JPH07300341A - Opaque silica glass and its production - Google Patents

Opaque silica glass and its production

Info

Publication number
JPH07300341A
JPH07300341A JP11184794A JP11184794A JPH07300341A JP H07300341 A JPH07300341 A JP H07300341A JP 11184794 A JP11184794 A JP 11184794A JP 11184794 A JP11184794 A JP 11184794A JP H07300341 A JPH07300341 A JP H07300341A
Authority
JP
Japan
Prior art keywords
quartz glass
ppm
opaque quartz
concentration
opaque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11184794A
Other languages
Japanese (ja)
Other versions
JP3368547B2 (en
Inventor
Tatsuhiro Sato
龍弘 佐藤
Hiroshi Kimura
博至 木村
Akira Fujinoki
朗 藤ノ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP11184794A priority Critical patent/JP3368547B2/en
Publication of JPH07300341A publication Critical patent/JPH07300341A/en
Application granted granted Critical
Publication of JP3368547B2 publication Critical patent/JP3368547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/24Doped silica-based glasses containing non-metals other than boron or halide containing nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/80Glass compositions containing bubbles or microbubbles, e.g. opaque quartz glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain an opaque silica glass high in heat resistance and excellent in both heat-screening ability and infrared ray scattering ability. CONSTITUTION:This highly-pure opaque silica glass having the following opaque characteristics: cell diameter: 10-160mum; cell density: 100000-600000 counts/cm<3>; total cell volume: 3-10vol.% (closed cells); nitrogen element level in the silica glass base: 50-500ppm; and specific gravity: 2.08-2.18. This silica glass is obtained by ammoniating in an ammonia atmosphere at 600-1300 deg.C crystalline silica powder 0.01-100m<2>/g in specific surface area followed by heating in a molten state the resultant ammoniated silica powder in an inert gas atmosphere at 1600-2000 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高純度で耐熱性が高
く、しかも遮熱性の優れた不透明石英ガラス、特に熱処
理炉の赤外線散乱および遮熱材料としての不透明石英ガ
ラス板を効率よく製造できる不透明石英ガラスに関す
る。
INDUSTRIAL APPLICABILITY The present invention can efficiently produce an opaque quartz glass having a high purity, a high heat resistance and an excellent heat shielding property, particularly an opaque quartz glass plate as an infrared scattering and heat shielding material for a heat treatment furnace. Regarding opaque quartz glass.

【0002】[0002]

【従来の技術】従来、石英ガラスは高い純度を有し、し
かも耐熱性に優れているところから半導体工業用の熱処
理炉や熱処理治具として用いられてきた。この半導体工
業用の熱処理炉にあっては炉内の温度分布を均一にする
ことが重要であり、その目的で特開平5−900号公報
にみるように100,000個/cm3以下の気泡を含
有した不透明石英ガラスで炉芯管を作成したり、あるい
は実開平1−162234号公報に記載するように半導
体ウエハ−を載置するボ−トの両端に6000個/cm
3未満の気泡を含有する不透明石英ガラスの熱線散乱板
が設けられたりしていた。
2. Description of the Related Art Conventionally, quartz glass has been used as a heat treatment furnace or a heat treatment jig for the semiconductor industry because it has high purity and excellent heat resistance. In this heat treatment furnace for the semiconductor industry, it is important to make the temperature distribution in the furnace uniform, and for that purpose, as shown in JP-A-5-900, 100,000 bubbles / cm 3 or less of bubbles Or 6000 pieces / cm at both ends of the boat for forming a furnace core tube with opaque quartz glass containing slag, or for mounting a semiconductor wafer as described in Japanese Utility Model Laid-Open No. 1-262234.
An opaque quartz glass heat ray scattering plate containing bubbles of less than 3 was provided.

【0003】ところが、近年、半導体工業用の熱処理炉
は縦型の熱処理炉が主流となってきたが、この縦型熱処
理炉は、炉の下端部が金属製架台に載置されているため
その接合部で熱線の不規則散乱が起ったり、あるいは下
端部と金属製架台との接合部をシ−ルするシ−ル部材を
保護するために設けた冷却部が炉内温度を乱したりし、
炉内の温度分布が均一にならず熱線散乱および遮熱板を
設けるのが常態であった。前記熱線散乱および遮熱材料
としては不透明石英ガラスが耐熱性および遮熱性の良さ
から好適に使用されてきた。ところが、従来の不透明石
英ガラス板は、高温における粘性が低く高温処理時に熱
変形が、特に約1000℃以上にも加熱されるシリコン
ウエハ−の熱処理時には大きな熱変形が起り、遮熱およ
び赤外線散乱材料としての機能を十分に果たすことがで
きず、熱処理炉の寿命は短いものであった。
However, in recent years, vertical heat treatment furnaces have become the mainstream of heat treatment furnaces for the semiconductor industry. However, in this vertical heat treatment furnace, the lower end portion of the furnace is placed on a metal pedestal. Irregular scattering of heat rays occurs at the joint, or the cooling unit provided to protect the seal member that seals the joint between the lower end and the metal frame disturbs the furnace temperature. Then
The temperature distribution in the furnace was not uniform, and it was usual to install heat ray scattering and heat shield plates. Opaque quartz glass has been preferably used as the heat ray scattering and heat shielding material because of its good heat resistance and heat shielding properties. However, the conventional opaque quartz glass plate has a low viscosity at a high temperature and undergoes a thermal deformation during a high temperature treatment, particularly a large thermal deformation during a heat treatment of a silicon wafer which is heated to about 1000 ° C. or more. However, the life of the heat treatment furnace was short.

