JPH10152332A - Opaque silica glass and production thereof - Google Patents

Opaque silica glass and production thereof

Info

Publication number
JPH10152332A
JPH10152332A JP17194897A JP17194897A JPH10152332A JP H10152332 A JPH10152332 A JP H10152332A JP 17194897 A JP17194897 A JP 17194897A JP 17194897 A JP17194897 A JP 17194897A JP H10152332 A JPH10152332 A JP H10152332A
Authority
JP
Japan
Prior art keywords
powder
quartz glass
glass
opaque quartz
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17194897A
Other languages
Japanese (ja)
Other versions
JP3966943B2 (en
Inventor
Hironari Osada
裕也 長田
Koji Tsukuma
孝次 津久間
Masayuki Kudo
正行 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SEKIEI GLASS KK
Tosoh Corp
Original Assignee
NIPPON SEKIEI GLASS KK
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SEKIEI GLASS KK, Tosoh Corp filed Critical NIPPON SEKIEI GLASS KK
Priority to JP17194897A priority Critical patent/JP3966943B2/en
Publication of JPH10152332A publication Critical patent/JPH10152332A/en
Application granted granted Critical
Publication of JP3966943B2 publication Critical patent/JP3966943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily producing opaque silica glass with uniformly dispraised bubbles excellent in high-temperature viscosity and heat- insulating ability. SOLUTION: This opaque silica glass is 1.7 to 2.1g/cm<3> in apparent, 10 to 100μm in average bubble diameter, 3×10<5> to 5×10<6> pieces/cm<3> in bubble amount and 10 to 40cm<2> /cm<3> in the total sectional area of bubbles. In the above glass, the linear transitivity is <=3% when the glass >=1mm thick is irradiated with a light beam 300 to 900nm in wavelength. The concentration of elemental nitrogen in the silica glass base is 1 to 50ppm. The method for producing the glass comprises filling a starting material wherein silicon nitride powder is blended dispersedly with silica powder having an average particle diameter of 10 to 500μm into an intricatedly shaped heat-resistant mold and heating the starting material to a temperature at or higher than its melting point but up to 1900 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は不透明石英ガラスに
関し、特に、熱遮断性及び透明石英ガラスとの接合性に
優れた不透明石英ガラス及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an opaque quartz glass, and more particularly to an opaque quartz glass excellent in heat insulation and bonding to a transparent quartz glass, and a method for producing the same.

【0002】[0002]

【従来の技術】従来の不透明石英ガラスの製造方法は、
珪酸質原料粉末を加熱溶融しガラス化する方法であり、
その加熱溶融の方式として、アルゴン−酸素プラズマ
炎、酸水素炎などの火炎中で溶融させるベルヌーイ法、
あるいは容器に充填したシリカを高真空下で加熱溶融す
る真空溶融法などがある。不透明石英ガラスの原料とし
ては、従来より、天然の珪石または低品位の水晶が用い
られている。これらの原料中には、多数の微細な気泡が
包含されており、原料が溶融されたとき、気泡はそのま
ま残留し、不透明石英ガラスが得られる。しかしなが
ら、近年、半導体分野においてLSIの高集積化が進む
に伴い、使用する原材料に対する高純度化の要求が厳し
くなり、従来は低純度品が使用されていた分野において
も、高純度品が求められ始めた。代表的な分野がフラン
ジ材であり、不透明で、かつ、高純度の石英ガラス、す
なわち、高純度不透明石英ガラスの供給が望まれてい
る。しかし、従来から用いられている不透明石英ガラス
製造用の天然原料は、微細な気泡と共に多量の不純物を
含有している。これらの不純物を除去することは極めて
困難であって、精製による高純度化は不可能であると言
われている。一方、比較的高純度の水晶は、結晶中に存
在する気泡−特に、微細気泡の量が少ないので、溶融し
ても不透明度が高まらず、得られた石英ガラスは半透明
なものになるに過ぎない。
2. Description of the Related Art A conventional method for producing opaque quartz glass is as follows.
It is a method of heating and melting the siliceous raw material powder to vitrify,
As a method of heating and melting, argon-oxygen plasma flame, Bernoulli method of melting in a flame such as oxyhydrogen flame,
Alternatively, there is a vacuum melting method of heating and melting silica filled in a container under a high vacuum. As a raw material of the opaque quartz glass, natural quartz or low-grade quartz has been used. These raw materials contain many fine bubbles, and when the raw materials are melted, the bubbles remain as they are, and opaque quartz glass is obtained. However, in recent years, with the progress of high integration of LSIs in the semiconductor field, the demand for high purity of raw materials to be used has become severe, and high purity products have been demanded even in fields where low purity products were conventionally used. I started. A typical field is a flange material, and supply of opaque and high-purity quartz glass, that is, high-purity opaque quartz glass is desired. However, the conventional natural raw materials for producing opaque quartz glass contain a large amount of impurities together with fine bubbles. It is said that it is extremely difficult to remove these impurities, and high purification by purification is impossible. On the other hand, relatively high-purity quartz has a small amount of bubbles present in the crystal, particularly fine bubbles, so that the opacity does not increase even when it is melted, and the obtained quartz glass becomes translucent. Not just.

【0003】その改良方法として、アルカリ(土類)金
属、FeおよびAlの各元素の含有率が低く、多数の微
細気泡を包含し、気化性成分としてシラノール基を特定
の範囲の濃度で均一に含有した高純度の非晶質シリカを
火炎溶融することによる方法が提案されている(特開平
6−24771)。
As an improvement method, the content of each element of alkali (earth) metal, Fe and Al is low, a large number of fine bubbles are included, and silanol groups as vaporizable components are uniformly contained in a specific range of concentration. A method has been proposed in which the contained high-purity amorphous silica is flame-melted (JP-A-6-24771).

【0004】しかしながら、この方法によれば、IC封
止材用シリカフィラーやシリカガラス粉製造用の母材イ
ンゴットのような簡単な形状の石英ガラス製品しか直接
製造出来ず、フランジ状、円筒状、中空角柱状、スクリ
ュウー状、ターボチャージャー状、角状水槽又はたらい
状のような複雑な形状を有する石英ガラス製品を製造す
るには、多大の削り出し等の後加工が必要となり、石英
ガラスの利用率が低くなり、結果として製造コストの上
昇を招く。
However, according to this method, only a quartz glass product having a simple shape such as a silica filler for an IC encapsulant or a base material ingot for producing a silica glass powder can be directly produced, and a flange-like, cylindrical, To manufacture quartz glass products having complicated shapes such as hollow prismatic shapes, screw shapes, turbocharger shapes, square water tanks and troughs, a large amount of post-processing such as shaving is required, and the use of quartz glass is required. Rate decreases, resulting in increased manufacturing costs.

【0005】別の新しい不透明石英ガラスとして、高純
度に精製された結晶質石英粉末をアンモニア雰囲気中で
加熱してアンモニア化し、不活性ガス雰囲気下で加熱溶
融する製造法により、気泡の径を小さくするが、気泡の
数量を多くし、不透明石英ガラスの単位体積当りの総気
泡断面積を大きくして、耐熱性が向上した不透明石英ガ
ラスが提案されている(特開平7−61827及び特開
平7−300341)。しかしながら、この方法では、
不透明石英ガラスの密度、気泡径、気泡量は原料粉末の
粒子径、粒子径分布、溶融容器に充填した時の充填状態
に非常に敏感に反応するために再現性良く気泡制御する
ことが容易ではなく、表面と内部で気泡径や気泡量が大
きく異なるなどの問題がある。また、石英ガラス中の窒
素元素含有量が大きく、この石英ガラスの欠損部の補修
で火炎加工する場合、ガラス基質中から窒素ガスが気泡
として遊離し、補修箇所が凸凹になったり、補修箇所の
不透明度が他の箇所と異なるなど、寸法精度上及び外観
上、好ましくない事態が発生する。さらに、透明石英ガ
ラス部材と火炎接合する場合、両者の窒素元素含有濃度
が大きく違い、接合がうまくいかない。
[0005] As another new opaque quartz glass, a highly purified crystalline quartz powder is heated in an ammonia atmosphere to form an ammonia, and then heated and melted in an inert gas atmosphere to reduce the bubble diameter. However, opaque quartz glass having improved heat resistance by increasing the number of bubbles and increasing the total bubble cross-sectional area per unit volume of the opaque quartz glass has been proposed (JP-A-7-61827 and JP-A-7-61827). -300341). However, in this method,
The density, bubble diameter, and bubble amount of opaque quartz glass are very sensitive to the particle size, particle size distribution of the raw material powder, and the state of filling when filled in a melting vessel, so it is not easy to control bubbles with good reproducibility. However, there is a problem that the bubble diameter and the bubble amount are largely different between the surface and the inside. In addition, when the nitrogen content in the quartz glass is large and flame processing is performed for repairing the defective portion of the quartz glass, nitrogen gas is released as bubbles from the glass substrate, and the repaired part becomes uneven, or the repaired part is Unfavorable situations occur in dimensional accuracy and appearance, such as opacity different from other places. Furthermore, when flame joining is performed with a transparent quartz glass member, the nitrogen element-containing concentrations of the two greatly differ, and joining is not successful.

