JP2015151320A - Opaque quartz glass and method for producing the same - Google Patents

Opaque quartz glass and method for producing the same Download PDF

Info

Publication number
JP2015151320A
JP2015151320A JP2014027910A JP2014027910A JP2015151320A JP 2015151320 A JP2015151320 A JP 2015151320A JP 2014027910 A JP2014027910 A JP 2014027910A JP 2014027910 A JP2014027910 A JP 2014027910A JP 2015151320 A JP2015151320 A JP 2015151320A
Authority
JP
Japan
Prior art keywords
quartz glass
opaque quartz
powder
glass according
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014027910A
Other languages
Japanese (ja)
Other versions
JP6379508B2 (en
Inventor
聡里 平井
Akisato Hirai
聡里 平井
修輔 山田
Shusuke Yamada
修輔 山田
一喜 新井
Kazuyoshi Arai
一喜 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014027910A priority Critical patent/JP6379508B2/en
Priority to TW104104937A priority patent/TWI652240B/en
Priority to PCT/JP2015/054129 priority patent/WO2015122517A1/en
Priority to US15/118,368 priority patent/US10005693B2/en
Priority to CN201580009038.8A priority patent/CN106029586B/en
Priority to KR1020167023083A priority patent/KR102246056B1/en
Publication of JP2015151320A publication Critical patent/JP2015151320A/en
Application granted granted Critical
Publication of JP6379508B2 publication Critical patent/JP6379508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an opaque quartz glass excellent in heat insulating properties and a method for producing the same.SOLUTION: There is obtained an opaque quartz glass excellent in heat insulating properties obtained by mixing and molding fine amorphous silica powder and a pore-forming agent are and then heating at a predetermined temperature, in which the pores contained are closed pores, the average diameter of the pores is 5 to 20 μm and the content density of the pores is high.

Description

本発明は、吸水性がなく、かつ赤外光の遮光性に優れる不透明石英ガラスおよびその製造方法に関する。   The present invention relates to an opaque quartz glass that does not absorb water and has excellent infrared light shielding properties and a method for producing the same.

不透明石英ガラスは熱遮断性を要する用途に使用される。熱遮断性は赤外光の遮光性と関係があり、遮光性が高い不透明石英ガラスほど熱遮断性に優れている。   Opaque quartz glass is used for applications that require heat barrier properties. The heat shielding property is related to the infrared light shielding property, and the opaque quartz glass having a higher light shielding property is superior in the heat shielding property.

従来、不透明石英ガラスの製造方法としては、結晶質シリカまたは非晶質シリカに窒化珪素等の発泡剤を添加して溶融する方法(例えば、特許文献1〜3)などが知られている。しかしながら、このような製造方法で製造された不透明石英ガラスでは、発泡剤が気化して気孔を形成するため、気孔の平均径が大きく赤外光の遮光性が低下するという問題がある。   Conventionally, as a method for producing opaque quartz glass, a method in which a foaming agent such as silicon nitride is added to crystalline silica or amorphous silica and melted (for example, Patent Documents 1 to 3) is known. However, in the opaque quartz glass manufactured by such a manufacturing method, since the foaming agent is vaporized to form pores, there is a problem that the average diameter of the pores is large and the light shielding property of infrared light is lowered.

一方、発泡剤を添加することなく、非晶質シリカ粉末の成形体をその溶融温度以下の温度で加熱し、完全に緻密化する前に熱処理を中断し、部分的に焼結する方法(例えば、特許文献4)も提案されているが、このような製造方法で製造された不透明石英ガラスでは、気孔の平均径を小さくすることが可能であるが、気孔が閉気孔となるまで焼結させると、平均径が小さくなりすぎ、長波長の赤外光の遮光性が低下するという問題がある。   On the other hand, a method in which a molded body of amorphous silica powder is heated at a temperature equal to or lower than its melting temperature without adding a foaming agent, the heat treatment is interrupted before being fully densified, and partially sintered (for example, Patent Document 4) has also been proposed, but the opaque quartz glass manufactured by such a manufacturing method can reduce the average diameter of the pores, but is sintered until the pores become closed pores. Then, there is a problem that the average diameter becomes too small, and the light blocking property of long-wavelength infrared light is lowered.

また、石英ガラス多孔質体を高圧条件下で加熱焼成する方法(例えば、特許文献5)も提案されているが、このような製造方法で製造された不透明石英ガラスでは、波長200〜5000nmの光の透過率が0.5〜2.0%となっており、長波長側の赤外光の遮光性が低下するという問題がある。   In addition, a method (for example, Patent Document 5) in which a quartz glass porous body is heated and fired under high-pressure conditions has been proposed. In the case of an opaque quartz glass manufactured by such a manufacturing method, light having a wavelength of 200 to 5000 nm is proposed. There is a problem that the light shielding property of infrared light on the long wavelength side is lowered.

特開平4−65328号公報JP-A-4-65328 特開平5−254882号公報JP-A-5-254882 特開平7−61827号公報JP 7-61827 A 特開平7−267724号公報JP-A-7-267724 WO2008/069194号公報WO2008 / 069194

本発明は、吸水性がなく、かつ赤外光の遮光性に優れる不透明石英ガラスおよびその製造方法を提供することである。   An object of the present invention is to provide an opaque quartz glass that does not absorb water and is excellent in the ability to block infrared light, and a method for producing the same.

本発明者らは、非晶質シリカ粉末と造孔剤粉末(以下、単に造孔剤と言うことがある)を混合し、成形したのち、所定の温度で焼結することによって、含まれる気孔が閉気孔であると共に、気孔の含有密度が高く、広い波長領域で赤外光を遮光する不透明石英ガラスを得ることができることを見出し、本発明を完成するに至った。   The present inventors mixed amorphous silica powder and pore-forming agent powder (hereinafter sometimes simply referred to as a pore-forming agent), molded, and then sintered at a predetermined temperature to contain contained pores. Has been found to be an opaque quartz glass that has closed pores, a high pore content density, and shields infrared light in a wide wavelength region, and has completed the present invention.

以下、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明は、密度が1.95g/cm以上2.15g/cm以下であり、平均気孔径が5〜20μmであり、試料厚さ1mmのときの波長1.5μmから5μmにおける直線透過率が1%以下であり、吸水率が0.1wt%以下であることを特徴とする不透明石英ガラスである。 The present invention has a density of 1.95 g / cm 3 or more and 2.15 g / cm 3 or less, an average pore diameter of 5 to 20 μm, and a linear transmittance at a wavelength of 1.5 μm to 5 μm when the sample thickness is 1 mm. Is an opaque quartz glass characterized by having a water absorption of 0.1 wt% or less.

気孔の平均径が光の波長よりも小さい場合、散乱強度は波長に依存し、長波長の赤外光は短波長の赤外光に比べ散乱されにくい傾向がある。一方、気孔の平均径が光の波長と同程度か、光の波長よりも大きい場合、散乱強度の波長依存性は小さい。また、同じ密度の不透明石英ガラスを比較すると、気孔の平均径が小さいものほど散乱強度は大きくなる傾向がある。これは、気孔の平均径が小さいものほど気孔の含有密度が高くなるためと考えられる。   When the average diameter of the pores is smaller than the wavelength of light, the scattering intensity depends on the wavelength, and long-wavelength infrared light tends to be less likely to be scattered than short-wavelength infrared light. On the other hand, when the average diameter of the pores is about the same as the wavelength of light or larger than the wavelength of light, the wavelength dependence of the scattering intensity is small. Further, when comparing opaque quartz glasses having the same density, the scattering intensity tends to increase as the average pore diameter decreases. This is presumably because the smaller the average pore diameter, the higher the pore density.

したがって、不透明石英ガラスの遮光性を向上するためには、遮光したい赤外光と同程度以上のサイズの気孔を有することと、気孔の含有密度が高いことが有効である。遮光したい赤外光の波長は1.5〜5μmであるため、平均気孔径は5μm以上であることが求められる。一方で、平均気孔径が大きく、気孔の含有密度が高くなりすぎると、不透明石英ガラスの密度が低くなり、強度が低下するため好ましくない。赤外光の遮光性と不透明石英ガラスの強度のバランスを考慮して、平均気孔径は5〜20μmであることが必要であり、9〜15μmであることが好ましい。密度は1.95g/cm以上2.15g/cm以下であることが必要であり、1.97g/cm以上2.08g/cm未満であることが好ましい。 Therefore, in order to improve the light shielding property of the opaque quartz glass, it is effective to have pores having a size equal to or larger than the infrared light to be shielded and to have a high pore density. Since the wavelength of infrared light to be shielded is 1.5 to 5 μm, the average pore diameter is required to be 5 μm or more. On the other hand, when the average pore diameter is large and the pore density is too high, the density of opaque quartz glass is lowered and the strength is lowered, which is not preferable. Considering the balance between the light shielding property of infrared light and the strength of the opaque quartz glass, the average pore diameter is required to be 5 to 20 μm, and preferably 9 to 15 μm. Density is required to be not more than 1.95 g / cm 3 or more 2.15 g / cm 3, preferably less than 1.97 g / cm 3 or more 2.08 g / cm 3.

本発明の不透明石英ガラスは、波長1.5μmから5μmにおける試料厚さ1mmの直線透過率が1%以下であることが求められる。換言すれば、本発明の不透明石英ガラスは、波長1.5μm〜5μmのいずれの波長であっても、試料厚さ1mmの直線透過率が1%を超えることはない。熱遮断性は赤外光の透過率と関係し、波長1.5μmから5μmにおける試料厚さ1mmの直線透過率が1%以下である本発明の不透明石英ガラスは熱遮断性に非常に優れている。   The opaque quartz glass of the present invention is required to have a linear transmittance of 1% or less at a sample thickness of 1 mm at a wavelength of 1.5 μm to 5 μm. In other words, in the opaque quartz glass of the present invention, the linear transmittance with a sample thickness of 1 mm does not exceed 1% at any wavelength of 1.5 μm to 5 μm. The thermal barrier property is related to the transmittance of infrared light, and the opaque quartz glass of the present invention having a linear transmittance of 1 mm or less at a wavelength of 1.5 μm to 5 μm is 1% or less has an excellent thermal barrier property. Yes.

本発明の不透明石英ガラスに含まれる気孔は閉気孔である必要があり、すなわち吸水率が0.1wt%以下であることが求められる。不透明石英ガラスの吸水率が0.1wt%より大きいと、不透明石英ガラスの研削、研磨などの機械加工中に不純物を吸着するため、加工後に純化処理が必要となり好ましくない。   The pores contained in the opaque quartz glass of the present invention must be closed pores, that is, the water absorption is required to be 0.1 wt% or less. If the water absorption rate of the opaque quartz glass is larger than 0.1 wt%, impurities are adsorbed during mechanical processing such as grinding and polishing of the opaque quartz glass.

本発明の不透明石英ガラスの純度は特に限定されず、その用途に要求される純度であればよく、例えば半導体熱処理治具に用いる不透明石英ガラスの場合は各金属不純物量が20ppm以下、より好ましくは1ppm以下である必要がある。   The purity of the opaque quartz glass of the present invention is not particularly limited and may be any purity required for its use. For example, in the case of an opaque quartz glass used for a semiconductor heat treatment jig, the amount of each metal impurity is 20 ppm or less, more preferably It must be 1 ppm or less.

次に、本発明の不透明石英ガラスの製造方法について説明する。   Next, the manufacturing method of the opaque quartz glass of this invention is demonstrated.

本発明の不透明石英ガラスの製造方法は、非晶質シリカ粉末に、造孔剤粉末が非晶質シリカ粉末との体積比で0.04以上となるように混合し、前記混合粉末を乾式プレスによって成形し、造孔剤が消失する温度で加熱して造孔剤を除去した後、シリカ粉末の焼結が進行する温度で焼結体に含まれる気孔が閉気孔となるまで焼結させることを特徴とする。   The method for producing opaque quartz glass of the present invention comprises mixing an amorphous silica powder such that the pore-forming agent powder has a volume ratio of 0.04 or more with the amorphous silica powder, and the mixed powder is dry-pressed. After removing the pore-forming agent by heating at a temperature at which the pore-forming agent disappears, sintering is performed until the pores contained in the sintered body become closed pores at a temperature at which the sintering of the silica powder proceeds It is characterized by.

以下、本発明の不透明石英ガラスの製造方法について工程ごとに詳細に説明する。   Hereinafter, the method for producing the opaque quartz glass of the present invention will be described in detail for each step.

(1)原料粉末の選定
まず、本発明で用いる非晶質シリカ粉末を選定する。非晶質シリカ粉末の製造方法はとくに限定されないが、例えばシリコンアルコキシドの加水分解によって製造された非晶質シリカ粉末や、四塩化珪素を酸水素炎等で加水分解して作製した非晶質シリカ粉末等を用いることができる。また、石英ガラスを破砕した粉末も用いることができる。
(1) Selection of raw material powder First, the amorphous silica powder used by this invention is selected. The method for producing the amorphous silica powder is not particularly limited. For example, amorphous silica powder produced by hydrolysis of silicon alkoxide or amorphous silica produced by hydrolyzing silicon tetrachloride with an oxyhydrogen flame or the like. Powder or the like can be used. Moreover, the powder which crushed quartz glass can also be used.

本発明で使用する非晶質シリカ粉末の平均粒径は、20μm以下が好ましい。粒径が大きすぎると、焼結に高温、長時間を要するため好ましくない。各種製造法で作製された非晶質シリカ粉末は、ジェットミル、ボールミル、ビーズミル等で粉砕、分級することで上記粒径に調整することができる。   The average particle size of the amorphous silica powder used in the present invention is preferably 20 μm or less. If the particle size is too large, sintering requires a high temperature and a long time, which is not preferable. Amorphous silica powder produced by various production methods can be adjusted to the above particle size by pulverization and classification with a jet mill, ball mill, bead mill or the like.

次に、本発明で用いる造孔剤粉末を選定する。造孔剤粉末の種類は、非晶質シリカの焼結温度以下の温度で熱分解して気化し消失するものであれば特に限定されず、黒鉛粉末やアモルファスカーボン粉末、フェノール樹脂粉末、アクリル樹脂粉末、ポリスチレン粉末などを使用することができる。このうち、黒鉛粉末またはアモルファスカーボン粉末は熱分解の際に発生するガス成分が無害、無臭であるという点で好ましい。   Next, the pore former powder used in the present invention is selected. The type of pore former powder is not particularly limited as long as it is thermally decomposed at a temperature lower than the sintering temperature of amorphous silica and vaporizes and disappears. Graphite powder, amorphous carbon powder, phenol resin powder, acrylic resin Powder, polystyrene powder, etc. can be used. Among these, graphite powder or amorphous carbon powder is preferable in that the gas component generated during pyrolysis is harmless and odorless.

本発明の造孔剤の粒径は不透明石英ガラスの平均気孔径と深く関係し、得たい平均気孔径と同等あるいはそれ以上の粒径の造孔剤を用いる必要がある。気孔径より大きい粒径の造孔剤を用いる理由は、造孔剤の消失後の焼結段階において、気孔が当初のサイズよりも小さくなる場合があるためである。造孔剤として黒鉛またはアモルファスカーボンの球状粉末を用いる場合、平均気孔径5〜20μmの不透明石英ガラスを得るためには、造孔剤の粒径は5〜40μmであることが好ましく、9〜30μmであることがより好ましい。   The particle size of the pore-forming agent of the present invention is closely related to the average pore size of the opaque quartz glass, and it is necessary to use a pore-forming agent having a particle size equal to or larger than the desired average pore size. The reason for using a pore-forming agent having a particle size larger than the pore size is that the pores may be smaller than the original size in the sintering stage after the pore-forming agent disappears. When a spherical powder of graphite or amorphous carbon is used as the pore forming agent, in order to obtain an opaque quartz glass having an average pore diameter of 5 to 20 μm, the particle size of the pore forming agent is preferably 5 to 40 μm, and 9 to 30 μm. It is more preferable that

本発明で使用する造孔剤の形状は特に限定されないが、非晶質シリカ粉末と均質に混合することができる点で球状であることが好ましく、粒子の長軸と短軸の比率を表すアスペクト比が3.0以下であることが好ましい。   The shape of the pore-forming agent used in the present invention is not particularly limited, but it is preferably spherical in that it can be homogeneously mixed with the amorphous silica powder, and an aspect representing the ratio of the major axis to the minor axis of the particles. The ratio is preferably 3.0 or less.

本発明で使用する非晶質シリカ粉末と造孔剤粉末に求められる純度は、不透明石英ガラスの用途によって異なり、例えば半導体熱処理治具に用いる場合は、非晶質シリカ粉末と造孔剤粉末の混合粉末に含まれる各金属不純物量が20ppm以下、より好ましくは1ppm以下である必要がある。非晶質シリカ粉末と造孔剤粉末の純度が低い場合は、純化処理を行なうとよい。純化の方法は特に限定されず、薬液処理や乾式ガス精製、高温焼成による不純物の蒸散などを行うことができる。   The purity required for the amorphous silica powder and pore former powder used in the present invention varies depending on the use of the opaque quartz glass. For example, when used in a semiconductor heat treatment jig, the amorphous silica powder and pore former powder The amount of each metal impurity contained in the mixed powder needs to be 20 ppm or less, more preferably 1 ppm or less. When the purity of the amorphous silica powder and the pore-forming agent powder is low, a purification treatment may be performed. The purification method is not particularly limited, and chemical treatment, dry gas purification, evaporation of impurities by high-temperature baking, and the like can be performed.

(2)原料粉末の混合
次に、選定した非晶質シリカ粉末及び造孔剤粉末を混合する。造孔剤粉末の添加量は、非晶質シリカ粉末に対して体積比で0.04以上となるように混合する必要があるが、好ましい範囲は造孔剤の種類、平均粒径によって異なり、造孔剤粉末が平均粒径5〜40μmの黒鉛粉末又はアモルファスカーボン粉末であれば、非晶質シリカ粉末との体積比で0.04〜0.35であることが好ましい。造孔剤粉末の添加量が少ないと、不透明石英ガラスに含まれる気孔量が少なくなり赤外光の遮光性が低下するため好ましくない。一方、添加量が多すぎると、不透明石英ガラスの密度が低くなりすぎるため好ましくない。
(2) Mixing of raw material powder Next, the selected amorphous silica powder and pore former powder are mixed. The addition amount of the pore-forming agent powder needs to be mixed so that the volume ratio is 0.04 or more with respect to the amorphous silica powder. If the pore former powder is a graphite powder or an amorphous carbon powder having an average particle diameter of 5 to 40 μm, the volume ratio with respect to the amorphous silica powder is preferably 0.04 to 0.35. If the amount of the pore-forming agent powder is small, the amount of pores contained in the opaque quartz glass is small, and the light shielding property of infrared light is lowered, which is not preferable. On the other hand, if the addition amount is too large, the density of the opaque quartz glass becomes too low, which is not preferable.

非晶質シリカ粉末と造孔剤の混合方法は特に限定されず、ロッキングミキサー、クロスミキサー、ポットミル、ボールミル等を用いることができる。   The mixing method of the amorphous silica powder and the pore-forming agent is not particularly limited, and a rocking mixer, a cross mixer, a pot mill, a ball mill, or the like can be used.

(3)混合粉末の成形
次に、混合粉末を乾式プレス成形する。成形方法は、鋳込み成型法、冷間静水圧プレス(CIP)法、金型プレス法等を用いることができる。特に本発明の成型には、CIP法を用いると、工程が少なく容易に成形体を得ることができる点で好ましい。さらにCIP法を用いて、円板形状や円筒形状、リング形状の成形体を作製する方法としては、特に限定しないが、発泡スチロールのような塑性変形可能な鋳型を用いる成形法(例えば、特開平4−105797参照)や、底板が上パンチよりも圧縮変形の少ない材料で構成されている組立式型枠を用いる方法(例えば、特開2006−241595参照)で成形することが可能である。
(3) Molding of mixed powder Next, the mixed powder is dry press molded. As the molding method, a casting molding method, a cold isostatic pressing (CIP) method, a die pressing method, or the like can be used. In particular, it is preferable to use the CIP method for molding according to the present invention because a molded body can be easily obtained with few steps. Further, a method for producing a disk-shaped, cylindrical, or ring-shaped molded body using the CIP method is not particularly limited, but a molding method using a plastically deformable mold such as foamed polystyrene (for example, Japanese Patent Application Laid-Open No. Hei 4). -107797) and a method using a mold form (for example, see Japanese Patent Application Laid-Open No. 2006-241595) using a bottom plate made of a material having less compression deformation than the upper punch.

(4)成形体の焼結
次に、上記の方法により成形した成形体を所定の温度で加熱し、成形体内に含まれる造孔剤を消失させる。加熱温度は造孔剤の種類によって異なるが、例えば造孔剤として黒鉛粉末やアモルファスカーボンを用いる場合、加熱温度は700℃から1000℃で行う。
(4) Sintering of molded body Next, the molded body molded by the above method is heated at a predetermined temperature to eliminate the pore-forming agent contained in the molded body. Although the heating temperature varies depending on the type of pore forming agent, for example, when graphite powder or amorphous carbon is used as the pore forming agent, the heating temperature is 700 ° C. to 1000 ° C.

造孔剤の消失のための加熱は造孔剤の種類や造孔剤の添加量、成形体のサイズ、加熱温度によって任意の時間行われるが、例えば造孔剤として黒鉛粉末やアモルファスカーボンを用い、添加量が非晶質シリカ粉末との体積比で0.1〜0.2、成形体の体積が2×10cm、加熱温度が800℃の場合、加熱時間は24時間から100時間で行う。 Heating for disappearance of the pore forming agent is performed for an arbitrary time depending on the type of pore forming agent, the amount of the pore forming agent added, the size of the molded body, and the heating temperature. For example, graphite powder or amorphous carbon is used as the pore forming agent. When the addition amount is 0.1 to 0.2 in volume ratio with the amorphous silica powder, the volume of the molded body is 2 × 10 3 cm 3 , and the heating temperature is 800 ° C., the heating time is 24 hours to 100 hours. To do.

次に、造孔剤が消失した成形体を所定の温度で、焼結体に含まれる気孔が閉気孔となるまで焼成する。焼成温度は特に限定されないが、1350〜1500℃が好ましい。焼成温度が1350℃より低いと、気孔が閉気孔となるまでに長時間の焼成が必要となるため好ましくない。焼成温度が1500℃を超えると、焼成体内に含まれるクリストバライト量が多くなり、クリストバライトの高温型から低温型への相転移に伴う体積収縮によって、焼成体にクラックが発生する恐れがあり好ましくない。   Next, the molded body from which the pore forming agent has disappeared is fired at a predetermined temperature until the pores contained in the sintered body become closed pores. Although a calcination temperature is not specifically limited, 1350-1500 degreeC is preferable. When the firing temperature is lower than 1350 ° C., it is not preferable because firing for a long time is required before the pores become closed pores. When the firing temperature exceeds 1500 ° C., the amount of cristobalite contained in the fired body increases, and cracks may occur in the fired body due to volume shrinkage accompanying the phase transition from the high temperature type to the low temperature type of cristobalite.

焼成時間は造孔剤の添加量や焼成温度に応じて任意の時間行われるが、例えば添加量が非晶質シリカ粉末との体積比で0.1〜0.2、焼成温度が1350〜1500℃の場合、焼成時間は1時間から20時間で行う。焼成時間が短いと焼結が十分進まず、気孔が開気孔となるため好ましくない。また、焼成時間が長すぎると焼結が進み過ぎ気孔が小さくなるため赤外光の遮光性が低下するとともに、焼成体内に含まれるクリストバライト量が多くなり、クリストバライトの高温型から低温型への相転移に伴う体積収縮によって、焼成体にクラックが発生する恐れがあり好ましくない。   The firing time is carried out for an arbitrary time depending on the addition amount of the pore-forming agent and the firing temperature. For example, the addition amount is 0.1 to 0.2 by volume ratio with the amorphous silica powder, and the firing temperature is 1350 to 1500. In the case of ° C., the firing time is 1 to 20 hours. If the firing time is short, sintering does not proceed sufficiently and the pores become open pores, which is not preferable. If the firing time is too long, the sintering proceeds too much and the pores become smaller, so that the light shielding property of infrared light is reduced, the amount of cristobalite contained in the fired body is increased, and the phase of the cristobalite from the high temperature type to the low temperature type is increased. Due to the volume shrinkage accompanying the transition, cracks may occur in the fired body, which is not preferable.

造孔剤の消失のための加熱は造孔剤が消失する雰囲気で行われ、例えば造孔剤として黒鉛粉末やアモルファスカーボンを用いる場合は、酸素が存在する雰囲気下で行われる。   Heating for disappearance of the pore forming agent is performed in an atmosphere in which the pore forming agent disappears. For example, when graphite powder or amorphous carbon is used as the pore forming agent, it is performed in an atmosphere in which oxygen is present.

閉気孔化のための焼成の雰囲気は特に限定されず、大気雰囲気下で行うことができる。   The atmosphere for firing for closed pore formation is not particularly limited, and can be performed in an air atmosphere.

本発明により形成された不透明石英ガラスは、熱遮断性能に優れることから、熱処理装置用部材、半導体製造装置用部材、FPD製造装置用部材、太陽電池製造装置用部材、LED製造装置用部材、MEMS製造装置用部材、光学部材などに利用することができる。具体的には、フランジ、断熱フィン、炉芯管、均熱管、薬液精製筒等の構成材料、シリコン溶融用ルツボ等の構成材料などが挙げられる。   The opaque quartz glass formed according to the present invention is excellent in heat shielding performance, so that it is a member for a heat treatment device, a member for a semiconductor manufacturing device, a member for an FPD manufacturing device, a member for a solar cell manufacturing device, a member for an LED manufacturing device, a MEMS, It can utilize for the member for manufacturing apparatuses, an optical member, etc. Specific examples include constituent materials such as flanges, heat insulating fins, furnace core tubes, soaking tubes, chemical solution refining cylinders, and other constituent materials such as silicon melting crucibles.

上記のような部材は、不透明石英ガラス単独で使用してもよいし、不透明石英ガラスの表面に透明石英ガラス層を付与して使用してもよい。透明石英ガラス層は、不透明石英ガラスをシール性の要求される用途に使用する場合に、不透明石英ガラス中に含まれている気孔がシール面に露出しパッキンを使用しても完全なシールをすることが困難であることを考慮して付与される。また、不透明石英ガラスを各種用途で使用する中で随時行われる洗浄工程において、その最表面に露出している気孔が削られ、不透明石英ガラスの表面の一部が脱落し、パーティクルの発生の原因となる場合がある。これを防止する目的でも透明石英ガラス層は付与される。   The member as described above may be used alone by the opaque quartz glass, or may be used by providing a transparent quartz glass layer on the surface of the opaque quartz glass. The transparent quartz glass layer provides perfect sealing even when opaque quartz glass is used for applications that require sealing properties, and the pores contained in the opaque quartz glass are exposed on the sealing surface and packing is used. It is given considering that it is difficult. In addition, in the cleaning process that is performed as needed while using opaque quartz glass in various applications, the pores exposed on the outermost surface are scraped, and part of the surface of the opaque quartz glass falls off, causing the generation of particles. It may become. For the purpose of preventing this, a transparent quartz glass layer is provided.

不透明石英ガラスへの透明石英ガラス層の付与の方法は特に限定されず、不透明ガラスの表面を酸水素炎で溶融して透明石英ガラスとする方法、不透明石英ガラスと透明石英ガラスとを酸水素炎や電気炉で加熱して貼り合わせる手法、不透明石英ガラスとなる非晶質シリカ粉末と造孔剤の混合粉末と透明石英ガラスとなる非晶質シリカ粉末とを所望のガラスにおける透明部及び不透明部の位置に対応させて成形し焼成する方法などがある。   The method of applying the transparent quartz glass layer to the opaque quartz glass is not particularly limited. The method of melting the surface of the opaque glass with an oxyhydrogen flame to form the transparent quartz glass, and the opaque quartz glass and the transparent quartz glass to the oxyhydrogen flame. Heating and bonding with an electric furnace, an amorphous silica powder that becomes opaque quartz glass, a mixed powder of a pore-forming agent, and an amorphous silica powder that becomes transparent quartz glass. There is a method of forming and firing in accordance with the position of the above.

本発明の不透明石英ガラスは、熱遮断性に優れるため、特に半導体製造分野で使用される各種の炉芯管、治具類及びベルジャー等の容器類、例えば、シリコンウェーハ処理用の炉芯管やそのフランジ部、断熱フィン、薬液精製筒及びシリコン溶解用ルツボ等の構成材料として利用できる。   Since the opaque quartz glass of the present invention is excellent in heat shielding properties, various furnace core tubes, jigs, and containers such as bell jars used particularly in the field of semiconductor manufacturing, such as furnace core tubes for silicon wafer processing, It can be used as a constituent material for the flange portion, heat insulating fins, chemical solution purification cylinder, silicon melting crucible and the like.

実施例1で作製した不透明石英ガラスの赤外スペクトルである。2 is an infrared spectrum of the opaque quartz glass produced in Example 1. 実施例2で作製した不透明石英ガラスの赤外スペクトルである。2 is an infrared spectrum of the opaque quartz glass produced in Example 2. 実施例3で作製した不透明石英ガラスの赤外スペクトルである。4 is an infrared spectrum of the opaque quartz glass produced in Example 3. 実施例4で作製した不透明石英ガラスの赤外スペクトルである。It is an infrared spectrum of the opaque quartz glass produced in Example 4. 実施例5で作製した不透明石英ガラスの赤外スペクトルである。It is an infrared spectrum of the opaque quartz glass produced in Example 5. 実施例6で作製した不透明石英ガラスの赤外スペクトルである。It is an infrared spectrum of the opaque quartz glass produced in Example 6. 実施例7で作製した不透明石英ガラスの赤外スペクトルである。It is an infrared spectrum of the opaque quartz glass produced in Example 7. 実施例8で作製した不透明石英ガラスの赤外スペクトルである。It is an infrared spectrum of the opaque quartz glass produced in Example 8. 比較例1で作製した不透明石英ガラスの赤外スペクトルである。2 is an infrared spectrum of an opaque quartz glass produced in Comparative Example 1. 比較例2で作製した不透明石英ガラスの赤外スペクトルである。4 is an infrared spectrum of the opaque quartz glass produced in Comparative Example 2. 比較例3で作製した不透明石英ガラスの赤外スペクトルである。4 is an infrared spectrum of an opaque quartz glass produced in Comparative Example 3. 比較例4で作製した不透明石英ガラスの赤外スペクトルである。It is an infrared spectrum of the opaque quartz glass produced in Comparative Example 4. 比較例5で作製した不透明石英ガラスの赤外スペクトルである。It is an infrared spectrum of the opaque quartz glass produced in Comparative Example 5. 比較例6で作製した不透明石英ガラスの赤外スペクトルである。It is an infrared spectrum of the opaque quartz glass produced in the comparative example 6. 実施例1〜8、比較例2〜4で作製した不透明石英ガラスの吸水率と波長4μmにおける透過率の関係を示す図である。It is a figure which shows the relationship between the water absorption of the opaque quartz glass produced in Examples 1-8 and Comparative Examples 2-4, and the transmittance | permeability in wavelength 4micrometer.

以下に実施例によって本発明を具体的に説明するが、本発明は係る実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to such examples.

非晶質シリカ粉末の平均粒径はレーザー回折式粒度分布測定装置((株)島津製作所製、商品名「SALD−7100」)を用いて測定されるメディアン径(D50)の値を用いた。   As the average particle size of the amorphous silica powder, the median diameter (D50) value measured using a laser diffraction particle size distribution analyzer (trade name “SALD-7100” manufactured by Shimadzu Corporation) was used.

造孔剤粉末のアスペクト比は、粉末の長軸径と短軸径を光学顕微鏡により観察し、(長軸径/短軸径)により求めた。   The aspect ratio of the pore former powder was determined by (major axis diameter / minor axis diameter) by observing the major axis diameter and minor axis diameter of the powder with an optical microscope.

不透明石英ガラスの赤外スペクトルはFTIR装置((株)島津製作所製、商品名「IRPrestige−21」)を用いて測定した。測定試料は、平面研削により加工し、140番ダイヤモンド砥石仕上げ、厚さ1mmとした。   The infrared spectrum of the opaque quartz glass was measured using an FTIR apparatus (manufactured by Shimadzu Corporation, trade name “IR Prestige-21”). The measurement sample was processed by surface grinding and finished with a No. 140 diamond grinding wheel with a thickness of 1 mm.

不透明石英ガラスの密度および吸水率は次の方法で測定した。まず試料を乾燥した後、質量W1を測定する。次に試料を水中に保って2時間煮沸したのち放冷により常温に戻し、この試料の水中での質量W2を測定する。次に試料に撥水性の有機溶剤を塗布し、乾燥した後、この試料の水中での質量W3を測定する。密度および吸水率をW1、W2、W3から次式で求める。   The density and water absorption of the opaque quartz glass were measured by the following methods. First, after the sample is dried, the mass W1 is measured. Next, the sample is kept in water and boiled for 2 hours, then allowed to cool to room temperature, and the mass W2 of this sample in water is measured. Next, after applying a water-repellent organic solvent to the sample and drying, the mass W3 of the sample in water is measured. The density and water absorption are obtained from the following equations from W1, W2, and W3.

密度=W1/((W1−W3)/ρ)
吸水率(%)=((W2−W3)/W1)×100
ここでρは測定時の水温での水の密度である。
Density = W1 / ((W1-W3) / ρ)
Water absorption rate (%) = ((W2-W3) / W1) × 100
Here, ρ is the density of water at the water temperature at the time of measurement.

不透明石英ガラスの平均気孔径は不透明石英ガラスの切断面を光学研磨し、光学顕微鏡像を画像解析して算出した。画像解析にはImageJ1.47v(National Institutes of Health)を用い、光学顕微鏡像に写る気孔の平均面積を求め、この平均面積から気孔を円径と仮定した場合の気孔径を求め、これを平均気孔径とした。   The average pore diameter of the opaque quartz glass was calculated by optically polishing the cut surface of the opaque quartz glass and analyzing the optical microscope image. ImageJ1.47v (National Institutes of Health) was used for image analysis, the average area of the pores shown in the optical microscope image was obtained, and the pore diameter when the pores were assumed to be a circular diameter was obtained from this average area, and this was calculated as the average pore size. The pore size was used.

不透明石英ガラスに含有する金属およびアルカリ、アルカリ土類元素の不純物量はICP発光分光分析装置(セイコーインスツルメンツ(株)製、商品名「Vista−PRO」)を用いて分析した。   Impurity amounts of metals, alkalis and alkaline earth elements contained in the opaque quartz glass were analyzed using an ICP emission spectroscopic analyzer (trade name “Vista-PRO” manufactured by Seiko Instruments Inc.).

(実施例1)
原料粉末として平均粒径が6μmの合成非晶質シリカ粉末を選定した。
Example 1
A synthetic amorphous silica powder having an average particle size of 6 μm was selected as the raw material powder.

造孔剤粉末として、平均粒径18μm、アスペクト比1.5、Na、K、Ca、Cr、Fe、Tiの濃度が0.1ppm以下の球状黒鉛粉末を選定した。   Spherical graphite powder having an average particle size of 18 μm, an aspect ratio of 1.5, and a concentration of Na, K, Ca, Cr, Fe, and Ti of 0.1 ppm or less was selected as the pore former powder.

合成非晶質シリカ粉末に黒鉛粉末を添加し、ポットミルで3時間混合した。黒鉛粉末の添加量は、非晶質シリカ粉末との体積比で0.16であった。   Graphite powder was added to the synthetic amorphous silica powder and mixed for 3 hours in a pot mill. The amount of graphite powder added was 0.16 in volume ratio with the amorphous silica powder.

発泡スチロール製の型に混合粉末を充填し、発泡スチロール型全体をポリスチレン製袋で減圧封入し、圧力は200MPa、保持時間は1分間の条件でCIP成形した。   The mixed powder was filled in a foam polystyrene mold, and the whole foam polystyrene mold was sealed under reduced pressure in a polystyrene bag, and CIP molding was performed under the conditions of a pressure of 200 MPa and a holding time of 1 minute.

CIP成形後の直径170mm、厚み85mmの円柱状成形体を、炉床昇降式抵抗加熱電気炉((株)広築製)にて、大気雰囲気下で、室温から650℃までは100℃/時、650℃から800℃まで50℃/時、800℃で72時間保持、800℃から最高焼成温度1425℃までは50℃/時で昇温し、最高焼成温度1425℃で2時間保持して焼成した。100℃/時で50℃まで降温し、その後炉冷し不透明石英ガラスを得た。   A cylindrical molded body having a diameter of 170 mm and a thickness of 85 mm after CIP molding is heated to 100 ° C./hour from room temperature to 650 ° C. in a furnace floor raising and lowering resistance heating electric furnace (manufactured by Hiroki Co., Ltd.). From 650 ° C. to 800 ° C., 50 ° C./hour, held at 800 ° C. for 72 hours, from 800 ° C. to the maximum firing temperature of 1425 ° C., heated at 50 ° C./hour, held at the maximum firing temperature of 1425 ° C. for 2 hours and fired did. The temperature was lowered to 50 ° C. at 100 ° C./hour and then cooled in the furnace to obtain opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、平均気孔径、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, average pore diameter, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図1に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%以下である。   FIG. 1 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less.

表2に不透明石英ガラスに含まれる不純物濃度を示す。測定した各種アルカリ金属、アルカリ土類金属、金属元素濃度は1ppm以下であった。   Table 2 shows the concentration of impurities contained in the opaque quartz glass. The measured concentrations of various alkali metals, alkaline earth metals, and metal elements were 1 ppm or less.

(実施例2)
実施例1と同様の原料粉末と造孔剤を選定し、実施例1と同様の手順で直径170mm、厚み85mmの円柱状成形体を得た。
(Example 2)
The same raw material powder and pore former as those in Example 1 were selected, and a cylindrical molded body having a diameter of 170 mm and a thickness of 85 mm was obtained in the same procedure as in Example 1.

得られた成形体を最高焼成温度1425℃で4時間保持した以外は実施例1と同様の焼成条件で焼成を行い、不透明石英ガラスを得た。   The obtained molded body was fired under the same firing conditions as in Example 1 except that it was held at a maximum firing temperature of 1425 ° C. for 4 hours to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、平均気孔径、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, average pore diameter, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図2に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%以下である。   FIG. 2 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less.

(実施例3)
実施例1と同様の原料粉末と造孔剤を選定し、実施例1と同様の手順で直径60mm、厚み20mmの半円柱状成形体を得た。
(Example 3)
The same raw material powder and pore former as in Example 1 were selected, and a semi-cylindrical shaped body having a diameter of 60 mm and a thickness of 20 mm was obtained in the same procedure as in Example 1.

得られた成形体を、シリコニット電気炉(シリコニット高熱工業(株)製)にて、大気雰囲気下、室温から700℃までは5℃/分、700℃以上から最高焼成温度1450℃までは1℃/分で昇温し、最高焼成温度1450℃で6時間保持して焼成した。5℃/分で1000℃まで降温し、その後炉冷し不透明石英ガラスを得た。   The resulting molded body was subjected to 5 ° C./minute from room temperature to 700 ° C. in an air atmosphere and 1 ° C. from 700 ° C. to the maximum firing temperature of 1450 ° C. in a siliconit electric furnace (manufactured by Silicone Knit Corporation). The temperature was raised at a rate of 1 minute, and firing was performed at a maximum firing temperature of 1450 ° C. for 6 hours. The temperature was lowered to 1000 ° C. at 5 ° C./min, and then cooled in a furnace to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、平均気孔径、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, average pore diameter, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図3に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%以下である。   FIG. 3 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less.

(実施例4)
実施例1と同様の原料粉末と造孔剤を選定し、実施例1と同様の手順で直径60mm、厚み20mmの半円柱状成形体を得た。
Example 4
The same raw material powder and pore former as in Example 1 were selected, and a semi-cylindrical shaped body having a diameter of 60 mm and a thickness of 20 mm was obtained in the same procedure as in Example 1.

得られた成形体を最高焼成温度1450℃で10時間保持した以外は実施例3と同様の焼成条件で焼成を行い、不透明石英ガラスを得た。   The obtained molded body was fired under the same firing conditions as in Example 3 except that it was held at a maximum firing temperature of 1450 ° C. for 10 hours to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、平均気孔径、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, average pore diameter, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図4に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%以下である。   FIG. 4 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less.

(実施例5)
実施例1と同様の原料粉末を選定し、造孔剤として平均粒径15μm、アスペクト比1.0の球状アモルファスカーボン粉末を選定した。
(Example 5)
The same raw material powder as in Example 1 was selected, and a spherical amorphous carbon powder having an average particle size of 15 μm and an aspect ratio of 1.0 was selected as a pore forming agent.

合成非晶質シリカ粉末にアモルファスカーボン粉末を添加し、ロッキングミキサーで3時間混合した。アモルファスカーボン粉末の添加量は、非晶質シリカ粉末との体積比で0.16であった。   Amorphous carbon powder was added to the synthetic amorphous silica powder and mixed for 3 hours with a rocking mixer. The amount of amorphous carbon powder added was 0.16 in volume ratio with the amorphous silica powder.

混合粉末を実施例1と同様の方法でCIP成形した。   The mixed powder was CIP molded in the same manner as in Example 1.

CIP成形後の直径60mm、厚み20mmの半円柱状成形体を、シリコニット電気炉(シリコニット高熱工業(株)製)にて、大気雰囲気下で、室温から650℃までは5℃/分、650から850℃までは1℃/分、850℃以上から最高焼成温度1425℃までは5℃/分で昇温し、最高焼成温度1425℃で8時間保持して焼成した。5℃/分で1000℃まで降温し、その後炉冷し不透明石英ガラスを得た。   After the CIP molding, a semi-cylindrical molded body having a diameter of 60 mm and a thickness of 20 mm was subjected to a temperature of 5 ° C./minute from 650 ° C. to 650 ° C. in an air atmosphere in a siliconit electric furnace (manufactured by Silicone Knit Corporation) The temperature was raised to 1 ° C./min up to 850 ° C., the temperature was increased from 850 ° C. to the maximum firing temperature of 1425 ° C. at 5 ° C./min, and the firing was carried out at the maximum firing temperature of 1425 ° C. for 8 hours. The temperature was lowered to 1000 ° C. at 5 ° C./min, and then cooled in a furnace to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、平均気孔径、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, average pore diameter, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図5に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%以下である。   FIG. 5 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less.

(実施例6)
実施例5と同様の原料粉末と造孔剤を選定し、実施例5と同様の手順で直径60mm、厚み20mmの半円柱状成形体を得た。
(Example 6)
The same raw material powder and pore former as those in Example 5 were selected, and a semi-cylindrical molded body having a diameter of 60 mm and a thickness of 20 mm was obtained in the same procedure as in Example 5.

得られた成形体を最高焼成温度1450℃で6時間保持した以外は実施例5と同様の焼成条件で焼成を行い、不透明石英ガラスを得た。   The resulting molded body was fired under the same firing conditions as in Example 5 except that it was held at the maximum firing temperature of 1450 ° C. for 6 hours to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、平均気孔径、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, average pore diameter, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図6に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%以下である。   FIG. 6 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less.

(実施例7)
実施例5と同様の原料粉末と造孔剤を選定し、実施例5と同様の手順で直径60mm、厚み20mmの半円柱状成形体を得た。
(Example 7)
The same raw material powder and pore former as those in Example 5 were selected, and a semi-cylindrical molded body having a diameter of 60 mm and a thickness of 20 mm was obtained in the same procedure as in Example 5.

得られた成形体を最高焼成温度1450℃で10時間保持した以外は実施例5と同様の焼成条件で焼成を行い、不透明石英ガラスを得た。   The obtained molded body was fired under the same firing conditions as in Example 5 except that it was held at a maximum firing temperature of 1450 ° C. for 10 hours to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、平均気孔径、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, average pore diameter, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図7に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%以下である。   FIG. 7 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less.

(実施例8)
実施例5と同様の原料粉末と造孔剤を選定し、アモルファスカーボン粉末の添加量を非晶質シリカ粉末との体積比で0.13に変更した以外は、実施例5と同様の手順で直径60mm、厚み20mmの半円柱状成形体を得た。
(Example 8)
The same raw material powder and pore former as in Example 5 were selected, and the same procedure as in Example 5 was followed, except that the amount of amorphous carbon powder added was changed to 0.13 by volume ratio with amorphous silica powder. A semi-cylindrical shaped body having a diameter of 60 mm and a thickness of 20 mm was obtained.

得られた成形体を最高焼成温度1450℃で8時間保持した以外は実施例5と同様の焼成条件で焼成を行い、不透明石英ガラスを得た。   The resulting molded body was fired under the same firing conditions as in Example 5 except that it was held at a maximum firing temperature of 1450 ° C. for 8 hours to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、平均気孔径、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, average pore diameter, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図8に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%以下である。   FIG. 8 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less.

(比較例1)
実施例1と同様の原料粉末のみを実施例1と同様の方法でCIP成形し、直径60mm、厚み20mmの円柱状成形体を得た。
(Comparative Example 1)
Only the same raw material powder as in Example 1 was CIP-molded by the same method as in Example 1 to obtain a cylindrical molded body having a diameter of 60 mm and a thickness of 20 mm.

得られた成形体を、抵抗加熱式真空加圧焼成炉(富士電波工業(株)製)にて、1気圧窒素雰囲気下で、室温から1000℃までは5℃/分、1000℃以上から最高焼成温度1350℃までは1℃/分で昇温し、最高焼成温度1350℃で10時間保持して焼成した。その後に5℃/分で1000℃まで降温し、その後炉冷し不透明石英ガラスを得た。   The obtained molded body was heated in a resistance heating type vacuum pressure firing furnace (manufactured by Fuji Denpa Kogyo Co., Ltd.) in a 1 atmosphere nitrogen atmosphere, from room temperature to 1000 ° C., 5 ° C./min, from 1000 ° C. to the highest The temperature was raised at a rate of 1 ° C./min up to a firing temperature of 1350 ° C., and the firing was carried out at the maximum firing temperature of 1350 ° C. for 10 hours. Thereafter, the temperature was lowered to 1000 ° C. at 5 ° C./min, and then cooled in a furnace to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図9に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%以下であるが、焼結が不十分であるため吸水率が高い。   FIG. 9 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less, but the water absorption is high due to insufficient sintering.

(比較例2)
比較例1と同様の原料粉末を選定し、比較例1と同様の手順で直径60mm、厚み20mmの円柱状成形体を得た。
(Comparative Example 2)
The same raw material powder as in Comparative Example 1 was selected, and a cylindrical shaped body having a diameter of 60 mm and a thickness of 20 mm was obtained in the same procedure as in Comparative Example 1.

得られた成形体を最高焼成温度1350℃で15時間保持した以外は比較例1と同様の焼成条件で焼成を行い、不透明石英ガラスを得た。   The resulting molded body was fired under the same firing conditions as in Comparative Example 1 except that it was held at a maximum firing temperature of 1350 ° C. for 15 hours to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、平均気孔径、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, average pore diameter, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図10に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmのうち3から5μmにおける直線透過率が1%より大きい。平均気孔径が小さいために長波長の赤外光の透過率が高かった。   FIG. 10 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at 3 to 5 μm out of the wavelength of 1.5 μm to 5 μm is larger than 1%. Since the average pore diameter was small, the transmittance of long-wavelength infrared light was high.

(比較例3)
比較例1と同様の原料粉末を選定し、比較例1と同様の手順で直径60mm、厚み20mmの円柱状成形体を得た。
(Comparative Example 3)
The same raw material powder as in Comparative Example 1 was selected, and a cylindrical shaped body having a diameter of 60 mm and a thickness of 20 mm was obtained in the same procedure as in Comparative Example 1.

得られた成形体を最高焼成温度1400℃で3時間保持した以外は比較例1と同様の焼成条件で焼成を行い、不透明石英ガラスを得た。   The resulting molded body was fired under the same firing conditions as in Comparative Example 1 except that the molded body was held at a maximum firing temperature of 1400 ° C. for 3 hours to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図11に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%以下であるが、焼結が不十分であるため吸水率が高い。   FIG. 11 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less, but the water absorption is high due to insufficient sintering.

(比較例4)
比較例1と同様の原料粉末を選定し、比較例1と同様の手順で直径60mm、厚み20mmの円柱状成形体を得た。
(Comparative Example 4)
The same raw material powder as in Comparative Example 1 was selected, and a cylindrical shaped body having a diameter of 60 mm and a thickness of 20 mm was obtained in the same procedure as in Comparative Example 1.

得られた成形体を最高焼成温度1400℃で4時間保持した以外は比較例1と同様の焼成条件で焼成を行い、不透明石英ガラスを得た。   The resulting molded body was fired under the same firing conditions as in Comparative Example 1 except that the molded body was held at a maximum firing temperature of 1400 ° C. for 4 hours to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、平均気孔径、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, average pore diameter, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図12に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmのうち2.5μmから5μmにおける直線透過率が1%より大きい。平均気孔径が小さいために長波長の赤外光の透過率が高かった。   FIG. 12 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at 2.5 μm to 5 μm out of the wavelength of 1.5 μm to 5 μm is larger than 1%. Since the average pore diameter was small, the transmittance of long-wavelength infrared light was high.

(比較例5)
実施例5と同様の原料粉末と造孔剤を選定し、アモルファスカーボン粉末の添加量を非晶質シリカ粉末との体積比で0.02に変更した以外は、実施例5と同様の手順で直径60mm、厚み20mmの半円柱状成形体を得た。
(Comparative Example 5)
The same raw material powder and pore former as in Example 5 were selected, and the same procedure as in Example 5 was followed, except that the amount of amorphous carbon powder added was changed to 0.02 by volume ratio with amorphous silica powder. A semi-cylindrical shaped body having a diameter of 60 mm and a thickness of 20 mm was obtained.

得られた成形体を最高焼成温度1450℃で6時間保持した以外は実施例5と同様の焼成条件で焼成を行い、不透明石英ガラスを得た。   The resulting molded body was fired under the same firing conditions as in Example 5 except that it was held at the maximum firing temperature of 1450 ° C. for 6 hours to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、平均気孔径、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, average pore diameter, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図13に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%より大きい。造孔剤の添加量が少ないために透過率が高かった。   FIG. 13 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at wavelengths from 1.5 μm to 5 μm is greater than 1%. The transmittance was high due to the small amount of pore-forming agent added.

(比較例6)
水晶粉末に粒径1〜10μmの窒化ケイ素粉末を0.2wt%混合し、酸水素火炎溶融法により溶融し、不透明石英ガラスを得た。
(Comparative Example 6)
The quartz powder was mixed with 0.2 wt% of silicon nitride powder having a particle diameter of 1 to 10 μm and melted by an oxyhydrogen flame melting method to obtain an opaque quartz glass.

得られた不透明石英ガラスの密度、吸水率、平均気孔径、波長2μmおよび4μmにおける透過率を表1に示す。   Table 1 shows the density, water absorption, average pore diameter, and transmittance at wavelengths of 2 μm and 4 μm of the obtained opaque quartz glass.

図14に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%より大きい。平均気孔径が大きいために透過率が高かった。   FIG. 14 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at wavelengths from 1.5 μm to 5 μm is greater than 1%. The transmittance was high due to the large average pore diameter.

Figure 2015151320
Figure 2015151320

Figure 2015151320
吸水率と波長4μmの透過率の関係について、実施例1〜8を▲印、比較例2〜4を●印でプロットしたものを図15に示す。造孔剤を添加して作製した不透明石英ガラスは、非晶質シリカ粉のみで作製した不透明石英ガラスに比べて、低透過率、低吸水率を達成していることがわかる。
Figure 2015151320
FIG. 15 shows the relationship between the water absorption rate and the transmittance at a wavelength of 4 μm, in which Examples 1 to 8 are plotted with ▲, and Comparative Examples 2 to 4 are plotted with ●. It can be seen that the opaque quartz glass produced by adding the pore-forming agent achieves low transmittance and low water absorption compared to the opaque quartz glass produced using only amorphous silica powder.

熱遮断効果が高い不透明石英ガラスおよびその製造方法であり、半導体製造装置用部材などに好適に用いることができる。   It is an opaque quartz glass having a high heat-blocking effect and a method for producing the same, and can be suitably used for a member for a semiconductor manufacturing apparatus.

Claims (18)

密度が1.95g/cm以上2.15g/cm以下であり、平均気孔径が5〜20μmであり、試料厚さ1mmのときの波長1.5μmから5μmにおける直線透過率が1%以下であり、吸水率が0.1wt%以下であることを特徴とする不透明石英ガラス。 The density is 1.95 g / cm 3 or more and 2.15 g / cm 3 or less, the average pore diameter is 5 to 20 μm, and the linear transmittance at a wavelength of 1.5 μm to 5 μm when the sample thickness is 1 mm is 1% or less. An opaque quartz glass having a water absorption of 0.1 wt% or less. 密度が1.97g/cm以上2.08g/cm未満であることを特徴とする請求項1に記載の不透明石英ガラス。 Opaque quartz glass according to claim 1 having a density and less than 1.97 g / cm 3 or more 2.08 g / cm 3. 平均気孔径が9〜15μmであることを特徴とする請求項1または2に記載の不透明石英ガラス。   3. The opaque quartz glass according to claim 1, wherein an average pore diameter is 9 to 15 μm. 非晶質シリカ粉末に、造孔剤粉末が非晶質シリカ粉末との体積比で0.04以上となるように混合し、前記混合粉末を乾式プレスによって成形し、造孔剤が消失する温度で加熱して造孔剤を除去した後、シリカ粉末の焼結が進行する温度で焼結体に含まれる気孔が閉気孔となるまで焼結させることを特徴とする請求項1〜3のいずれかに記載の不透明石英ガラスを製造する方法。   A temperature at which the pore forming agent powder is mixed with the amorphous silica powder so that the volume ratio of the pore forming agent to the amorphous silica powder is 0.04 or more, and the mixed powder is molded by a dry press, and the pore forming agent disappears. After the pore-forming agent is removed by heating at a temperature, sintering is performed until the pores contained in the sintered body become closed pores at a temperature at which the sintering of the silica powder proceeds. A method for producing the opaque quartz glass according to claim 1. 加熱の雰囲気が大気雰囲気下であることを特徴とする請求項4に記載の不透明石英ガラスを製造する方法。   The method for producing opaque quartz glass according to claim 4, wherein the heating atmosphere is an air atmosphere. 非晶質シリカ粉末の平均粒径が20μm以下であることを特徴とする請求項4または5に記載の不透明石英ガラスを製造する方法。   The method for producing an opaque quartz glass according to claim 4 or 5, wherein the amorphous silica powder has an average particle size of 20 µm or less. 前記造孔剤粉末が平均粒径5〜40μmの黒鉛粉末であり、造孔剤粉末の添加量が、非晶質シリカ粉末との体積比で0.04〜0.35であることを特徴とする請求項4〜6のいずれかに記載の不透明石英ガラスを製造する方法。   The pore former powder is graphite powder having an average particle size of 5 to 40 μm, and the addition amount of the pore former powder is 0.04 to 0.35 in a volume ratio with the amorphous silica powder. A method for producing the opaque quartz glass according to any one of claims 4 to 6. 前記造孔剤粉末が平均粒径5〜40μmのアモルファスカーボン粉末であり、造孔剤粉末の添加量が、非晶質シリカ粉末との体積比で0.04〜0.35であることを特徴とする請求項4〜6のいずれかに記載の不透明石英ガラスを製造する方法。   The pore former powder is an amorphous carbon powder having an average particle diameter of 5 to 40 μm, and the addition amount of the pore former powder is 0.04 to 0.35 in a volume ratio with the amorphous silica powder. A method for producing the opaque quartz glass according to any one of claims 4 to 6. 前記造孔剤粉末が平均粒径9〜30μmであることを特徴とする請求項4〜8のいずれかに記載の不透明石英ガラスを製造する方法。   The method for producing an opaque quartz glass according to any one of claims 4 to 8, wherein the pore former powder has an average particle size of 9 to 30 µm. 前記造孔剤粉末がアスペクト比3.0以下の球状粉末であることを特徴とする請求項4〜9のいずれかに記載の不透明石英ガラスを製造する方法。   The method for producing an opaque quartz glass according to any one of claims 4 to 9, wherein the pore former powder is a spherical powder having an aspect ratio of 3.0 or less. 請求項1〜3のいずれかに記載の不透明石英ガラスの表面に透明石英ガラス層を有していることを特徴とする石英ガラス。   A quartz glass having a transparent quartz glass layer on the surface of the opaque quartz glass according to claim 1. 請求項1〜3のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とする熱処理装置用部材。   A member for a heat treatment apparatus, wherein the opaque quartz glass according to any one of claims 1 to 3 is partially or entirely formed. 請求項1〜3のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とする半導体製造装置用部材。   A member for a semiconductor manufacturing apparatus, wherein the opaque quartz glass according to claim 1 is partially or entirely formed. 請求項1〜3のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とするFPD製造装置用部材。   A member for an FPD manufacturing apparatus, part or all of which is formed of the opaque quartz glass according to claim 1. 請求項1〜3のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とする太陽電池製造装置用部材。   A member for a solar cell manufacturing apparatus, wherein the opaque quartz glass according to any one of claims 1 to 3 is partially or entirely formed. 請求項1〜3のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とするLED製造装置用部材。   A part or the whole is formed of the opaque quartz glass according to claim 1. 請求項1〜3のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とするMEMS製造装置用部材。   A member for a MEMS manufacturing apparatus, part or all of which is formed of the opaque quartz glass according to claim 1. 請求項1〜3のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とする光学部材。   An optical member characterized in that a part or all of the opaque quartz glass according to claim 1 is formed.
JP2014027910A 2014-02-17 2014-02-17 Opaque quartz glass and method for producing the same Active JP6379508B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014027910A JP6379508B2 (en) 2014-02-17 2014-02-17 Opaque quartz glass and method for producing the same
TW104104937A TWI652240B (en) 2014-02-17 2015-02-13 Opaque quartz glass and method of manufacturing same
PCT/JP2015/054129 WO2015122517A1 (en) 2014-02-17 2015-02-16 Opaque quartz glass and method for producing same
US15/118,368 US10005693B2 (en) 2014-02-17 2015-02-16 Opaque quartz glass and method for its production
CN201580009038.8A CN106029586B (en) 2014-02-17 2015-02-16 Opaque silica glass and its manufacturing method
KR1020167023083A KR102246056B1 (en) 2014-02-17 2015-02-16 Opaque quartz glass and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014027910A JP6379508B2 (en) 2014-02-17 2014-02-17 Opaque quartz glass and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015151320A true JP2015151320A (en) 2015-08-24
JP6379508B2 JP6379508B2 (en) 2018-08-29

Family

ID=53893957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014027910A Active JP6379508B2 (en) 2014-02-17 2014-02-17 Opaque quartz glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP6379508B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170349161A1 (en) * 2016-06-07 2017-12-07 Lenovo (Singapore) Pte. Ltd. Managing battery and engine power to propel vehicle based on upcoming road feature
JP6399372B1 (en) * 2017-10-30 2018-10-03 株式会社Ecp Wafer cleaning apparatus and wafer cleaning method
CN109020233A (en) * 2017-06-09 2018-12-18 河北卓达建材研究院有限公司 A method of reducing coloured foam class density
JP2020027919A (en) * 2018-08-17 2020-02-20 東京応化工業株式会社 Substrate heating device and substrate processing system
CN117341330A (en) * 2023-12-05 2024-01-05 上海强华实业股份有限公司 Batch processing method and processing device for sandwich fins of semiconductor diffusion furnace

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912325A (en) * 1995-06-29 1997-01-14 Nitto Chem Ind Co Ltd High-purity opaque quartz glass and its production as well as its application
JPH10152332A (en) * 1996-07-04 1998-06-09 Tosoh Corp Opaque silica glass and production thereof
JPH10203839A (en) * 1997-01-21 1998-08-04 Tosoh Corp Opaque silica glass containing fine bubble and its production
JPH11199252A (en) * 1998-01-07 1999-07-27 Sumikin Sekiei Kk Opaque quartz glass
JP2000504668A (en) * 1996-02-15 2000-04-18 ティーエスエル グループ パブリック リミティド カンパニー Opaque quartz glass product and manufacturing method
JP2001180955A (en) * 1999-12-22 2001-07-03 Shinetsu Quartz Prod Co Ltd Manufacturing method for opaque quartz glass
JP2005139018A (en) * 2003-11-05 2005-06-02 Tosoh Corp Opaque silica glass molding and method for producing the same
WO2008069194A1 (en) * 2006-12-05 2008-06-12 Shin-Etsu Quartz Products Co., Ltd. Synthetic opaque quartz glass and process for production thereof
US20130085056A1 (en) * 2010-06-02 2013-04-04 Qsil Gmbh Quarzschmelze Ilmenau Quartz glass body and a method and gel body for producing a quartz glass body
JP2014091634A (en) * 2012-10-31 2014-05-19 Tosoh Corp Opaque quartz glass and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912325A (en) * 1995-06-29 1997-01-14 Nitto Chem Ind Co Ltd High-purity opaque quartz glass and its production as well as its application
JP2000504668A (en) * 1996-02-15 2000-04-18 ティーエスエル グループ パブリック リミティド カンパニー Opaque quartz glass product and manufacturing method
JPH10152332A (en) * 1996-07-04 1998-06-09 Tosoh Corp Opaque silica glass and production thereof
JPH10203839A (en) * 1997-01-21 1998-08-04 Tosoh Corp Opaque silica glass containing fine bubble and its production
JPH11199252A (en) * 1998-01-07 1999-07-27 Sumikin Sekiei Kk Opaque quartz glass
JP2001180955A (en) * 1999-12-22 2001-07-03 Shinetsu Quartz Prod Co Ltd Manufacturing method for opaque quartz glass
JP2005139018A (en) * 2003-11-05 2005-06-02 Tosoh Corp Opaque silica glass molding and method for producing the same
WO2008069194A1 (en) * 2006-12-05 2008-06-12 Shin-Etsu Quartz Products Co., Ltd. Synthetic opaque quartz glass and process for production thereof
US20130085056A1 (en) * 2010-06-02 2013-04-04 Qsil Gmbh Quarzschmelze Ilmenau Quartz glass body and a method and gel body for producing a quartz glass body
JP2014091634A (en) * 2012-10-31 2014-05-19 Tosoh Corp Opaque quartz glass and method for manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170349161A1 (en) * 2016-06-07 2017-12-07 Lenovo (Singapore) Pte. Ltd. Managing battery and engine power to propel vehicle based on upcoming road feature
US10843680B2 (en) * 2016-06-07 2020-11-24 Lenovo (Singapore) Pte. Ltd. Managing battery and engine power to propel vehicle based on upcoming road feature
CN109020233A (en) * 2017-06-09 2018-12-18 河北卓达建材研究院有限公司 A method of reducing coloured foam class density
JP6399372B1 (en) * 2017-10-30 2018-10-03 株式会社Ecp Wafer cleaning apparatus and wafer cleaning method
KR20190049475A (en) * 2017-10-30 2019-05-09 가부시키가이샤 이씨피 Wafer cleaning apparatus and method for cleaning wafer
JP2019083302A (en) * 2017-10-30 2019-05-30 株式会社Ecp Wafer cleaning device and wafer cleaning method
KR102011303B1 (en) 2017-10-30 2019-08-16 가부시키가이샤 이씨피 Wafer cleaning apparatus and method for cleaning wafer
JP2020027919A (en) * 2018-08-17 2020-02-20 東京応化工業株式会社 Substrate heating device and substrate processing system
JP7178823B2 (en) 2018-08-17 2022-11-28 東京応化工業株式会社 Substrate heating device and substrate processing system
CN117341330A (en) * 2023-12-05 2024-01-05 上海强华实业股份有限公司 Batch processing method and processing device for sandwich fins of semiconductor diffusion furnace

Also Published As

Publication number Publication date
JP6379508B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
WO2015122517A1 (en) Opaque quartz glass and method for producing same
JP6379508B2 (en) Opaque quartz glass and method for producing the same
JP5314429B2 (en) Synthetic opaque quartz glass and method for producing the same
TWI794149B (en) Quartz glass grain, opaque formed body and process for preparing the same
KR101313647B1 (en) Silica Vessel and Process for Producing Same
KR101374545B1 (en) Silica powder, silica container, and method for producing the silica powder and container
KR101268483B1 (en) Silica Container and Method for Producing Same
Mouzon et al. Fabrication of transparent yttria by HIP and the glass-encapsulation method
TWI705045B (en) Method for producing a pore-containing opaque quartz glass
KR20160085314A (en) Composite material, heat-absorbing component, and method for producing the composite material
JP5462423B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JP2014091634A (en) Opaque quartz glass and method for manufacturing the same
JP2014088286A (en) Opaque quartz glass and production method thereof
EP3224213B1 (en) Doped silica-titania glass having low expansivity and methods of making the same
JP5635686B2 (en) Method for producing a quartz glass crucible having a transparent inner layer made of synthetic quartz glass
JP6273997B2 (en) Opaque quartz glass and method for producing the same
AU2012307424B2 (en) Solar radiation receiver having an entry window made of quartz glass and method for producing an entry window
JP6252257B2 (en) Opaque quartz glass and method for producing the same
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
JP2017154945A (en) Opaque quartz glass
JP6885002B2 (en) Opaque quartz glass
JP2006008452A (en) Manufacturing method for highly pure quartz glass
JP2017036155A (en) Opaque quartz glass material and manufacturing method thereof
JP4587350B2 (en) Method for producing translucent ceramic body
WO2023049228A1 (en) Opaque quartz and method of making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R151 Written notification of patent or utility model registration

Ref document number: 6379508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151