【0004】その上、従来の不透明石英ガラスの気泡中
には酸素、水素、アンモニア等の活性の高いガスが残存
し、それらが高温処理時に開放され、処理する半導体製
品に悪影響を及ぼす等の欠点があった。
In addition, highly active gases such as oxygen, hydrogen, and ammonia remain in the bubbles of conventional opaque quartz glass, which are released during high-temperature processing and adversely affect semiconductor products to be processed. was there.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明者等
は、上記不透明石英ガラスの欠点を解決すべく鋭意研究
を重ねた結果、不透明石英ガラス中の独立気泡を特定の
範囲のものにするとともに、不透明石英ガラスに窒素を
含有させ、かつ活性ガスを窒素ガスで置換することによ
り、遮熱性、高温粘性の向上が図られるとともに、活性
ガスによる半導体製品への悪影響を抑えることができる
ことを見出し、本発明を完成したものである。すなわち
Therefore, as a result of intensive studies by the present inventors to solve the above-mentioned drawbacks of the opaque quartz glass, the closed cells in the opaque quartz glass fall within a specific range. By adding nitrogen to the opaque quartz glass and substituting the active gas with the nitrogen gas, it is possible to improve the heat-shielding property and the high temperature viscosity, and it is possible to suppress the adverse effect of the active gas on the semiconductor product, The present invention has been completed. Ie

【0006】本発明は、高温粘性が高く、しかも残存活
性ガス量の少ない高純度不透明石英ガラスを提供するこ
とを目的とする。
An object of the present invention is to provide a high-purity opaque quartz glass which has a high temperature viscosity and a small amount of residual active gas.

【0007】また、本発明は、耐熱性が高く、かつ遮熱
性に優れた高純度不透明石英ガラスを提供することを目
的とする。
Another object of the present invention is to provide a high-purity opaque quartz glass having a high heat resistance and an excellent heat shielding property.

【0008】さらに、本発明は、上記高純度不透明石英
ガラスの製造方法を提供することを目的とする。
A further object of the present invention is to provide a method for producing the above high-purity opaque quartz glass.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明は、比重が2.08〜2.18であって、気泡直径が
10〜160μm、気泡密度が100,000〜60
0,000個/cm3、気泡総体積が3〜10%の独立
気泡を有し、かつ石英ガラス基質中の窒素元素濃度が5
0〜500ppmで、しかも気泡中のガスの90%以上
が窒素ガスである高純度不透明石英ガラス、およびその
製造方法に係る。
The present invention which achieves the above object has a specific gravity of 2.08 to 2.18, a bubble diameter of 10 to 160 μm, and a bubble density of 100,000 to 60.
The number of closed cells is 10,000 cells / cm 3 , the total volume of bubbles is 3 to 10%, and the nitrogen element concentration in the quartz glass substrate is 5
The present invention relates to a high-purity opaque quartz glass having 0 to 500 ppm, and 90% or more of gas in bubbles is nitrogen gas, and a manufacturing method thereof.

【0010】上記不透明石英ガラスとは、微細な気泡を
含有してなる不透明な石英ガラスをいうが、本発明の不
透明石英ガラスは、前記微細な気泡が気泡直径10〜1
60μm、気泡総体積3〜10%、気泡密度100,0
00〜600,000個/cm3の独立気泡からなり、
その独立気泡が均一に分散した不透明石英ガラスであ
る。そして、その比重は自重による変形がない2.08
〜2.18の範囲である。本発明の不透明石英ガラスは
前記のように独立気泡が均一に分散し気泡密度が高く、
全体として気泡総断面積が不透明石英ガラス100cm
3当り800〜1,500cm2と大く、断熱性および遮
熱性に優れている。また、本発明の不透明石英ガラスは
窒素元素濃度が50ppm〜600ppmの範囲であ
り、この含有される窒素がSiーO結合より強固なSi
ーN結合を生じ高温粘性が高く、例えば1,260℃の
粘度が1012.8ポイズと、天然結晶質石英粉から製造さ
れた不透明石英ガラスの粘度である1012.2ポイズ以上
となる。さらに、前記含有窒素に基づきNH基が存在す
ることになり、3,400cmー1波長の吸収が生じ赤外
線の吸収が良くなり、熱線の透過率が低下する。前記窒
素含有量が50ppm未満では、高温粘性の向上が見ら
れず、またその含有量が500ppmを超えると、使用
中に窒素が放出され、好ましくない。
The opaque quartz glass is an opaque quartz glass containing fine bubbles. In the opaque quartz glass of the present invention, the fine bubbles have a bubble diameter of 10 to 1.
60 μm, total bubble volume 3 to 10%, bubble density 100,0
Comprised of 00 to 600,000 closed cells / cm 3 ,
Opaque quartz glass in which the closed cells are uniformly dispersed. And its specific gravity is 2.08, which is not deformed by its own weight.
The range is from ˜2.18. In the opaque quartz glass of the present invention, the closed cells are uniformly dispersed and the cell density is high as described above,
The total bubble cross-sectional area is 100 cm opaque quartz glass
It is as large as 800 to 1,500 cm 2 per 3 and has excellent heat insulation and heat shielding properties. Further, the opaque quartz glass of the present invention has a nitrogen element concentration in the range of 50 ppm to 600 ppm, and the contained nitrogen has a stronger Si than Si--O bond.
-N bond is generated and high temperature viscosity is high. For example, the viscosity at 1,260 ° C. is 10 12.8 poise, and the viscosity of opaque quartz glass produced from natural crystalline quartz powder is 10 12.2 poise or more. Further, the presence of NH group based on the contained nitrogen causes absorption of 3,400 cm −1 wavelength, improves absorption of infrared rays, and reduces heat ray transmittance. When the nitrogen content is less than 50 ppm, the viscosity at high temperature is not improved, and when the content exceeds 500 ppm, nitrogen is released during use, which is not preferable.