【0006】他の不透明石英ガラスの製造法として、珪
石、珪砂、α−クォーツ、クリストバライトなどの珪酸
質原料粉末に、発泡剤として炭素、窒化ケイ素などの微
粉末を添加して加熱溶融する方法が提案されている(た
とえば、特開平4−65328号公報)。しかしなが
ら、この方法では、前記手法のような問題は回避し得る
が、酸水素炎で溶融するために得られるガラスにOH基
が取り込まれやすく高温での粘性が低下し、高温で長時
間使用する半導体製造用治具などの用途には不利であ
る。また、固体粒子の混合や固相反応・分解反応などが
関与し、溶融体中に微細気泡を均一に分散させるように
制御することが困難である。更に、火炎溶融法では、火
炎中での微粒子の滞留時間が極めて短いので反応を完結
することが困難であり、添加された発泡剤が溶融体中に
異物として残留することがある。また、珪酸質原料と発
泡剤とが反応して溶融体が着色する現象が起こるという
問題点がある。
As another method for producing opaque quartz glass, there is a method of adding a fine powder such as carbon or silicon nitride as a foaming agent to a siliceous raw material powder such as silica stone, silica sand, α-quartz, cristobalite and heating and melting. It has been proposed (for example, JP-A-4-65328). However, in this method, although problems such as those described above can be avoided, the glass obtained by melting with an oxyhydrogen flame easily incorporates OH groups, the viscosity at high temperatures decreases, and the glass is used for a long time at high temperatures. It is disadvantageous for applications such as jigs for semiconductor manufacturing. In addition, mixing of solid particles, solid-phase reaction / decomposition reaction, and the like are involved, and it is difficult to control so that fine bubbles are uniformly dispersed in a melt. Further, in the flame melting method, it is difficult to complete the reaction because the residence time of the fine particles in the flame is extremely short, and the added foaming agent may remain as a foreign substance in the melt. Further, there is a problem that a phenomenon in which the siliceous raw material reacts with the foaming agent to color the melt occurs.

【0007】以上の様に、いずれの先行特許においても
各々未だに解決されない課題を有している。
As described above, each of the prior patents has a problem which has not been solved yet.

【0008】[0008]

【発明が解決しようとする課題】本願発明はこれらの課
題を解決することを目的としてなされたものであり、気
泡が均一に分散され、高温粘性及び熱遮断性が優れた不
透明石英ガラスを容易に製造する方法を提供することに
ある。また、この不透明石英ガラスは、フランジ状を初
め、円筒状、中空角柱状、スクリュウー状、ターボチャ
ージャー状、角状水槽状又は“たらい状”の様な複雑な
形状を直接製造することが可能であり、また、石英ガラ
ス中の窒素元素含有量を小さくして、この石英ガラスの
欠損部の補修で火炎加工する場合、ガラス基質中から窒
素ガスが気泡として遊離せず、補修箇所の外面を滑らか
にすることができ、透明石英ガラス部材と火炎接合する
場合、両者の窒素元素含有濃度が近いので、接合がうま
くいく新規な不透明石英ガラスを提供することも本願発
明の目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve these problems, and it is possible to easily prepare an opaque quartz glass in which bubbles are uniformly dispersed, and which has excellent high-temperature viscosity and heat insulation. It is to provide a manufacturing method. In addition, this opaque quartz glass can directly produce complicated shapes such as a flange shape, a cylindrical shape, a hollow prismatic shape, a screw shape, a turbocharger shape, a square water tank shape, or a "tub shape". In addition, when the content of nitrogen element in quartz glass is reduced and flame processing is performed to repair the defective part of quartz glass, nitrogen gas is not released as bubbles from the glass substrate, and the outer surface of the repaired part is smooth. It is also an object of the present invention to provide a novel opaque quartz glass that can be joined successfully by flame joining with a transparent quartz glass member because the two elements have similar nitrogen element concentrations.

【0009】[0009]

【課題を解決するための手段】製造方法として、上記の
珪石、珪砂、α−クォーツ、クリストバライトなどの珪
酸質原料粉末に、発泡剤として炭素、窒化ケイ素などの
微粉末を添加して加熱溶融する方法(特開平4−653
28号公報)と類似の方法を採用し、平均粒子径が10
〜500μmの比較的安価な粗いシリカ粉末に窒化ケイ
素粉末を、シリカ粉末100重量部に対して窒化ケイ素
粉末0.001〜0.05重量部を混合分散させた出発
原料粉末を、複雑な形状を有する耐熱性型に充填し、1
400℃以上当該出発原料粉末の溶融温度未満まで、真
空雰囲気下で電気炉中で加熱し、次いで原料が溶融しう
る温度以上1900℃以下の温度までは、真空雰囲気下
又は不活性ガス雰囲気下で電気炉中で加熱し、ガラス化
及び発泡による気泡生成を行う製造方法を採用すること
により、気泡が均一に分散され、高温粘性及び熱遮断性
に優れただけでなく、鋳込み成形等の繁雑な粉末成形を
行わずに、耐熱性型の形状をフランジ状を初め、円筒
状、中空角柱状、スクリュウー状、ターボチャージャー
状、角状水槽状又は“たらい状”の様な複雑な形状を適
宜選択することで最終製品に近いガラス体を直接製造す
ることが可能であり、後加工が必要であっても簡単で済
む。
As a production method, a fine powder such as carbon or silicon nitride is added as a foaming agent to a siliceous raw material powder such as silica stone, silica sand, α-quartz, cristobalite, etc., followed by heating and melting. Method (JP-A-4-653)
No. 28 gazette) and an average particle diameter of 10
A starting material powder obtained by mixing and dispersing silicon nitride powder in relatively inexpensive coarse silica powder of about 500 μm and 0.001 to 0.05 parts by weight of silicon nitride powder with respect to 100 parts by weight of silica powder has a complicated shape. Filled into a heat-resistant mold having
Heat in an electric furnace under a vacuum atmosphere to 400 ° C. or higher and lower than the melting temperature of the starting raw material powder, and then, in a vacuum atmosphere or an inert gas atmosphere, up to a temperature at which the raw material can be melted to 1900 ° C. or lower. By adopting a manufacturing method of heating in an electric furnace and generating bubbles by vitrification and foaming, the bubbles are uniformly dispersed, not only excellent in high-temperature viscosity and heat insulation, but also complicated in casting such as casting. Without powder molding, the shape of the heat-resistant mold is appropriately selected from flange-shaped, cylindrical, hollow prismatic, screw-shaped, turbocharger-shaped, square-shaped aquarium-shaped or trough-shaped, as appropriate. By doing so, it is possible to directly produce a glass body close to the final product, and even if post-processing is required, it is simple.

【0010】以下、本発明をさらに詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0011】[1]出発原料 出発原料としては、シリカ粉末と窒化ケイ素粉末により
得られる混合粉末である。
[1] Starting Material The starting material is a mixed powder obtained from silica powder and silicon nitride powder.

【0012】(a)シリカ粉末 本発明で使用されるシリカ粉末としては、含有金属不純
物としてNa,K,Mg,Ca,Feが各々独立して1
ppm以下とした高純度な結晶質又は非晶質シリカ粉末
を用いることが好ましい。この理由としては、本発明の
方法により得られる不透明石英ガラスを加熱すると、蒸
気圧の低い不純物が飛散する傾向があり、不透明石英ガ
ラス自体が一部結晶化して破損しやすくなったり、着色
してしまったりするのを避けるためである。このような
高純度なシリカ粉末は、合成法によったり、天然原料を
精製したりすることより得られる。例えば、非晶質シリ
カ粉末を合成法により得るには、アルカリ金属ケイ酸塩
水溶液(水ガラス)を酸と反応させることによりアルカ
リ金属を除去してシリカを得る方法、SiCl4を加水
分解してシリカとする方法、シリコンアルコキシドを加
水分解してシリカとする方法が挙げられるが、工業的規
模の生産には、Na,K,Li等のアルカリ金属と二酸
化ケイ素からなるアルカリ金属ケイ酸塩水溶液(水ガラ
ス)を硫酸,硝酸,塩酸等の無機酸と反応させる方法で
得られるものが好適である。又、結晶質シリカ粉末を天
然原料より得るには、天然水晶をフッ酸処理する方法等
により得ることができる。
(A) Silica Powder As the silica powder used in the present invention, Na, K, Mg, Ca, and Fe are each independently contained as metal impurities.
It is preferable to use a high-purity crystalline or amorphous silica powder of not more than ppm. The reason for this is that when the opaque quartz glass obtained by the method of the present invention is heated, impurities having a low vapor pressure tend to be scattered, and the opaque quartz glass itself is partially crystallized to be easily broken or colored. This is in order to avoid being lost. Such high-purity silica powder can be obtained by a synthesis method or by purifying a natural raw material. For example, in order to obtain amorphous silica powder by a synthesis method, a method in which an alkali metal silicate aqueous solution (water glass) is reacted with an acid to remove an alkali metal to obtain silica, and a method in which SiCl 4 is hydrolyzed. Examples of the method include a method for producing silica and a method for hydrolyzing silicon alkoxide to produce silica. For production on an industrial scale, an aqueous solution of an alkali metal silicate comprising an alkali metal such as Na, K, and Li and silicon dioxide ( Those obtained by a method of reacting (water glass) with an inorganic acid such as sulfuric acid, nitric acid and hydrochloric acid are preferred. In order to obtain crystalline silica powder from a natural raw material, it can be obtained by a method of treating natural quartz with hydrofluoric acid.

【0013】シリカ粉末の平均粒子径としては、耐熱性
型に充填しやすいように流動性を付与するために10〜
500μmの範囲である。平均粒子径が10μm未満の
場合では粉末の流動性が低下し均一に粉末を充填するこ
とが困難であり、500μmを越える場合では粒子間の
空隙が大きくなり不透明石英ガラス中に300μm以上
の巨大な気泡が発生する原因となり好ましくない。
The average particle diameter of the silica powder is preferably 10 to provide fluidity so that it can be easily filled in a heat-resistant mold.
The range is 500 μm. When the average particle diameter is less than 10 μm, the fluidity of the powder is reduced, and it is difficult to uniformly fill the powder. It is not preferable because it causes bubbles to be generated.

【0014】本発明の方法により得られる不透明石英ガ
ラス中の気泡径はシリカ粉末の平均粒子径に依存するた
め、平均粒子径の調整による気泡径制御が可能である。
すなわち、より微細な気泡を得ようとする場合には微粒
子からなる粉末を、粗い気泡を得ようとする場合には粗
粒子からなる粉末を用いるとよい。
Since the bubble diameter in the opaque quartz glass obtained by the method of the present invention depends on the average particle diameter of the silica powder, the bubble diameter can be controlled by adjusting the average particle diameter.
That is, a powder made of fine particles is used when finer bubbles are obtained, and a powder made of coarse particles is used when coarse bubbles are obtained.

【0015】(b)窒化ケイ素粉末 窒化ケイ素粉末としては、四塩化ケイ素、シリコン、シ
リカ等を原料とし、それらを窒化することにより得られ
る高純度のものを使用することが好ましい。この理由と
しては、本発明の方法により得られる不透明石英ガラス
より不純物が飛散してしまったり、不透明石英ガラス自
体が一部結晶化して破損しやすくなったり、着色してし
まったりするのを避けるためである。
(B) Silicon Nitride Powder As silicon nitride powder, it is preferable to use silicon tetrachloride, silicon, silica or the like as a raw material and use a high-purity powder obtained by nitriding them. The reason is that impurities are scattered from the opaque quartz glass obtained by the method of the present invention, or the opaque quartz glass itself is partially crystallized to be easily damaged or to avoid being colored. It is.

【0016】又、窒化ケイ素粉末の量としては、シリカ
粉末100重量部に対して窒化ケイ素粉末0.001〜
0.05重量部である。0.001重量部未満の場合に
は発泡による気泡の生成量が少なくなり充分な熱遮断性
が得られず好ましくない。0.05重量部を越える場合
には発泡による気泡の生成量が多くなり得られる不透明
石英ガラスの機械強度が悪くなるため好ましくない。も
う一つの理由として、0.05重量部を越えると石英ガ
ラス基質中に含まれる窒素元素濃度が50ppm以上と
なり、得られたガラスを火炎加工など再加熱した際に石
英ガラス基質から窒素ガスが遊離し、気泡量や気泡径が
増大するため、不透明石英ガラスの白色度が変化してし
まう。また、窒化ケイ素粉末の平均粒子径としては、
0.1〜1μmであることが好ましく、0.1〜0.5
μmであることが更に好ましい。この理由は、平均粒子
径がこの範囲にあれば、気泡が粗大化したり、気泡量が
激減してしまうこともなく、更に、粉末が凝集してシリ
カ粉末との混合において均一に混合できなくなるのを避
けるためである。
The amount of the silicon nitride powder is from 0.001 to 100 parts by weight of the silica powder.
0.05 parts by weight. If the amount is less than 0.001 part by weight, the amount of bubbles generated by foaming becomes small, and a sufficient heat barrier property cannot be obtained, which is not preferable. If the amount exceeds 0.05 parts by weight, the amount of bubbles generated by foaming increases, and the mechanical strength of the obtained opaque quartz glass deteriorates. Another reason is that if it exceeds 0.05 parts by weight, the concentration of nitrogen element contained in the quartz glass substrate becomes 50 ppm or more, and nitrogen gas is released from the quartz glass substrate when the obtained glass is reheated by flame processing or the like. However, since the bubble amount and the bubble diameter increase, the whiteness of the opaque quartz glass changes. Also, as the average particle size of the silicon nitride powder,
0.1 to 1 μm, preferably 0.1 to 0.5
More preferably, it is μm. The reason for this is that if the average particle size is in this range, bubbles will not be coarsened or the amount of bubbles will not be drastically reduced, and furthermore, the powder will aggregate and cannot be mixed uniformly with the silica powder. To avoid.

【0017】[2]混合分散 シリカ粉末と窒化ケイ素粉末よりなる原料粉末中の窒化
ケイ素粉末の分散の度合いは発泡時の気泡径及びその分
布に影響を及ぼすため、窒化ケイ素粉末の凝集がないよ
うに混合する必要がある。混合の際に用いる器具として
は窒化ケイ素粉末が分散できるものであれば特に限定さ
れないが、例えば、乳鉢、ボールミル等が例示できる。
更に、窒化ケイ素粉末の分散を良好にするために分散媒
を用いる湿式法が好ましく用いられる。分散媒として
は、例えば、水、アルコール等が例示できる。
[2] Mixed dispersion The degree of dispersion of the silicon nitride powder in the raw material powder composed of silica powder and silicon nitride powder affects the bubble diameter and its distribution during foaming, so that the silicon nitride powder does not agglomerate. Need to be mixed. The equipment used for mixing is not particularly limited as long as the silicon nitride powder can be dispersed, and examples thereof include a mortar and a ball mill.
Further, in order to improve the dispersion of the silicon nitride powder, a wet method using a dispersion medium is preferably used. Examples of the dispersion medium include water and alcohol.

【0018】[3]容器への充填 次に、得られた混合粉末を耐熱性型に充填する。ここで
使用する耐熱性型としては、本発明の目的を達し得るも
のであればその材質、形状等は特に限定されるものでは
ない。例えば、材質としては、シリカと反応しにくい性
質を有するカーボン、窒化ホウ素、炭化ケイ素等が好ま
しく用いられる。さらに耐熱性型の内面と混合粉末との
滑りを良好にするためにカーボンフェルトまたはカーボ
ンペーパー等を用いて、充填及び加熱を実施することが
好ましい。混合粉末の充填密度としては、耐熱性型に均
一に充填するために0.7〜1.8g/cm3が好まし
く、また、均一に発泡させるために充填密度が均一にな
るように充填することが好ましい。耐熱性型の形状は、
ガラス化、気泡生成後のガラスの形状が耐熱性型の形状
と実質的に同じとなるため、所望の形状の不透明石英ガ
ラスを得るように任意に選ぶことができる。
[3] Filling into Container Next, the obtained mixed powder is filled into a heat-resistant mold. The material and shape of the heat-resistant mold used here are not particularly limited as long as the object of the present invention can be achieved. For example, as a material, carbon, boron nitride, silicon carbide, or the like having a property of hardly reacting with silica is preferably used. Further, in order to improve the slip between the inner surface of the heat resistant mold and the mixed powder, it is preferable to perform filling and heating using carbon felt or carbon paper. The packing density of the mixed powder is preferably from 0.7 to 1.8 g / cm 3 in order to uniformly fill the heat-resistant mold, and it is also preferable that the packing density is uniform in order to uniformly foam. Is preferred. The shape of the heat resistant mold is
Since the shape of the glass after vitrification and bubble generation is substantially the same as the shape of the heat-resistant mold, it can be arbitrarily selected so as to obtain an opaque quartz glass having a desired shape.

【0019】[4]ガラス化及び気泡生成 窒化ケイ素粉末中の窒化ケイ素成分を十分に分解し、発
泡による気泡生成後の石英ガラスをほぼ完全なガラス状
態とするため、耐熱性型に充填した混合粉末を加熱す
る。この加熱処理において用いられる加熱装置として
は、原料粉末をガラス状態とするに要する加熱能力を有
するものであれば特に限定されるものではないが、電気
炉等が例示できる。混合粉末は加熱装置内において原料
が溶融しうる温度以上1900℃以下の温度にて加熱さ
れる。原料が溶融しうる温度は、原料に非晶質シリカ粉
末を使用する場合は、クリストバライトを経由し、常圧
で1713℃となるが、原料に結晶質石英粉末を使用す
ると、クリストバライトを経由しにくく、溶融温度がこ
の温度より低くなります。
[4] Vitrification and Bubble Formation In order to sufficiently decompose the silicon nitride component in the silicon nitride powder and bring the quartz glass into a nearly perfect glass state after the formation of bubbles by foaming, a mixture filled in a heat-resistant mold is used. Heat the powder. The heating device used in this heat treatment is not particularly limited as long as it has a heating ability required to bring the raw material powder into a glassy state, but an electric furnace or the like can be exemplified. The mixed powder is heated in the heating device at a temperature not lower than the temperature at which the raw materials can be melted and not higher than 1900 ° C. The temperature at which the raw material can be melted is 1713 ° C. at normal pressure through cristobalite when using amorphous silica powder as the raw material, but it is difficult to pass through cristobalite when using crystalline quartz powder as the raw material. , The melting temperature will be lower than this temperature.

【0020】この原料が溶融しうる温度未満の温度で加
熱した場合、原料が溶融せず、又、非晶質シリカ粉末を
原料とした場合には、加熱中、原料の一部もくしは全部
が非晶質シリカから結晶質であるクリストバライトに転
移していると、クリストバライトが溶融しきれずに残
り、ガラスが割れやすくなるため好ましくない。又、1
900℃を越える温度で加熱すると、気泡が粗大化する
ために得られるガラスの密度は低下し、所定の形状、寸
法に機械加工を施すのに必要な機械的強度が得られない
ため好ましくない。また、加熱処理の時間としては原料
が全量溶融しガラス化できる時間であれば特に制限はな
いが、加熱温度に左右され一定しないが、通常1時間で
充分である。
When the raw material is heated at a temperature lower than a temperature at which the raw material can be melted, the raw material does not melt. When amorphous silica powder is used as the raw material, a part or all of the raw material is heated during heating. Is converted from amorphous silica to cristobalite, which is crystalline, which is not preferable because cristobalite remains without being completely melted and glass is easily broken. Also, 1
Heating at a temperature exceeding 900 ° C. is not preferable because the density of the obtained glass is reduced due to the coarsening of the bubbles, and the mechanical strength required for machining into a predetermined shape and size cannot be obtained. The time of the heat treatment is not particularly limited as long as the entire amount of the raw material can be melted and vitrified. The time is not fixed depending on the heating temperature, but usually 1 hour is sufficient.

【0021】加熱昇温過程においては、粉末充填体が開
気孔状態から閉気孔状態に転じるまで真空雰囲気とする
ことが好ましい。次いで、閉気孔状態の粉末充填体がガ
ラスに変態するまで真空雰囲気とすることも可能であ
る。その真空度は絶対圧10mmHg以下であることが
好ましい。この理由としては、原料粉末中の窒化ケイ素
成分とシリカ成分の反応により生成し、石英ガラス中に
固溶する窒素元素の脱離ガス及び分解ガスのみを独立気
泡中に存在させることによりガラス全体にわたって気泡
の分布を均一にすることができるからである。
In the heating and heating process, it is preferable to maintain a vacuum atmosphere until the powder filler changes from an open pore state to a closed pore state. Subsequently, a vacuum atmosphere can be used until the powder filling in a closed pore state is transformed into glass. The degree of vacuum is preferably 10 mmHg or less in absolute pressure. The reason for this is that only the desorption gas and decomposition gas of the nitrogen element, which are generated by the reaction of the silicon nitride component and the silica component in the raw material powder and solid-dissolve in the quartz glass, are present in the closed cells, so that the entire glass is produced. This is because the distribution of bubbles can be made uniform.

【0022】真空雰囲気は、開気孔状態であった粉末充
填体が閉気孔状態に転じる時点、もしくはガラスへ変態
した時点で解除され、不活性ガスが導入される。不活性
ガスとしては、本発明の方法において使用される耐熱性
型、原料、生成物とは実質的に反応性を有しないもので
あれば特に制限なく用いることができ、例えば、窒素、
アルゴン、ヘリウム等が使用できる。特に、経済性、気
密性を考慮して窒素、アルゴンが好ましく用いられる。
導入する不活性ガスの圧力としては、得られたガラスを
火炎加工など再加熱するにあたり、ガラス中の気泡の膨
脹、収縮など不安定な挙動を防ぐために通常常圧が用い
られるが、やや加圧された状態でもさしつかえない。所
望によりやや減圧された状態にすることもできる。
The vacuum atmosphere is released when the powder filling, which has been in the open pore state, changes to the closed pore state or when it is transformed into glass, and an inert gas is introduced. As the inert gas, a heat-resistant type used in the method of the present invention, a raw material, can be used without particular limitation as long as it does not substantially react with the product. For example, nitrogen,
Argon, helium, etc. can be used. Particularly, nitrogen and argon are preferably used in consideration of economy and airtightness.
As the pressure of the inert gas to be introduced, normal pressure is usually used to prevent unstable behavior such as expansion and contraction of bubbles in the glass when the obtained glass is reheated by flame processing, etc. It can be done even if it is done. If desired, the pressure may be slightly reduced.

【0023】[5]不透明石英ガラス 上記工程で得られる不透明石英ガラスの特性としては、
機械強度を高め加工性に優れるように又はガラス面の精
度を良くするために、見掛密度1.7〜2.1g/cm
3、平均気泡径10〜100μmであることが好まし
い。
[5] Opaque quartz glass The properties of the opaque quartz glass obtained in the above steps are as follows.
In order to increase the mechanical strength and the workability or to improve the accuracy of the glass surface, the apparent density is 1.7 to 2.1 g / cm.
3. The average bubble diameter is preferably 10 to 100 μm.

【0024】本発明の不透明石英ガラスの製造方法にお
いて、ガラス中に含まれる独立気泡の径及び量を制御す
る因子としては、窒化ケイ素粉末添加量、シリカ粉末の
粒子径及びその分布、溶融温度、導入ガス圧力が挙げら
れる。例えば、見掛密度1.95〜2.05g/c
3、平均気泡径50〜70μm、気泡量7×105〜8
×105個/cm3を有する熱遮断性に優れた不透明石英
ガラスを得るには、窒化ケイ素粉末添加量0.01〜
0.02重量部(シリカ粉末100重量部に対して)、
シリカ粉末の平均粒子径100〜200μm(粒子径分
布:10〜600μm)、溶融温度1800〜1850
℃、導入ガス圧力1.0〜2.0kgf/cm2の範囲
を選ぶとよい。さらに、高い熱遮断性と同時に、より平
滑な表面が得られる見掛密度2.05〜2.12g/c
3、平均気泡径30〜50μm、気泡量1〜2×106
個/cm3を有する不透明石英ガラスを得るには、窒化
ケイ素粉末添加量0.005〜0.02重量部(シリカ
粉末100重量部に対して)、シリカ粉末の平均粒子径
50〜100μm(粒子径分布:10〜200μm)、
溶融温度1750〜1850℃、導入ガス圧力1.0〜
2.0kgf/cm2の範囲を選ぶとよい。気泡を支配
する最も大きい因子はシリカ粉末の粒度であり、より微
細な粒度のシリカ粉末を用いることにより、気泡径が小
さくかつ気泡量が多い熱遮断性に優れた不透明石英ガラ
スとすることができる。
In the method for producing opaque quartz glass of the present invention, factors controlling the diameter and amount of closed cells contained in the glass include the addition amount of silicon nitride powder, the particle diameter and distribution of silica powder, melting temperature, Introduced gas pressure. For example, the apparent density is 1.95 to 2.05 g / c.
m 3 , average bubble diameter 50-70 μm, bubble amount 7 × 10 5 -8
In order to obtain an opaque quartz glass having an excellent thermal barrier property having × 10 5 pieces / cm 3 , the amount of the added silicon nitride powder is 0.01 to
0.02 parts by weight (based on 100 parts by weight of silica powder),
Average particle size of silica powder 100 to 200 μm (particle size distribution: 10 to 600 μm), melting temperature 1800 to 1850
C. and an introduced gas pressure of 1.0 to 2.0 kgf / cm 2 . Furthermore, an apparent density of 2.05 to 2.12 g / c, which can provide a smooth surface at the same time as high thermal insulation.
m 3 , average bubble diameter 30-50 μm, bubble volume 1-2 × 10 6
In order to obtain an opaque quartz glass having particles / cm 3 , the addition amount of silicon nitride powder is 0.005 to 0.02 parts by weight (based on 100 parts by weight of silica powder), and the average particle diameter of silica powder is 50 to 100 μm (particles). Diameter distribution: 10 to 200 μm),
Melting temperature 1750-1850 ° C, introduced gas pressure 1.0-
It is preferable to select a range of 2.0 kgf / cm 2 . The largest factor that governs the bubbles is the particle size of the silica powder, and by using silica powder having a finer particle size, it is possible to obtain an opaque quartz glass having a small bubble diameter and a large amount of bubbles, and having excellent thermal barrier properties. .

【0025】このようにして得られた不透明石英ガラス
は、外観が白色であれば特に限定されるものではない
が、その特性として、気泡が均一に分散されており、例
えば、波長300〜900nmの光を照射した場合の直
線透過率が低くなることで不透明となることが確認でき
る。この直線透過率としては、熱遮断性を確保するため
に、ガラスの厚みが1mm以上において、300〜90
0nmの光を照射した場合の直線透過率が3%以下であ
ることが好ましい。
The opaque quartz glass obtained in this manner is not particularly limited as long as it has a white appearance, but it has a characteristic that bubbles are uniformly dispersed, for example, a wavelength of 300 to 900 nm. It can be confirmed that opacity is caused by a decrease in linear transmittance when light is applied. The linear transmittance is 300 to 90 when the thickness of the glass is 1 mm or more in order to secure the thermal barrier property.
The linear transmittance when irradiated with light of 0 nm is preferably 3% or less.

【0026】このような直線透過率を有する不透明石英
ガラスは、気泡を有することでガラスの熱伝導性が低く
なると共に、熱線を散乱させることによりその効果が増
幅される。従って、直線透過率を低くする、すなわち熱
線を散乱させ易くすることで熱遮断性に優れた不透明石
英ガラスとすることができる。
The opaque quartz glass having such a linear transmittance has low thermal conductivity of the glass due to the presence of bubbles, and its effect is amplified by scattering heat rays. Therefore, an opaque quartz glass having excellent heat shielding properties can be obtained by lowering the linear transmittance, that is, by facilitating scattering of heat rays.

【0027】又、本発明の方法は、原料及び溶融工程に
おいてガラスにOH基を取り込むものではないため、高
温における粘性が高い優れた不透明石英ガラスとするこ
とができるものである。
In addition, the method of the present invention does not incorporate OH groups into the glass in the raw material and in the melting step, so that an excellent opaque quartz glass having high viscosity at high temperatures can be obtained.

【0028】[0028]

【実施例】本発明を以下の実施例により更に詳細に説明
するが、本発明はこれに限定されるものではない。なお
不純物の分析等は以下により行った。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. The analysis of impurities and the like were performed as follows.

【0029】〜不純物の分析〜 結晶質シリカ粉末をICP法により分析した。Analysis of Impurities Crystalline silica powder was analyzed by ICP method.

【0030】〜X線回折〜 不透明石英ガラスを切断機を用いて20mm×10mm
×2mm(厚み)の大きさに切断し、測定用サンプルと
した。これをX線回折装置(マックサイエンス社製、型
式:MXP3)を使用し、サンプルのガラス状態を観察
した。得られた回折パターン中における石英、クリスト
バライト等の結晶に起因する回折ピークの有無によりガ
ラス状態を確認した。
~ X-ray diffraction ~ An opaque quartz glass is cut into 20 mm x 10 mm using a cutting machine.
It was cut into a size of × 2 mm (thickness) to obtain a measurement sample. The glass state of the sample was observed using an X-ray diffractometer (model: MXP3, manufactured by Mac Science). The glass state was confirmed by the presence or absence of a diffraction peak due to crystals such as quartz and cristobalite in the obtained diffraction pattern.

【0031】〜見掛密度〜 不透明石英ガラスを切断機を用いて30mm×30mm
×10mm(厚み)の大きさに切断し、測定用サンプル
とした。これを電子天秤(メトラー社製、型式:AT2
61)を使用し、アルキメデス法により見掛密度を測定
した。
-Apparent density-Transparent opaque quartz glass is cut into 30 mm x 30 mm using a cutting machine.
It was cut into a size of × 10 mm (thickness) to obtain a measurement sample. An electronic balance (manufactured by Mettler, model: AT2
61) and the apparent density was measured by the Archimedes method.

【0032】〜平均気泡径及び気泡量〜 不透明石英ガラスを切断機を用いて30mm×10mm
×0.3mm(厚み)の大きさの測定用サンプルとし
た。これを目盛り付レンズのある偏光顕微鏡(オリンパ
ス社製、型式:BH−2)を使用し、サンプル中の気泡
径及び気泡量を測定した。平均気泡径については、カウ
ントした気泡を完全球形と見なしてその総体積を算出
し、それを気泡数で除して得た平均体積からさらに平均
直径を算出し、これを平均気泡径とした。
[Average Cell Diameter and Cell Volume] An opaque quartz glass is cut into a size of 30 mm × 10 mm using a cutting machine.
It was a measurement sample having a size of 0.3 mm (thickness). Using a polarizing microscope (Model: BH-2, manufactured by Olympus Corporation) having a graduated lens, the bubble diameter and bubble amount in the sample were measured. Regarding the average bubble diameter, the counted bubbles were regarded as a perfect sphere and the total volume was calculated. The total volume was calculated by dividing the total volume by the number of bubbles, and the average diameter was further calculated.

【0033】〜粒子径〜 粉末の粒子径分布及び平均粒子径は、レ−ザ−回折散乱
法COULTER LS−130(COULTER E
LECTRONICS社製)により測定した。 〜充填密度〜 粉末の充填密度は、所定の重量の粉末を耐熱性型に充填
し、粉末が占める体積を測定し、粉末重量をその体積で
除して求めた。
-Particle Size- The particle size distribution and average particle size of the powder are determined by the laser diffraction scattering method COULTER LS-130 (COULTER E).
LECTRONICS). -Packing Density-The packing density of the powder was determined by filling a predetermined weight of powder into a heat-resistant mold, measuring the volume occupied by the powder, and dividing the powder weight by the volume.

【0034】〜空洞の確認〜 ガラスを切断機を用いて切断し、目視にて切断面を観察
した。
-Confirmation of Cavity- The glass was cut using a cutting machine, and the cut surface was visually observed.

【0035】〜光透過率〜 石英ガラスを切断機を用いて切断し、さらに厚み方向の
両面を#1200のアルミナ砥粒で研磨して30mm×
10mm×1mm(厚み)の大きさの測定用サンプルと
した。これを分光光度計(日立製作所社製、型式:ダブ
ルビーム分光光度計220型)を使用し、サンプルの厚
み方向に300,500,700,900nmの波長の
光を照射したときの直線透過率を測定した。
Light Transmittance Quartz glass is cut using a cutting machine, and both surfaces in the thickness direction are polished with # 1200 alumina abrasive grains to obtain 30 mm ×
A measurement sample having a size of 10 mm × 1 mm (thickness) was used. Using a spectrophotometer (manufactured by Hitachi, Ltd., model: double beam spectrophotometer 220), the linear transmittance when irradiating light of wavelengths of 300, 500, 700, and 900 nm in the thickness direction of the sample was measured. It was measured.

【0036】〜ガラス基質中の窒素元素濃度〜 石英ガラスを乳鉢を用いて十分に粉砕して粉末状にし
た。これを硝酸−フッ酸、硫酸を用いて加圧分解し、蒸
留分離後、イオンクロマトグラフ法により測定した。
-Concentration of nitrogen element in glass substrate-Quartz glass was sufficiently pulverized using a mortar to obtain a powder. This was decomposed under pressure using nitric acid-hydrofluoric acid and sulfuric acid, separated by distillation, and measured by ion chromatography.

【0037】〜気泡総断面積〜 気泡が完全球体であると仮定し、その直径を含む円の面
積の総和で定義され、平均気泡径から平均気泡断面積を
算出し、これに気泡量を乗じて算出した。
-Total bubble cross-sectional area- Assuming that a bubble is a perfect sphere, it is defined by the sum of the areas of the circles including the diameter thereof. The average bubble cross-sectional area is calculated from the average bubble diameter, and this is multiplied by the bubble amount. Was calculated.

【0038】実施例1 平均粒子径300μmで30〜500μmの範囲の粒子
径分布を有する天然水晶粉末(ユミニン製、商品名:I
OTA−5)を公知の方法であるフッ酸処理により高純
度化したもの(以降、石英粉末という)を原料粉末とし
て用いた。四塩化ケイ素から公知の方法であるアンモニ
ア処理法により得られた窒化ケイ素粉末(宇部興産製、
商品名:SN−E10、平均粒子径0.5μm)を、石
英粉末100重量部に対して0.01重量部となるよう
に秤取し、石英粉末100重量部に対して50重量部の
エタノールに投入した後、撹拌と同時に超音波振動を与
えて十分に分散させた。得られた窒化ケイ素分散液に石
英粉末を投入し、十分に撹拌し混合した。次に、真空エ
バポレータを用いてエタノールを除去、乾燥して石英粉
末と窒化ケイ素粉末の混合粉末(以降、混合粉末とい
う)を得た。混合粉末300gを、内面に厚さ2mmの
カーボンフェルトを貼付けたカーボン製るつぼ(外径:
130mm、内径:100mm、深さ:50mm)内に
充填した。この時の充填密度は1.4g/cm3であっ
た。るつぼを電気炉内に入れ、1×10-3mmHgの真
空雰囲気にした後、室温から1800℃まで300℃/
時間の割合で昇温した。1800℃に10分間保持した
後、電気炉内の圧力が常圧(1kgf/cm2)に達す
るまで窒素ガスを導入し加熱を終了した。このようにし
て得られた不透明石英ガラスをX線回折によりガラス状
態であることを確認した。このガラスを前記記載の方法
により評価し、その結果として、見掛密度、平均気泡
径、気泡量を表1に、気泡総断面積及び光透過率を表2
に示した。また、ガラス基質中の窒素元素濃度を表3に
示した。
Example 1 Natural quartz powder having an average particle diameter of 300 μm and a particle diameter distribution in the range of 30 to 500 μm (manufactured by UMININ, trade name: I
OTA-5) was purified by a known method of hydrofluoric acid treatment (hereinafter referred to as quartz powder) and used as a raw material powder. Silicon nitride powder obtained from silicon tetrachloride by a known ammonia treatment method (Ube Industries,
(Trade name: SN-E10, average particle size 0.5 μm) was weighed out so as to be 0.01 part by weight with respect to 100 parts by weight of quartz powder, and 50 parts by weight of ethanol with respect to 100 parts by weight of quartz powder. Then, ultrasonic vibration was applied simultaneously with stirring to sufficiently disperse. Quartz powder was added to the obtained silicon nitride dispersion liquid, sufficiently stirred and mixed. Next, ethanol was removed using a vacuum evaporator and dried to obtain a mixed powder of quartz powder and silicon nitride powder (hereinafter referred to as a mixed powder). 300 g of the mixed powder was applied to a carbon crucible having a 2 mm-thick carbon felt attached to the inner surface (outer diameter:
130 mm, inner diameter: 100 mm, depth: 50 mm). The packing density at this time was 1.4 g / cm 3 . After placing the crucible in an electric furnace and creating a vacuum atmosphere of 1 × 10 −3 mmHg, the temperature was increased from room temperature to 1800 ° C. at 300 ° C. /
The temperature was raised at the rate of time. After holding at 1800 ° C. for 10 minutes, nitrogen gas was introduced until the pressure in the electric furnace reached normal pressure (1 kgf / cm 2 ), and the heating was terminated. The opaque quartz glass thus obtained was confirmed to be in a glass state by X-ray diffraction. This glass was evaluated by the method described above, and as a result, the apparent density, average cell diameter, and cell volume were shown in Table 1, and the total cell cross-sectional area and light transmittance were shown in Table 2.
It was shown to. Table 3 shows the nitrogen element concentration in the glass substrate.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】実施例2 実施例1における石英粉末を乾式ボールミルを用いて粉
砕し、さらにふるいによる粒度調整を行い、平均粒子径
が50μmで10〜200μmの範囲の粒子径分布を有
するものを得た。この石英粉末を用い、窒化ケイ素粉末
の混合量を、石英粉末100重量部に対して0.03重
量部として混合粉末を得た。この混合粉末300gを、
実施例1と同じカーボン製るつぼ内に充填した。この時
の充填密度は1.4g/cm3であった。これを実施例
1と同様の条件で加熱し、不透明石英ガラスを得た。こ
の不透明石英ガラスをX線回折によりガラス状態である
ことを確認した。このガラスを前記記載の方法により評
価し、その結果として、見掛密度、平均気泡径、気泡量
を表1に、気泡総断面積及び光透過率を表2に示した。
また、ガラス基質中の窒素元素濃度を表3に示した。
Example 2 The quartz powder in Example 1 was pulverized using a dry ball mill, and the particle size was adjusted by sieving to obtain a powder having an average particle size of 50 μm and a particle size distribution in the range of 10 to 200 μm. . Using this quartz powder, the mixed amount of the silicon nitride powder was 0.03 parts by weight based on 100 parts by weight of the quartz powder to obtain a mixed powder. 300 g of this mixed powder is
The same carbon crucible as in Example 1 was filled. The packing density at this time was 1.4 g / cm 3 . This was heated under the same conditions as in Example 1 to obtain opaque quartz glass. The opaque quartz glass was confirmed to be in a glass state by X-ray diffraction. This glass was evaluated by the method described above. As a result, the apparent density, average cell diameter, and cell volume are shown in Table 1, and the total cell cross-sectional area and light transmittance are shown in Table 2.
Table 3 shows the nitrogen element concentration in the glass substrate.

【0043】実施例3 実施例1における石英粉末を乾式ボールミルを用いて粉
砕し、さらにふるいによる粒度調整を行い、平均粒子径
が50μmで10〜200μmの範囲の粒子径分布を有
するものとした。この石英粉末を用いて実施例1と同一
の条件で混合粉末を作製した。
Example 3 The quartz powder in Example 1 was pulverized using a dry ball mill, and the particle size was adjusted by sieving. The average particle diameter was 50 μm and the particle diameter distribution was in the range of 10 to 200 μm. Using this quartz powder, a mixed powder was produced under the same conditions as in Example 1.

【0044】この混合粉末300gを、実施例1と同じ
カーボン製るつぼ内に充填した。この時の充填密度は
1.2g/cm3であった。これを実施例1の条件で加
熱し、不透明石英ガラスを得た。この不透明石英ガラス
をX線回折によってガラス状態であることを確認した。
このガラスを前記記載の方法により評価し、その結果と
して、見掛密度、平均気泡径、気泡量を表1に、気泡総
断面積及び光透過率を表2に示した。また、ガラス基質
中の窒素元素濃度を表3に示した。
300 g of the mixed powder was filled in the same crucible made of carbon as in Example 1. The packing density at this time was 1.2 g / cm 3 . This was heated under the conditions of Example 1 to obtain opaque quartz glass. The opaque quartz glass was confirmed to be in a glass state by X-ray diffraction.
This glass was evaluated by the method described above. As a result, the apparent density, average cell diameter, and cell volume are shown in Table 1, and the total cell cross-sectional area and light transmittance are shown in Table 2. Table 3 shows the nitrogen element concentration in the glass substrate.

【0045】実施例4 実施例1の条件において加熱温度を1850℃とした以
外は同様の条件にて実施した。得られた不透明石英ガラ
スをX線回折によってガラス状態であることを確認し
た。このガラスを前記記載の方法により評価し、その結
果として、見掛密度、平均気泡径、気泡量を表1に、気
泡総断面積及び光透過率を表2に示した。また、ガラス
基質中の窒素元素濃度を表3に示した。
Example 4 Example 4 was carried out under the same conditions as in Example 1 except that the heating temperature was 1850 ° C. It was confirmed that the obtained opaque quartz glass was in a glass state by X-ray diffraction. This glass was evaluated by the method described above. As a result, the apparent density, average cell diameter, and cell volume are shown in Table 1, and the total cell cross-sectional area and light transmittance are shown in Table 2. Table 3 shows the nitrogen element concentration in the glass substrate.

【0046】実施例5 実施例1の加熱条件において、1800℃に10分間保
持した後、電気炉内の圧力が2.0kgf/cm2に達
するまで窒素ガスを導入し加熱を終了した以外は同様の
条件にて実施した。得られた不透明石英ガラスをX線回
折によってガラス状態であることを確認した。このガラ
スを前記記載の方法により評価し、その結果として、見
掛密度、平均気泡径、気泡量を表1に、気泡総断面積及
び光透過率を表2に示した。また、ガラス基質中の窒素
元素濃度を表3に示した。
Example 5 The same procedure as in Example 1 was carried out except that after heating at 1800 ° C. for 10 minutes, nitrogen gas was introduced until the pressure in the electric furnace reached 2.0 kgf / cm 2 to complete the heating. It carried out on condition of. It was confirmed that the obtained opaque quartz glass was in a glass state by X-ray diffraction. This glass was evaluated by the method described above. As a result, the apparent density, average cell diameter, and cell volume are shown in Table 1, and the total cell cross-sectional area and light transmittance are shown in Table 2. Table 3 shows the nitrogen element concentration in the glass substrate.

【0047】実施例6 ケイ酸ナトリウムと酸を反応させた後、加熱処理して得
た平均粒子径300μmで50〜1000μmの範囲の
粒子径分布を有する非晶質シリカ粉末(日東化学工業
製、商品名:シリカエースA)を乾式ボールミルを用い
て粉砕し、ふるいによる分級を行い、平均粒子径が18
0μmで10〜600μmの範囲の粒子径分布を有する
ものを得、これを原料粉末として用いた。四塩化ケイ素
から公知の方法であるアンモニア処理法により得られた
窒化ケイ素粉末(宇部興産製、商品名:SN−E10、
平均粒子径0.5μm)を、非晶質シリカ粉末100重
量部に対して0.01重量部となるように秤取し、非晶
質シリカ粉末100重量部に対して50重量部のエタノ
ールに投入した後、撹拌と同時に超音波振動を与えて十
分に分散させた。得られた窒化ケイ素分散液に非晶質シ
リカ粉末を投入し、十分に撹拌し混合した。次に、真空
エバポレータを用いてエタノールを除去、乾燥して非晶
質シリカ粉末と窒化ケイ素粉末の混合粉末(以降、混合
粉末という)を得た。混合粉末300gを、内面に厚さ
2mmのカーボンフェルトを貼付けたカーボン製るつぼ
(外径:130mm、内径:100mm、深さ:50m
m)内に充填した。この時の充填密度は0.81g/c
3であった。るつぼを電気炉内に入れ、1×10-3
mHgの真空雰囲気にした後、室温から1800℃まで
300℃/時間の割合で昇温した。1800℃に10分
間保持した後、電気炉内の圧力が常圧(1kgf/cm
2)に達するまで窒素ガスを導入し加熱を終了した。こ
のようにして得られた不透明石英ガラスをX線回折によ
りガラス状態であることを確認した。このガラスを前記
記載の方法により評価し、その結果として、見掛密度、
平均気泡径、気泡量を表1に、気泡総断面積及び光透過
率を表2に示した。また、ガラス基質中の窒素元素濃度
を表3に示した。
Example 6 An amorphous silica powder having an average particle diameter of 300 μm and a particle diameter distribution in the range of 50 to 1000 μm obtained by reacting sodium silicate with an acid and then heat-treating (manufactured by Nitto Chemical Industry Co., Ltd.) Product name: Silica Ace A) is pulverized using a dry ball mill, and classified by sieving to have an average particle size of 18
A powder having a particle size distribution of 0 to 10 μm in a range of 10 to 600 μm was obtained and used as a raw material powder. Silicon nitride powder obtained from silicon tetrachloride by a known method of ammonia treatment (product name: SN-E10, manufactured by Ube Industries, Ltd.)
An average particle diameter of 0.5 μm) was weighed out so as to be 0.01 part by weight with respect to 100 parts by weight of the amorphous silica powder, and was added to 50 parts by weight of ethanol with respect to 100 parts by weight of the amorphous silica powder. After charging, ultrasonic vibration was applied simultaneously with stirring to sufficiently disperse. Amorphous silica powder was added to the obtained silicon nitride dispersion liquid, sufficiently stirred and mixed. Next, ethanol was removed using a vacuum evaporator and dried to obtain a mixed powder of amorphous silica powder and silicon nitride powder (hereinafter, referred to as a mixed powder). A carbon crucible having a 2 mm-thick carbon felt attached to the inner surface thereof (300 g of the mixed powder) (outer diameter: 130 mm, inner diameter: 100 mm, depth: 50 m)
m). The packing density at this time is 0.81 g / c.
m 3 . Put the crucible in the electric furnace, 1 × 10 -3 m
After a vacuum atmosphere of mHg, the temperature was raised from room temperature to 1800 ° C. at a rate of 300 ° C./hour. After holding at 1800 ° C. for 10 minutes, the pressure in the electric furnace was reduced to normal pressure (1 kgf / cm).
Heating was terminated by introducing nitrogen gas until 2 ) was reached. The opaque quartz glass thus obtained was confirmed to be in a glass state by X-ray diffraction. The glass was evaluated by the method described above, and as a result, apparent density,
Table 1 shows the average bubble diameter and the bubble amount, and Table 2 shows the total bubble cross-sectional area and light transmittance. Table 3 shows the nitrogen element concentration in the glass substrate.

【0048】実施例7 実施例6における非晶質シリカ原料粉末に対する窒化ケ
イ素粉末の混合量を、非晶質シリカ粉末100重量部に
対して0.02重量部として混合粉末を得た。この混合
粉末300gを、実施例1と同じカーボン製るつぼ内に
充填した。この時の充填密度は0.81g/cm3であ
った。これを実施例1と同様の条件で加熱し、不透明石
英ガラスを得た。この不透明石英ガラスをX線回折によ
りガラス状態であることを確認した。このガラスを前記
記載の方法により評価し、その結果として、見掛密度、
平均気泡径、気泡量を表1に、気泡総断面積及び光透過
率を表2に示した。また、ガラス基質中の窒素元素濃度
を表3に示した。
Example 7 A mixed powder was obtained by setting the mixing amount of the silicon nitride powder to the amorphous silica raw material powder in Example 6 to 0.02 parts by weight based on 100 parts by weight of the amorphous silica powder. 300 g of this mixed powder was filled in the same carbon crucible as in Example 1. At this time, the packing density was 0.81 g / cm 3 . This was heated under the same conditions as in Example 1 to obtain opaque quartz glass. The opaque quartz glass was confirmed to be in a glass state by X-ray diffraction. The glass was evaluated by the method described above, and as a result, apparent density,
Table 1 shows the average bubble diameter and the bubble amount, and Table 2 shows the total bubble cross-sectional area and light transmittance. Table 3 shows the nitrogen element concentration in the glass substrate.

【0049】実施例8 実施例6における非晶質シリカ原料粉末を、平均粒子径
が250μmで10〜800μmの範囲の粒子径分布を
有するものとした。得られた混合粉末300gを、実施
例1と同じカーボン製るつぼ内に充填した。この時の充
填密度は0.79g/cm3であった。これを実施例1
の条件で加熱し、不透明石英ガラスを得た。この不透明
石英ガラスをX線回折によってガラス状態であることを
確認した。このガラスを前記記載の方法により評価し、
その結果として、見掛密度、平均気泡径、気泡量を表1
に、気泡総断面積及び光透過率を表2に示した。また、
ガラス基質中の窒素元素濃度を表3に示した。
Example 8 The raw material powder of amorphous silica in Example 6 had an average particle diameter of 250 μm and a particle diameter distribution in the range of 10 to 800 μm. 300 g of the obtained mixed powder was filled in the same crucible made of carbon as in Example 1. At this time, the packing density was 0.79 g / cm 3 . Example 1
And opaque quartz glass was obtained. The opaque quartz glass was confirmed to be in a glass state by X-ray diffraction. The glass was evaluated by the method described above,
As a result, the apparent density, average bubble diameter, and bubble amount are shown in Table 1.
Table 2 shows the total cross-sectional area of the bubbles and the light transmittance. Also,
Table 3 shows the nitrogen element concentration in the glass substrate.

【0050】実施例9 シリコンアルコキシドと水とを反応させた後、加熱処理
して得た平均粒子径170μmで30〜400μmの範
囲の粒子径分布を有する非晶質シリカ粉末(三菱化学
製、商品名:MKCシリカ PS300L)を原料粉末
として用いた。この非晶質シリカ粉末に対する窒化ケイ
素粉末(宇部興産製、商品名:SN−E10、平均粒子
径0.5μm)の混合量を、シリカ粉末100重量部に
対して0.01重量部となるように秤取し、実施例1と
同じ方法で混合粉末を得た。この混合粉末300gを実
施例1と同じカーボン製るつぼ内に充填した。この時の
充填密度は0.81g/cm3であった。これを実施例
1と同様の条件で加熱し、不透明石英ガラスを得た。こ
のようにして得られた不透明石英ガラスをX線回折によ
りガラス状態であることを確認した。このガラスを前記
記載の方法により評価し、その結果として、見掛密度、
平均気泡径、気泡量を表1に、気泡総断面積及び光透過
率を表2に示した。また、ガラス基質中の窒素元素濃度
を表3に示す。
Example 9 An amorphous silica powder having an average particle size of 170 μm and a particle size distribution in the range of 30 to 400 μm obtained by reacting silicon alkoxide with water and then heat-treating the product (manufactured by Mitsubishi Chemical Corporation; (MKC silica PS300L) was used as a raw material powder. The mixing amount of the silicon nitride powder (product name: SN-E10, manufactured by Ube Industries, 0.5 μm in average particle size) with respect to the amorphous silica powder is 0.01 part by weight with respect to 100 parts by weight of the silica powder. And mixed powder was obtained in the same manner as in Example 1. 300 g of the mixed powder was filled in the same carbon crucible as in Example 1. At this time, the packing density was 0.81 g / cm 3 . This was heated under the same conditions as in Example 1 to obtain opaque quartz glass. The opaque quartz glass thus obtained was confirmed to be in a glass state by X-ray diffraction. The glass was evaluated by the method described above, and as a result, apparent density,
Table 1 shows the average bubble diameter and the bubble amount, and Table 2 shows the total bubble cross-sectional area and light transmittance. Table 3 shows the nitrogen element concentration in the glass substrate.

【0051】このように実施例1〜9により得られた不
透明石英ガラスをスライスして顕微鏡により観察する
と、気泡が均一に分散していることが分かった。また、
これらのガラスを電気炉に入れ、窒素ガスで常圧(1k
gf/cm2)に保ち、1800℃に10分間保持して
加熱処理した。加熱処理後のガラスをスライスして顕微
鏡観察したところ、気泡の状態は加熱処理前と変わらな
かった。
When the opaque quartz glass obtained in Examples 1 to 9 was sliced and observed with a microscope, it was found that bubbles were uniformly dispersed. Also,
These glasses were placed in an electric furnace, and were subjected to normal pressure (1 k
gf / cm 2 ) and a heat treatment at 1800 ° C. for 10 minutes. When the glass after the heat treatment was sliced and observed under a microscope, the state of bubbles was not different from that before the heat treatment.

【0052】比較例1 実施例1における石英粉末を、乾式ボールミルを用いて
粉砕し、さらにこれをエタノール中に分散させて沈降速
度の差異による粒度調整を行い、平均粒子径が5μmで
1〜10μmの範囲の粒子径分布を有するものを得た。
この石英粉末を用いて実施例1と同一の条件で混合粉末
を作製した。
Comparative Example 1 The quartz powder in Example 1 was pulverized using a dry ball mill, and further dispersed in ethanol to adjust the particle size by the difference in sedimentation speed. The average particle size was 5 μm and 1 to 10 μm. Having a particle size distribution in the range of
Using this quartz powder, a mixed powder was produced under the same conditions as in Example 1.

【0053】得られた混合粉末300gを、実施例1と
同じカーボン製るつぼ内に充填した。この時の充填密度
は0.9g/cm3であった。これを実施例1と同様の
条件で加熱し、石英ガラスを得た。この石英ガラスをX
線回折によってガラス状態であることを確認した。しか
しながら、このガラスの見掛密度は1.2g/cm3
低く、ガラスを切断して内部を調べると直径2〜5mm
程度の空洞が点在していた。
[0053] 300 g of the obtained mixed powder was filled in the same carbon crucible as in Example 1. The packing density at this time was 0.9 g / cm 3 . This was heated under the same conditions as in Example 1 to obtain quartz glass. This quartz glass is X
It was confirmed that the glass was in a glass state by line diffraction. However, the apparent density of this glass is as low as 1.2 g / cm 3.
Some cavities were scattered.

【0054】比較例2 実施例6における非晶質シリカ原料粉末を、平均粒子径
が700μmで500〜1000μmの範囲の粒子径分
布を有するものにして実施した。得られた混合粉末30
0gを、実施例1と同じカーボン製るつぼ内に充填し
た。この時の充填密度は0.78g/cm3であった。
これを実施例1と同様の条件で加熱し、石英ガラスを得
た。この石英ガラスをX線回折によってガラス状態であ
ることを確認した。しかしながら、このガラスの見掛密
度は1.4g/cm3と低く、ガラス内部に直径0.5
〜1mm程度の空洞が点在していた。
Comparative Example 2 The amorphous silica raw material powder in Example 6 was used with an average particle diameter of 700 μm and a particle diameter distribution in the range of 500 to 1000 μm. Obtained mixed powder 30
0 g was filled in the same carbon crucible as in Example 1. The packing density at this time was 0.78 g / cm 3 .
This was heated under the same conditions as in Example 1 to obtain quartz glass. The quartz glass was confirmed to be in a glass state by X-ray diffraction. However, the apparent density of this glass was as low as 1.4 g / cm 3, and the inside diameter of the glass was 0.5 g / cm 3.
Cavities of about 1 mm were scattered.

【0055】比較例3 実施例6において、加熱温度を1950℃とした以外は
同様の条件にて実施した。得られた石英ガラスをX線回
折によってガラス状態であることを確認した。しかしな
がら、このガラスの見掛密度は1.5g/cm3と低
く、平均気泡径は200μmに達しており、非常に脆い
ガラスであった。
Comparative Example 3 An experiment was carried out under the same conditions as in Example 6 except that the heating temperature was changed to 1950 ° C. It was confirmed that the obtained quartz glass was in a glass state by X-ray diffraction. However, the apparent density of this glass was as low as 1.5 g / cm 3 , the average cell diameter reached 200 μm, and it was a very brittle glass.

【0056】比較例4 実施例1において、窒化ケイ素粉末の混合量を、石英粉
末100重量部に対して0.06重量部とした以外は同
様の条件にて実施した。得られた石英ガラスをX線回折
によってガラス状態であることを確認した。このガラス
の見掛密度は1.7g/cm3であった。ガラス基質中
の窒素元素濃度を表3に示した。
Comparative Example 4 Example 1 was carried out under the same conditions as in Example 1, except that the mixing amount of the silicon nitride powder was changed to 0.06 parts by weight with respect to 100 parts by weight of the quartz powder. It was confirmed that the obtained quartz glass was in a glass state by X-ray diffraction. The apparent density of this glass was 1.7 g / cm 3 . Table 3 shows the nitrogen element concentration in the glass substrate.

【0057】このガラスを電気炉に入れ、窒素ガスで常
圧(1kgf/cm2)に保ち、1800℃に10分間
保持して加熱処理した。加熱処理後のガラスは加熱処理
前に比べて白色度が増していた。これをスライスして顕
微鏡観察したところ、気泡量、気泡径はともに加熱処理
前のものに比べて増大していた。
The glass was placed in an electric furnace and heated at 1800 ° C. for 10 minutes while maintaining the atmosphere at normal pressure (1 kgf / cm 2 ) with nitrogen gas. The glass after the heat treatment had a higher whiteness than before the heat treatment. When this was sliced and observed with a microscope, both the amount of bubbles and the diameter of bubbles were larger than those before the heat treatment.

【0058】[0058]

【発明の効果】本発明の不透明石英ガラスは、シリカ粉
末に、窒化ケイ素粉末を添加し加熱することにより、シ
リカ粉末のガラス化及び窒化ケイ素粉末の分解による発
泡によるものであるため、アルカリ金属等の不純物の混
入を防止することができる。更に、シリカ粉末の粒子
径、窒化ケイ素粉末の混合量を調節したり、加熱温度を
調節することにより、得られる不透明石英ガラスの気泡
径や見掛密度を制御することができる。また、耐熱性型
の形状とほぼ同様の形状のガラスを得ることができるた
め、所望の形状に近似した耐熱性型に原料粉末を充填
し、ガラス化することにより、最終製品形状を得るため
に行う研削等の機械加工工程を大幅に削減することが可
能になる。また、ガラス基質中の窒素元素濃度が低いの
で、火炎加工などの再加熱処理を施しても、再発泡によ
る不透明石英ガラスの白色度の変化を抑制できる。
The opaque quartz glass of the present invention is obtained by adding silicon nitride powder to silica powder and heating the mixture to cause vitrification of the silica powder and foaming by decomposition of the silicon nitride powder. Of impurities can be prevented. Further, by adjusting the particle size of the silica powder, the amount of the silicon nitride powder mixed, and the heating temperature, the bubble diameter and apparent density of the obtained opaque quartz glass can be controlled. In addition, since a glass having a shape substantially similar to the shape of the heat-resistant mold can be obtained, the raw material powder is filled in a heat-resistant mold having a shape similar to a desired shape, and vitrification is performed. It becomes possible to greatly reduce the machining process such as grinding to be performed. Further, since the nitrogen element concentration in the glass substrate is low, even if reheating treatment such as flame processing is performed, a change in whiteness of the opaque quartz glass due to refoaming can be suppressed.

【0059】また、透明石英ガラス部材と火炎加工で接
合する場合、窒素元素濃度が近いので、接合部付近にお
ける双方のガラスに変質がなく、割れなどの恐れがなく
良好な接合が可能となる。
Further, when the transparent quartz glass member is joined by flame processing, since the nitrogen element concentration is close, both glasses in the vicinity of the joint are not deteriorated, and good joining is possible without fear of cracking.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】見掛密度が1.7〜2.1g/cm3であ
り、平均気泡径が10〜100μm、気泡量が3×10
5〜5×106個/cm3であり、気泡総断面積が10〜
40cm2/cm3であることを特徴とする不透明石英ガ
ラス。
1. An apparent density of 1.7 to 2.1 g / cm 3 , an average cell diameter of 10 to 100 μm, and a cell volume of 3 × 10
5 to 5 × 10 6 cells / cm 3 , and the total bubble cross-sectional area is 10 to 10.
Opaque quartz glass characterized by being 40 cm 2 / cm 3 .
【請求項2】厚みが1mm以上において、波長300〜
900nmの光を照射した場合の直線透過率が3%以下
であることを特徴とする請求項1に記載の不透明石英ガ
ラス。
2. When the thickness is 1 mm or more, a wavelength of 300 to
2. The opaque quartz glass according to claim 1, wherein the linear transmittance when irradiated with light of 900 nm is 3% or less.
【請求項3】石英ガラス基質中の窒素元素濃度が1〜5
0ppmであることを特徴とする請求項1又は2に記載
の不透明石英ガラス。
3. The method according to claim 1, wherein the concentration of nitrogen element in the quartz glass substrate is 1-5.
The opaque quartz glass according to claim 1, wherein the opaque quartz glass is 0 ppm.
【請求項4】平均粒子径が10〜500μmのシリカ粉
末に窒化ケイ素粉末を、シリカ粉末100重量部に対し
て窒化ケイ素粉末0.001〜0.05重量部を混合分
散させた出発原料粉末を、複雑な形状を有する耐熱性型
に充填し、真空雰囲気下で、当該出発原料を溶融する温
度以上1900℃以下の温度まで加熱するか、又は、真
空雰囲気下で、1400℃以上当該出発原料の溶融温度
未満まで加熱し、次いで、不活性ガス雰囲気下で、当該
出発原料の溶融する温度以上1900℃以下の温度まで
加熱して、ガラス化及び発泡による気泡生成を行うこと
を特徴とする請求項1〜3に記載の不透明石英ガラスを
製造する方法。
4. A starting material powder obtained by mixing and dispersing silicon nitride powder in silica powder having an average particle diameter of 10 to 500 μm and 0.001 to 0.05 parts by weight of silicon nitride powder per 100 parts by weight of silica powder. Filled in a heat-resistant mold having a complicated shape, and heated under a vacuum atmosphere to a temperature not lower than the melting point of the starting material and not higher than 1900 ° C., or under a vacuum atmosphere, the temperature of the starting material is not lower than 1400 ° C. Heating to a temperature lower than the melting temperature, and then heating to a temperature not lower than the melting point of the starting material and not higher than 1900 ° C. in an inert gas atmosphere to generate bubbles by vitrification and foaming. 4. The method for producing opaque quartz glass according to any one of 1 to 3.
【請求項5】請求項4に記載の不透明石英ガラスを製造
する方法において、複雑な形状を有する耐熱性型の形状
がフランジ状、円筒状、中空角柱状、スクリュウー状、
ターボチャージャー状、角状水槽又はたらい状であるこ
とを特徴とする不透明石英ガラスの製造方法。
5. The method for producing opaque quartz glass according to claim 4, wherein the heat-resistant mold having a complicated shape is a flange, a cylinder, a hollow prism, a screw, or the like.
A method for producing opaque quartz glass, which is in the shape of a turbocharger, a square water tank or a trough.
JP17194897A 1996-07-04 1997-06-27 Opaque quartz glass and manufacturing method thereof Expired - Fee Related JP3966943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17194897A JP3966943B2 (en) 1996-07-04 1997-06-27 Opaque quartz glass and manufacturing method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP17459696 1996-07-04
JP8-254351 1996-09-26
JP25435196 1996-09-26
JP8-174596 1996-09-26
JP17194897A JP3966943B2 (en) 1996-07-04 1997-06-27 Opaque quartz glass and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10152332A true JPH10152332A (en) 1998-06-09
JP3966943B2 JP3966943B2 (en) 2007-08-29

Family

ID=27323559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17194897A Expired - Fee Related JP3966943B2 (en) 1996-07-04 1997-06-27 Opaque quartz glass and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3966943B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167742A (en) * 1996-12-17 1998-06-23 Tosoh Corp Production of opaque quartz glass cylinder
JPH10203839A (en) * 1997-01-21 1998-08-04 Tosoh Corp Opaque silica glass containing fine bubble and its production
JP2001206725A (en) * 1999-12-22 2001-07-31 Shinetsu Quartz Prod Co Ltd Method for manufacturing opaque quartz glass, and opaque article manufactured by the method
JP2015151320A (en) * 2014-02-17 2015-08-24 東ソー株式会社 Opaque quartz glass and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167742A (en) * 1996-12-17 1998-06-23 Tosoh Corp Production of opaque quartz glass cylinder
JPH10203839A (en) * 1997-01-21 1998-08-04 Tosoh Corp Opaque silica glass containing fine bubble and its production
JP2001206725A (en) * 1999-12-22 2001-07-31 Shinetsu Quartz Prod Co Ltd Method for manufacturing opaque quartz glass, and opaque article manufactured by the method
JP2015151320A (en) * 2014-02-17 2015-08-24 東ソー株式会社 Opaque quartz glass and method for producing the same

Also Published As

Publication number Publication date
JP3966943B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
EP0816297B1 (en) Opaque quartz glass and process for production thereof
CN101511744B (en) Fused quartz glass and process for producing the same
US9145325B2 (en) Silica container and method for producing the same
US8915096B2 (en) Silica container and method for producing the same
JP5106340B2 (en) Silica container and method for producing the same
KR101268483B1 (en) Silica Container and Method for Producing Same
JP3043032B2 (en) Manufacturing method of opaque quartz glass
JP4191271B2 (en) Opaque quartz glass having a transparent part and method for producing the same
JPH10152332A (en) Opaque silica glass and production thereof
JPH07300341A (en) Opaque silica glass and its production
JPH11310423A (en) Synthetic quartz glass and its production
EP0854116A2 (en) Cristobalite-contained silica glass, and silica glass jig made of same
US6312775B1 (en) Opaque silica glass article having transparent portion and process for producing same
JP4035793B2 (en) Method for producing opaque quartz glass ring having transparent portion
US6405563B1 (en) Opaque silica glass article having transparent portion and process for producing same
JPH05254882A (en) Opaque quartz glass
JP4035794B2 (en) Method for producing opaque quartz glass ring
JP2824883B2 (en) Quartz glass crucible manufacturing method
JP3121733B2 (en) High purity synthetic cristobalite powder, method for producing the same, and silica glass
JP2768624B2 (en) Heat-resistant siliceous foam and method for producing the same
JPH11209132A (en) Production of high purity transparent silica glass
JPH09295826A (en) Production of high-purity transparent silica glass
JPH08295534A (en) Silica glass containing cristobalite crystal phase and its production
JP2001180955A (en) Manufacturing method for opaque quartz glass
JPH11217224A (en) Production of porous quartz glass product

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 19971120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees