金属の含有量は0.1 ppm
以下のものとされる。
The cristobalitized glass thus obtained has an OH group content of 1100 pp or less, and CI
Since the starting material is alkoxysilane and does not contain 01 groups, the base content is less than Loppm, and since the starting material is alkoxysilane that has been sufficiently purified, the content of impurity metals is lower. is 0.1 ppm
The following shall apply.

このクリストバライト化されたガラスはついでボールミ
ルなどを用いて粉砕してチューブ成形用原料とされるが
、この粉砕品は篩別して平均粒径が50〜250#のも
のとすることが成型性の面でよい。このように粒径の調
整されたガラス粉は従来公知の管形成形法によってチュ
ーブ状に成形すればよいが、これは例えば回転する金型
中にこの粉末を充填し、遠心力でチューブ状に成形すれ
ばよい。
This cristobalite glass is then pulverized using a ball mill or the like and used as a raw material for tube molding, but from the viewpoint of moldability, it is important to sieve this pulverized product to have an average particle size of 50 to 250#. good. The glass powder whose particle size has been adjusted in this way can be formed into a tube shape using a conventionally known tube forming method. Just mold it.

このようにして成形されたプロセスチューブはついで加
熱溶融しこの粉末材を合成ガラスとするのであるが、こ
の温度はガラス化温度が1,740℃とされることから
この温度以上とする必要があり、これは好ましくは1,
900℃以上とされるが、これによればOH基含有量、
C1含有量、不純物金属含有量が少なく、1,200℃
における粘性値が1011ポイズ以上であり、さらには
耐失透性もすぐれた合成石英ガラスからなるチューブを
得ることができ、このものは高純度で高温における粘性
値が高く、シかも耐失透性にすぐれているので半導体拡
散炉などのような半導体熱処理用プロセスチューブとし
て使用したときにシリコンウェーハを汚染することがな
く、使用中に軟化、たわむこともないので長期間、しり
返し使用することができ、熱衝撃にも耐えるという有利
性が与えられる。
The process tube formed in this way is then heated and melted to make the powder material into synthetic glass, but since the vitrification temperature is 1,740°C, this temperature must be higher than this temperature. , which is preferably 1,
According to this, the OH group content,
C1 content, low impurity metal content, 1,200℃
It is possible to obtain a tube made of synthetic quartz glass that has a viscosity value of 1011 poise or more and also has excellent devitrification resistance. Because of its excellent properties, it does not contaminate silicon wafers when used as a process tube for semiconductor heat treatment such as in a semiconductor diffusion furnace, and it does not soften or bend during use, so it can be used repeatedly for a long period of time. It has the advantage of being able to withstand thermal shock.

つぎに本発明の実施例をあげる。Next, examples of the present invention will be given.

実施例 蒸留により充分精製したテトラエチルシリケート1モル
に対しエタノール2モル、水2モルおよび0.01 N
のアンモニア水0.01モルを加え、加水分解させてゾ
ル液をつくり、このゾル液を60℃に加温してゲル化さ
せ、開口率が1.5%である容器中で70℃の温度で乾
燥したのち、これを酸素ガス雰囲気中で500〜700
’Cに2時間保持して有機物を除去し、空気中において
1,300℃に20時間加熱してクリストバライトを5
8重量%含有するガラス体を作フた。
Example 2 mols of ethanol, 2 mols of water and 0.01 N per 1 mol of tetraethylsilicate sufficiently purified by distillation.
Add 0.01 mol of ammonia water, hydrolyze it to make a sol, heat this sol to 60°C to gel, and heat it at 70°C in a container with an open area ratio of 1.5%. After drying it in an oxygen gas atmosphere,
'C for 2 hours to remove organic matter, and then heated in air to 1,300℃ for 20 hours to prepare cristobalite.
A glass body containing 8% by weight was prepared.

ついでこのガラス体を石英ガラスボールミルを用いて5
0〜250メツシユの粉末に粉砕し、この25kgを回
転金型に充填して回転させ、この遠心力で管状体に成形
したのち、これを単層アーク炉内に入れ、この炉内で約
2,300℃に加熱し溶融してこの粉体を合成石英ガラ
スとしたところ、若干不透明であるプロセスチューブが
得られた。
Next, this glass body was milled using a quartz glass ball mill.
The 25kg powder was crushed into a powder of 0 to 250 meshes, filled into a rotary mold, rotated, and formed into a tubular body by the centrifugal force.Then, this was placed in a single-layer arc furnace, and in this furnace approximately 25kg was crushed. When this powder was made into synthetic quartz glass by heating to 300°C and melting, a slightly opaque process tube was obtained.

つぎにこのプロセスチューブを部分的に切断して2X4
×4011Ilの試料を採取し、このものを化学分析し
てその不純物金属量を測定すると共にファイバーーエロ
ンゲイション法でこのものの1゜200℃における粘性
値を測定し、さらにこのものの1,300℃における耐
失透性をしらべたところ、第1表に示したとおりの結果
が得られた。
Next, cut this process tube partially and make it into a 2X4
A sample of ×4011Il was taken, chemically analyzed to measure the amount of impurity metal, and the viscosity value of this material at 1°200°C was measured using the fiber elongation method. When the devitrification resistance was investigated, the results shown in Table 1 were obtained.

なお、比較のために天然石英ガラスから作ったプロセス
チューブについて上記と同様の試験を行ったところ、こ
のものは第1表に併記したとおりの結果を示した。
For comparison, a test similar to the above was conducted on a process tube made from natural quartz glass, and this tube showed the same results as shown in Table 1.

Claims (1)

【特許請求の範囲】 1、アルコキシシラン溶液を加水分解して得たゾル液を
ゲル化し、乾燥したのち、1,000〜1,600℃に
加熱してクリストバライトに転移させて粉砕し、管状成
形法でチューブ状に成形し、ついで溶融してこの粉末を
合成石英ガラスとしてなることを特徴とする半導体熱処
理用プロセスチューブ。 2、合成石英ガラスがNa、K、Li、Cuなどの金属
不純物含有量が0.1ppm以下で、1,200℃にお
ける粘性値が10^1^3ポイズ以上であり、かつ耐失
透性もすぐれたものである請求項1に記載の半導体熱処
理用プロセスチューブ。
[Claims] 1. A sol obtained by hydrolyzing an alkoxysilane solution is gelled, dried, heated to 1,000 to 1,600°C to transform into cristobalite, crushed, and formed into a tubular shape. A process tube for semiconductor heat treatment, characterized in that the powder is formed into a tube shape by a method and then melted to form synthetic quartz glass. 2. The synthetic quartz glass has a content of metal impurities such as Na, K, Li, and Cu of 0.1 ppm or less, a viscosity value of 10^1^3 poise or more at 1,200°C, and devitrification resistance. The process tube for semiconductor heat treatment according to claim 1, which is excellent.
JP17045988A 1988-07-08 1988-07-08 Process tube for heat-treatment of semiconductor Pending JPH0222134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17045988A JPH0222134A (en) 1988-07-08 1988-07-08 Process tube for heat-treatment of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17045988A JPH0222134A (en) 1988-07-08 1988-07-08 Process tube for heat-treatment of semiconductor

Publications (1)

Publication Number Publication Date
JPH0222134A true JPH0222134A (en) 1990-01-25

Family

ID=15905328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17045988A Pending JPH0222134A (en) 1988-07-08 1988-07-08 Process tube for heat-treatment of semiconductor

Country Status (1)

Country Link
JP (1) JPH0222134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034091A1 (en) * 1994-06-09 1995-12-14 Heraeus Quarzglas Gmbh Semifinished product for electronic or opto-electronic semiconductor component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034091A1 (en) * 1994-06-09 1995-12-14 Heraeus Quarzglas Gmbh Semifinished product for electronic or opto-electronic semiconductor component

Similar Documents

Publication Publication Date Title
JP3128451B2 (en) Manufacturing method of synthetic quartz glass
JP2926348B2 (en) Method for producing low silanol silica
JP3152410B2 (en) Manufacturing method of synthetic quartz glass member
KR20090039668A (en) Manufacture of large articles in synthetic vitreous silica
JPH029783A (en) Quartz crucible
JP3393063B2 (en) Heat-resistant synthetic silica glass for shielding impurity metal and method for producing the same
JPH07300341A (en) Opaque silica glass and its production
JP3672592B2 (en) Method for producing synthetic quartz glass member
JPH0222134A (en) Process tube for heat-treatment of semiconductor
JP4068225B2 (en) Silica glass powder and method for producing the same
JPH0517172B2 (en)
JP3121733B2 (en) High purity synthetic cristobalite powder, method for producing the same, and silica glass
JP2931742B2 (en) Opal glass ceramic and method for producing the same
JP3187510B2 (en) Method of manufacturing member for heat treatment of semiconductor wafer
JPH0427177B2 (en)
US20040213724A1 (en) High purity synthetic vitreous silica particles
JPH0624993B2 (en) Quartz glass manufacturing method
JP3114936B2 (en) High heat resistant synthetic quartz glass
JP3371399B2 (en) Cristobalite crystalline phase-containing silica glass and method for producing the same
JPH02208230A (en) Production of high-purity, high-viscosity silica glass
JPH0776093B2 (en) Quartz glass manufacturing method
JPH02172832A (en) Synthesized quartz glass and production thereof
JPH035329A (en) Production of synthetic quartz glass
JP3110639B2 (en) Quartz glass for silicon semiconductor element heat treatment jig
JPH07115881B2 (en) Quartz glass material for heat treatment