【0011】上記に加えて、独立気泡内の活性ガスの9
0%以上が窒素ガスで置換されており高温加熱処理にお
いても半導体の歩留や性能等に悪影響を及ぼす活性ガス
の発生がない。
In addition to the above, 9
Since 0% or more is replaced with nitrogen gas, no active gas is generated which adversely affects the yield and performance of semiconductors even at high temperature heat treatment.

【0012】本発明の不透明石英ガラスを半導体熱処理
治工具として使用する場合には、Na、Kのアルカリ金
属元素の濃度を夫々0.2ppm以下、Fe元素濃度を
0.1ppm以下、Mg元素濃度を0.05ppm以
下、Zr元素濃度を0.1ppm以下とするのがよい。
前記各元素濃度は低い程よいが、過度の純化はコストを
急騰させるので工業的に採算の採れる範囲にとどめるべ
きである。
When the opaque quartz glass of the present invention is used as a semiconductor heat treatment jig, the concentration of alkali metal elements such as Na and K is 0.2 ppm or less, the concentration of Fe element is 0.1 ppm or less, and the concentration of Mg element is Mg. It is preferable that the Zr element concentration is 0.05 ppm or less and the Zr element concentration is 0.1 ppm or less.
The lower the concentration of each element is, the better, but excessive purification raises the cost rapidly, so it should be kept within a commercially viable range.

【0013】本発明の不透明石英ガラスの製造方法は以
下のとおりである。すなわち、天然結晶質石英粉を例え
ば米国特許第4,983,370号明細書に記載の純化
法に従って、Na、Kのアルカリ金属元素の各濃度を夫
々0.2ppm以下、Fe元素濃度を0.1ppm以
下、Mg元素濃度を0.05ppm以下、Zr元素濃度
を0.1ppm以下、OH基濃度を50〜100pp
m、比表面積を0.01m/g以上に純化処理し、次い
で該純化石英粉を特開昭5ー345636号公報等に記
載するようにアンモニア雰囲気下で600℃〜1,30
0℃に加熱してアンモニア化し、次いそれをカーボン鋳
型に充填し、不活性ガス雰囲気中で1,600〜2,0
00℃、好ましくは1,600〜1,800℃の温度範
囲で加熱溶融することからなる製造方法である。
The method for producing the opaque quartz glass of the present invention is as follows. That is, according to the purification method described in, for example, U.S. Pat. No. 4,983,370, natural crystalline quartz powder is used in which the concentration of each alkali metal element of Na and K is 0.2 ppm or less and the concentration of Fe element is 0. 1 ppm or less, Mg element concentration is 0.05 ppm or less, Zr element concentration is 0.1 ppm or less, OH group concentration is 50 to 100 pp
m, a specific surface area of 0.01 m / g or more, and then the purified quartz powder was treated at 600 ° C. to 1,30 under an ammonia atmosphere as described in JP-A-5-345636.
It is heated to 0 ° C. to be ammoniated, and then it is charged into a carbon mold, and the temperature is 1,600 to 2,0 in an inert gas atmosphere.
The production method comprises heating and melting at a temperature of 00 ° C, preferably 1,600 to 1,800 ° C.

【0014】上記製造方法において、石英粉の比表面積
が0.01〜100m2/gの範囲内にあることにより
アンモニア化が好適に行われる。この際、OH基濃度を
50〜100ppmとするのがよい。これにより不透明
石英ガラス中の窒素元素濃度を50〜500ppm、O
H基濃度を10ppm以下とすることができる。
In the above-mentioned production method, when the specific surface area of the quartz powder is in the range of 0.01 to 100 m 2 / g, the ammonia is favorably carried out. At this time, the OH group concentration is preferably 50 to 100 ppm. As a result, the nitrogen element concentration in the opaque quartz glass is 50 to 500 ppm, O
The H group concentration can be 10 ppm or less.

【0015】上記アンモニア化処理において処理温度を
600℃以下とすると反応速度が低過ぎてOH基が残留
してしまう。また、処理温度が1,300℃を超えると
置換反応によって結合したアンモニア又は窒素含有ガス
が再び遊離し、最終的な含有窒素も減少し耐熱性の向上
がみられない。好ましい反応温度は、800℃〜1,0
00℃であり、この温度で1〜5時間処理する。
When the treatment temperature is set to 600 ° C. or lower in the above-mentioned ammoniating treatment, the reaction rate becomes too low and OH groups remain. Further, when the treatment temperature exceeds 1,300 ° C., the ammonia- or nitrogen-containing gas bound by the substitution reaction is released again, the final contained nitrogen is reduced, and heat resistance is not improved. The preferred reaction temperature is 800 ° C to 1.0
The temperature is 00 ° C, and the treatment is performed at this temperature for 1 to 5 hours.

【0016】本発明における石英粉の加熱溶融は、不活
性ガス雰囲気中で1,600〜2,000℃、好ましく
は1,700〜1,800℃の温度範囲で行なわれる。
この温度範囲で行うことにより、アンモニア化石英粉か
らアンモニア又は窒素ガスが遊離し、石英ガラスを発泡
させるとともに、その一部が不透明石英ガラスと反応し
SiーN結合やNH基を発生させ、さらに気泡内の活性
なガスである酸素、水素、アンモニアガス等を窒素ガス
で置換させ気泡内のガスの90%以上を窒素ガスとす
る。前記加熱溶融が、不活性ガス雰囲気以外の雰囲気中
で行われると、微細な独立気泡の発生が見れれず、また
溶融温度が1,600℃未満では石英粉の溶融が十分に
得られず、ガラス体にクラックが発生する。逆に、溶融
温度が、2,000℃を超えると溶融が進み過ぎて軟化
し、ガラス体中の気泡が連通し気泡の独立化が低くな
る。加熱溶融炉としては、OH基の混入の少ない電気溶
融炉、例えば、高純度カーボン、炭化珪素、窒化珪素等
からなる耐熱型又は耐熱ケースを有する抵抗加熱式の減
圧電気炉が良い。
The heating and melting of the quartz powder in the present invention is carried out in an inert gas atmosphere at a temperature range of 1,600 to 2,000 ° C., preferably 1,700 to 1,800 ° C.
By performing in this temperature range, ammonia or nitrogen gas is liberated from the ammonified quartz powder, and the quartz glass is foamed, and a part of it reacts with the opaque quartz glass to generate Si—N bond or NH group, and Oxygen, hydrogen, ammonia gas, etc., which are the active gases in the bubbles, are replaced with nitrogen gas, and 90% or more of the gas in the bubbles becomes nitrogen gas. When the heating and melting are performed in an atmosphere other than an inert gas atmosphere, the generation of fine closed cells is not observed, and when the melting temperature is less than 1,600 ° C., the melting of the quartz powder cannot be sufficiently obtained, The body cracks. On the other hand, when the melting temperature exceeds 2,000 ° C., the melting proceeds excessively and is softened, and the bubbles in the glass body are communicated with each other, so that the bubbles are less independent. As the heating and melting furnace, an electric melting furnace in which OH group is less mixed, for example, a resistance heating type decompression electric furnace having a heat-resistant type or heat-resistant case made of high-purity carbon, silicon carbide, silicon nitride or the like is preferable.

【0017】[0017]

【実施例】以下に本発明を具体例に従って詳細に説明す
が、各例で使用する原料粉は、表1に示す粒度分布(使
用した石英粉を篩分した際に、メッシュ開口が表中の粒
径欄に示す篩い上に残った重量割合をいう)であるとと
もに、表2に示す純度を有する結晶水晶粉である。
EXAMPLES The present invention will be described in detail below with reference to specific examples. The raw material powders used in each example have particle size distributions shown in Table 1 (when the used quartz powder is sieved, mesh openings are shown in the table). (Refers to the weight ratio remaining on the sieve shown in the particle size column of 1.) and has the purity shown in Table 2.

【0018】[0018]

【表1】 注)水晶粉Aは180μmを超える粒度の粒子を除去し
た結晶粉である。
[Table 1] Note) Crystal powder A is crystal powder from which particles with a particle size of more than 180 μm have been removed.

【0019】[0019]

【表2】 [Table 2]

【0020】また、以下の例中の数値は下記の測定方法
によって測定された値である。 (i)比熱;断熱型連続法で測定した値。 (ii)熱拡散率;レ−ザ−フラッシュ法で測定した
値。 (iii)熱伝導率;熱線法で測定した値。 (iv)気泡総断面積;DIN58927に準じ、一定
体積の不透明石英ガラスの薄片を透過光で写真に撮り、
含まれる気泡の断面積を総計して、体積100cm3
りの総断面積に換算した値。 (v)泡密度;気泡総断面積の測定法と同様な手法で気
泡の個数を数え、その個数を不透明石英ガラス1cm3
に換算した値。 (vi)比重;アルキメデス法により測定した値。 (vii)見掛け粘度;試料を3×1×50mmの短冊
状に切り出し、ビ−ムベンディング法(2点支持、無荷
重)によって1,260℃で10時間保持した時の変形
量から算出した値。 (viii)窒素元素濃度;不活性ガス融解伝導度法に
より測定した値。 (ix)OH基濃度;FTーIRによる拡散反射スペク
トル法により測定した値。 (x)気泡内ガス量;得られた不透明石英ガラス片を破
壊し、気泡から出てきた気体をガスクロマトグラフ質量
分析法で測定した値。
The numerical values in the following examples are values measured by the following measuring method. (I) Specific heat; value measured by adiabatic continuous method. (Ii) Thermal diffusivity; value measured by laser flash method. (Iii) Thermal conductivity; value measured by the hot wire method. (Iv) Total cross-sectional area of air bubbles: According to DIN 58927, a thin piece of opaque quartz glass with a fixed volume is photographed with transmitted light,
A value obtained by totalizing the cross-sectional areas of the bubbles contained and converting it into the total cross-sectional area per 100 cm 3 of volume. (V) Bubble density: The number of bubbles is counted by the same method as the method for measuring the total cross-sectional area of bubbles, and the number is counted as 1 cm 3 of opaque quartz glass.
The value converted to. (Vi) Specific gravity; value measured by Archimedes method. (Vii) Apparent viscosity: A value calculated from the amount of deformation when a sample was cut into a strip shape of 3 × 1 × 50 mm and held at 1,260 ° C. for 10 hours by a beam bending method (two-point support, no load). . (Viii) Nitrogen element concentration; value measured by inert gas melting conductivity method. (Ix) OH group concentration; value measured by diffuse reflection spectrum method by FT-IR. (X) Amount of gas in bubbles: A value obtained by destroying the obtained opaque quartz glass piece and measuring gas emitted from the bubbles by gas chromatograph mass spectrometry.

【0021】実施例1 比表面積が0.1m2/gの天然石英結晶粉Aを石英ガ
ラス管を炉芯管とする電気炉内に設置し、塩化水素/窒
素の50:50で1,200℃にて1時間熱処理し、ア
ルカリ金属及び、鉄、マグネシウム、ジルコニウムの各
元素の純化を行った。この純化水晶粉Aを再度炉芯管に
入れ、アンモニア/窒素の割合が50;50である雰囲
気下で900℃にて3時間処理しアンモニア化を行っ
た。このアンモニア化結晶粉を内径200mmφ×高さ
200mmの高純度グラファイト容器に深さ200mm
まで充填し、それを真空炉内に設置し、10-2Torr
以下に真空排気して粒子間に残留していた空気を除去
し、次いで、炉内を窒素で真空破壊し、5l/分の流量
で流しながら、温度を室温から1,200℃までを20
℃/分、1,200℃から1,630℃までを6.14
℃/分、1,630から1,750℃までを0.34℃
/分の割合で昇温し、1,750℃に50分保持しガラ
ス化した。ガラス化したところで、炉の通電を停止し自
然冷却した。得られた不透明石英ガラスブロックからサ
ンプルを切り出し、このサンプルについて、熱拡散率、
比熱、熱伝導率、気泡密度、気泡体積、気泡断面積、比
重、見掛け粘度、窒素濃度、OH基濃度、気泡分布、気
泡内ガス成分分析および赤外域での透過率を測定した。
熱拡散率、比熱、および熱伝導率は表3に、気泡密度、
気泡体積、気泡断面積、比重、見掛け粘度 窒素元素濃
度、およびOH基濃度については表4に、気泡分布につ
いては表5に、気泡内ガス成分分析は表6に示す。さら
に赤外域での透過率を図1で示す。同図から明らかなよ
うに本発明の不透明石英ガラスの赤外線透過率は低く、
遮熱性に優れている。
Example 1 Natural quartz crystal powder A having a specific surface area of 0.1 m 2 / g was placed in an electric furnace using a quartz glass tube as a furnace core tube, and hydrogen chloride / nitrogen was 50:50 to 1,200. Heat treatment was carried out at 1 ° C. for 1 hour to purify the alkali metal and each element of iron, magnesium and zirconium. This purified crystal powder A was put into the furnace core tube again, and treated at 900 ° C. for 3 hours in an atmosphere having an ammonia / nitrogen ratio of 50:50 to perform ammonialation. This ammoniated crystal powder is placed in a high-purity graphite container having an inner diameter of 200 mmφ and a height of 200 mm and a depth of 200 mm.
Up to 10 -2 Torr
The air was evacuated below to remove the air remaining between the particles, and then the furnace was evacuated to vacuum with nitrogen and the temperature was raised from room temperature to 1200 ° C. at 20 ° C. while flowing at a flow rate of 5 l / min.
C / min, from 1200 to 1630 ° C 6.14
° C / min, from 1,630 to 1,750 ° C 0.34 ° C
The temperature was raised at a rate of / min and the temperature was maintained at 1,750 ° C. for 50 minutes for vitrification. When vitrified, the furnace was de-energized and naturally cooled. A sample was cut out from the obtained opaque quartz glass block, and for this sample, the thermal diffusivity,
Specific heat, thermal conductivity, bubble density, bubble volume, bubble cross-sectional area, specific gravity, apparent viscosity, nitrogen concentration, OH group concentration, bubble distribution, gas component analysis in bubbles and transmittance in the infrared region were measured.
Thermal diffusivity, specific heat, and thermal conductivity are shown in Table 3, bubble density,
Bubble volume, bubble cross-sectional area, specific gravity, apparent viscosity The nitrogen element concentration and the OH group concentration are shown in Table 4, the bubble distribution is shown in Table 5, and the gas component analysis in the bubble is shown in Table 6. Further, the transmittance in the infrared region is shown in FIG. As is clear from the figure, the infrared transmittance of the opaque quartz glass of the present invention is low,
Excellent heat shield.

【0022】[0022]

【表3】 [Table 3]

【0023】比較例1 原料水晶粉の粒度調整を行わず、そのまま実施例1と同
様な条件でアルカリ金属元素の除去処理を行った後、グ
ラファイト容器に充填し、実施例1と同様にして不透明
石英ガラスブロックを製造した。得られた不透明石英ガ
ラスブロックからサンプルを切り出し、実施例1と同様
にその気泡密度、気泡体積、気泡断面積、見掛け粘度、
窒素元素濃度、OH基濃度、気泡分布、および気泡内成
分を測定した。その結果を表4、5に示す。また、赤外
域での透過率を調べそれを図1に示す。同図から明らか
なように赤外線の透過率の低下が認められなかった。
Comparative Example 1 The raw material crystal powder was not subjected to particle size adjustment, the alkali metal element was removed under the same conditions as in Example 1, and then filled in a graphite container, and then opaque in the same manner as in Example 1. A quartz glass block was manufactured. A sample was cut out from the obtained opaque quartz glass block, and its bubble density, bubble volume, bubble cross-sectional area, and apparent viscosity were measured in the same manner as in Example 1.
The nitrogen element concentration, the OH group concentration, the bubble distribution, and the components in the bubbles were measured. The results are shown in Tables 4 and 5. In addition, the transmittance in the infrared region was investigated and shown in FIG. As is clear from the figure, no decrease in infrared transmittance was observed.

【0024】比較例2 アルカリ金属元素除去処理した水晶粉Aをそのままグラ
ファイト型に充填し、実施例1と同様な条件で溶融ガラ
ス化して不透明石英ガラスを得た。その不透明石英ガラ
スブロックからサンプルを作成し、実施例1と同様にそ
の気泡密度、気泡体積、気泡断面積、見掛け粘度、窒素
元素濃度、OH基濃度、気泡分布、および気泡内成分を
測定した。その結果を表4、5に示す。また、赤外域で
の透過率を調べそれを図1に示す。同図から明らかなよ
うに赤外線の透過率の低下が認められなかった。
Comparative Example 2 Quartz powder A, which had been subjected to the alkali metal element removal treatment, was directly charged into a graphite mold and melted and vitrified under the same conditions as in Example 1 to obtain an opaque quartz glass. A sample was prepared from the opaque quartz glass block, and the bubble density, bubble volume, bubble cross-sectional area, apparent viscosity, nitrogen element concentration, OH group concentration, bubble distribution, and bubble internal component were measured in the same manner as in Example 1. The results are shown in Tables 4 and 5. In addition, the transmittance in the infrared region was investigated and shown in FIG. As is clear from the figure, no decrease in infrared transmittance was observed.

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】上記表3から明らかなように本発明の不透
明石英ガラスは、熱伝導が低く断熱性に優れてり、粒度
の最大径を103μm以上212μm以下の範囲に調整
した水晶粉にアルカリ除去処理を施した不透明石英ガラ
スは粒度調整しない比較例1、粒度調整してもアンモニ
ア処理しない比較例2の不透明石英ガラスに比して気泡
体積がほぼ同じであるが気泡密度および不透明石英ガラ
ス100cm3当りの気泡総断面積が大きくなり、遮熱
効果が大きく、また高温粘度も高く、耐熱性に優れてい
ることがわかる。
As is apparent from Table 3 above, the opaque quartz glass of the present invention has low heat conductivity and excellent heat insulating properties, and crystal powder adjusted to have a maximum particle size in the range of 103 μm to 212 μm is alkali-removed. Compared with the opaque quartz glass of Comparative Example 1 in which the grain size was not adjusted, and Comparative Example 2 in which ammonia treatment was not performed even if the grain size was adjusted, the bubble volume was approximately the same, but the bubble density and the opaque quartz glass per 100 cm 3 It can be seen that the total cross-sectional area of the bubbles is large, the heat shielding effect is large, the high temperature viscosity is high, and the heat resistance is excellent.

【0028】さらに、表5に示すように本発明の不透明
石英ガラスはその気泡分布が比較例の不透明石英ガラス
の気泡分布に比べて均一である。
Furthermore, as shown in Table 5, the opaque quartz glass of the present invention has a more uniform bubble distribution than the opaque quartz glass of the comparative example.

【0029】上記各実施例1および比較例1〜2の不透
明石英ガラス片を破壊し、気泡からでてきた気体をガス
クロマトグラフ質量分析計で分析したところ、表6のと
おり本発明の不透明石英ガラスの気泡中のガスは殆ど窒
素で置換されてた。
The opaque quartz glass pieces of each of the above-mentioned Example 1 and Comparative Examples 1 and 2 were destroyed, and the gas generated from the bubbles was analyzed by a gas chromatograph mass spectrometer. Most of the gas in the bubbles was replaced with nitrogen.

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【発明の効果】本発明の不透明石英ガラスは、気泡密度
および気泡総断面積が大きく、しかも径の小さい気泡が
均一に分散しており、その1,260℃における見掛け
粘度も12.8ポアズ以上と高く、耐熱性、赤外線散乱
および遮熱性に優れた不透明石英ガラスである。この不
透明石英ガラスを用いて作成した遮熱材はシリコンウエ
ハ−の熱処理時のように1,000℃を越える熱処理で
あっても熱変形することがなく、十分な赤外線散乱およ
び遮熱性を保持する。
EFFECTS OF THE INVENTION The opaque quartz glass of the present invention has a large cell density, a large total cell cross-sectional area, and evenly dispersed small cells, and its apparent viscosity at 1,260 ° C. is 12.8 poise or more. It is a high opaque quartz glass with excellent heat resistance, infrared scattering and heat shielding. A heat shield made of this opaque quartz glass does not undergo thermal deformation even when it is heat-treated at over 1,000 ° C. like the heat treatment of a silicon wafer, and retains sufficient infrared scattering and heat-shielding properties. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の不透明石英ガラスの赤外線透過率を示
す。
FIG. 1 shows the infrared transmittance of the opaque quartz glass of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 気泡直径が10〜160μm、気泡密度
が100,000〜600,000個/cm3、気泡総
体積が3〜10%の独立気泡を有し、かつ石英ガラス基
質中の窒素元素濃度が50〜500ppmで比重が2.
08〜2.18であることを特徴とする不透明石英ガラ
ス。
1. Nitrogen element in a quartz glass substrate, having closed cells having a cell diameter of 10 to 160 μm, a cell density of 100,000 to 600,000 cells / cm 3 , and a total cell volume of 3 to 10%. The concentration is 50 to 500 ppm and the specific gravity is 2.
Opaque quartz glass characterized in that it is 08 to 2.18.
【請求項2】 不透明石英ガラス中に含まれるナトリウ
ム元素、カリウム元素の各濃度が夫々0.2ppm以
下、OH基濃度が10ppm以下、鉄元素濃度が0.1
ppm、マグネシウム元素濃度が0.05ppm以下、
ジルコニウム元素濃度が0.1ppm以下で、かつ3,
400cmー1付近に吸収帯を有することを特徴とする請
求項1記載の高純度不透明石英ガラス。
2. The concentration of each of sodium and potassium elements contained in the opaque quartz glass is 0.2 ppm or less, the OH group concentration is 10 ppm or less, and the iron element concentration is 0.1.
ppm, magnesium element concentration is 0.05 ppm or less,
Zirconium element concentration is 0.1 ppm or less, and 3,
The high-purity opaque quartz glass according to claim 1, which has an absorption band near 400 cm -1 .
【請求項3】 1,260℃における粘度が1012.8
アズ以上で、気泡内ガス成分の90%以上が窒素ガスで
あることを特徴とする請求項1記載の高純度不透明石英
ガラス。
3. The high-purity opaque quartz glass according to claim 1, wherein the viscosity at 1,260 ° C. is 10 12.8 poise or more, and 90% or more of the gas component in the bubbles is nitrogen gas.
【請求項4】 比表面積が0.01〜100m2/gで
ある結晶質石英粉をアンモニア雰囲気中で600〜1,
300℃の温度範囲に加熱しアンモニア化を行ったの
ち、該アンモニア化石英粉を不活性ガス雰囲気下で1,
600〜2,000℃で加熱溶融することを特徴とする
不透明石英ガラスの製造方法。
4. Crystalline quartz powder having a specific surface area of 0.01 to 100 m 2 / g in an ammonia atmosphere of 600 to 1,
After heating to a temperature range of 300 ° C. to carry out ammonification, the ammonified quartz powder is subjected to 1, 2
A method for producing opaque quartz glass, which comprises heating and melting at 600 to 2,000 ° C.
JP11184794A 1994-04-28 1994-04-28 Opaque quartz glass and method for producing the same Expired - Fee Related JP3368547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11184794A JP3368547B2 (en) 1994-04-28 1994-04-28 Opaque quartz glass and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11184794A JP3368547B2 (en) 1994-04-28 1994-04-28 Opaque quartz glass and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07300341A true JPH07300341A (en) 1995-11-14
JP3368547B2 JP3368547B2 (en) 2003-01-20

Family

ID=14571663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11184794A Expired - Fee Related JP3368547B2 (en) 1994-04-28 1994-04-28 Opaque quartz glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP3368547B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030000A1 (en) * 1996-02-15 1997-08-21 Tsl Group Plc Opaque quartz glass product and method of manufacture
EP0816297A1 (en) * 1996-07-04 1998-01-07 Tosoh Corporation Opaque quartz glass and process for production thereof
JPH1053499A (en) * 1996-08-07 1998-02-24 Yamagata Shinetsu Sekiei:Kk Heat treatment apparatus for wafer and method for charging wafer to the apparatus
US6133178A (en) * 1997-12-03 2000-10-17 Tosoh Corporation High purity transparent silica glass
WO2001046079A1 (en) * 1999-12-22 2001-06-28 Heraeus Quarzglas Gmbh & Co. Kg Method for the production of opaque quartz glass, sio2 granulate suitable for use in performing the method and a component made of opaque quartz glass
US6312775B1 (en) 1997-10-16 2001-11-06 Tosoh Quartz Corporation Opaque silica glass article having transparent portion and process for producing same
JP2001354438A (en) * 2000-04-20 2001-12-25 Shinetsu Quartz Prod Co Ltd Method for manufacturing member made from opaque synthetic quartz glass and quartz glass tube manufactured by this method
US6405563B1 (en) 1997-10-16 2002-06-18 Tosoh Corporation Opaque silica glass article having transparent portion and process for producing same
EP1580170A1 (en) * 2002-11-29 2005-09-28 Shin-Etsu Quartz Products Co., Ltd. Method for producing synthetic quartz glass and synthetic quartz glass article
WO2006040878A1 (en) * 2004-10-13 2006-04-20 Shin-Etsu Handotai Co., Ltd. Single-crystal production apparatus
JP2010024137A (en) * 2008-07-19 2010-02-04 Heraeus Quarzglas Gmbh & Co Kg Nitrogen-doped quartz glass crucible, and method of manufacturing the same
CN114735711A (en) * 2022-04-22 2022-07-12 江苏泓顺硅基半导体科技有限公司 Silica crystal conversion equipment for producing high-purity quartz sand

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985779A (en) * 1996-02-15 1999-11-16 Tsl Group Plc Opaque quartz glass product and method of manufacture
JP2000504668A (en) * 1996-02-15 2000-04-18 ティーエスエル グループ パブリック リミティド カンパニー Opaque quartz glass product and manufacturing method
WO1997030000A1 (en) * 1996-02-15 1997-08-21 Tsl Group Plc Opaque quartz glass product and method of manufacture
EP0816297A1 (en) * 1996-07-04 1998-01-07 Tosoh Corporation Opaque quartz glass and process for production thereof
JPH1053499A (en) * 1996-08-07 1998-02-24 Yamagata Shinetsu Sekiei:Kk Heat treatment apparatus for wafer and method for charging wafer to the apparatus
US6405563B1 (en) 1997-10-16 2002-06-18 Tosoh Corporation Opaque silica glass article having transparent portion and process for producing same
US6312775B1 (en) 1997-10-16 2001-11-06 Tosoh Quartz Corporation Opaque silica glass article having transparent portion and process for producing same
US6133178A (en) * 1997-12-03 2000-10-17 Tosoh Corporation High purity transparent silica glass
KR100716485B1 (en) * 1999-12-22 2007-05-10 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 Method for the production of opaque quartz glass, sio2 granulate suitable for use in performing the method and a component made of opaque quartz glass
WO2001046079A1 (en) * 1999-12-22 2001-06-28 Heraeus Quarzglas Gmbh & Co. Kg Method for the production of opaque quartz glass, sio2 granulate suitable for use in performing the method and a component made of opaque quartz glass
JP2001354438A (en) * 2000-04-20 2001-12-25 Shinetsu Quartz Prod Co Ltd Method for manufacturing member made from opaque synthetic quartz glass and quartz glass tube manufactured by this method
EP1580170A1 (en) * 2002-11-29 2005-09-28 Shin-Etsu Quartz Products Co., Ltd. Method for producing synthetic quartz glass and synthetic quartz glass article
EP1580170A4 (en) * 2002-11-29 2011-12-28 Shinetsu Quartz Prod Method for producing synthetic quartz glass and synthetic quartz glass article
WO2006040878A1 (en) * 2004-10-13 2006-04-20 Shin-Etsu Handotai Co., Ltd. Single-crystal production apparatus
JPWO2006040878A1 (en) * 2004-10-13 2008-05-15 信越半導体株式会社 Single crystal manufacturing equipment
JP2010024137A (en) * 2008-07-19 2010-02-04 Heraeus Quarzglas Gmbh & Co Kg Nitrogen-doped quartz glass crucible, and method of manufacturing the same
CN114735711A (en) * 2022-04-22 2022-07-12 江苏泓顺硅基半导体科技有限公司 Silica crystal conversion equipment for producing high-purity quartz sand

Also Published As

Publication number Publication date
JP3368547B2 (en) 2003-01-20

Similar Documents

Publication Publication Date Title
US5977000A (en) High purity opaque silica glass
JP5296207B2 (en) Method for producing nitrogen-doped quartz glass and quartz glass grains suitable for carrying out the method
JP3368547B2 (en) Opaque quartz glass and method for producing the same
US7452518B2 (en) Process for treating synthetic silica powder and synthetic silica powder treated thereof
EP1411032B1 (en) Process for producing a high purity powder
JPWO2008069194A1 (en) Synthetic opaque quartz glass and method for producing the same
JPH072513A (en) Production of synthetic quartz glass powder
JP3152410B2 (en) Manufacturing method of synthetic quartz glass member
JPH0881226A (en) Production of high-purity, high heat-resistant quartz glass
JP3672592B2 (en) Method for producing synthetic quartz glass member
JP5386255B2 (en) Nitrogen-doped quartz glass crucible and method for producing such a crucible
JP4191271B2 (en) Opaque quartz glass having a transparent part and method for producing the same
JPH0848532A (en) High viscosity synthetic quartz glass member and its production
EP0728709B1 (en) Opaque silica glass and the production process therefor
JP3449654B2 (en) Method for producing opaque quartz glass
JP3478616B2 (en) Method for producing quartz glass block composite
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
JP3394323B2 (en) Method for producing high-purity silica glassy foam
JP3050353B2 (en) Method for producing opaque quartz glass
JPH0840735A (en) Production of synthetic quartz glass crucible
JP3121733B2 (en) High purity synthetic cristobalite powder, method for producing the same, and silica glass
JPS63166730A (en) Production of quartz glass
JP4035794B2 (en) Method for producing opaque quartz glass ring
JPH10152332A (en) Opaque silica glass and production thereof
JP4176872B2 (en) Opaque silica glass, method for producing the same, and silica glass molding

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20101115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111115

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121115

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131115

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees