JP6273997B2 - Opaque quartz glass and method for producing the same - Google Patents

Opaque quartz glass and method for producing the same Download PDF

Info

Publication number
JP6273997B2
JP6273997B2 JP2014094127A JP2014094127A JP6273997B2 JP 6273997 B2 JP6273997 B2 JP 6273997B2 JP 2014094127 A JP2014094127 A JP 2014094127A JP 2014094127 A JP2014094127 A JP 2014094127A JP 6273997 B2 JP6273997 B2 JP 6273997B2
Authority
JP
Japan
Prior art keywords
quartz glass
opaque quartz
glass according
powder
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014094127A
Other languages
Japanese (ja)
Other versions
JP2015209372A (en
Inventor
聡里 平井
聡里 平井
修輔 山田
修輔 山田
一喜 新井
一喜 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54611860&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6273997(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014094127A priority Critical patent/JP6273997B2/en
Priority to TW104104937A priority patent/TWI652240B/en
Priority to PCT/JP2015/054129 priority patent/WO2015122517A1/en
Priority to KR1020167023083A priority patent/KR102246056B1/en
Priority to US15/118,368 priority patent/US10005693B2/en
Priority to CN201580009038.8A priority patent/CN106029586B/en
Publication of JP2015209372A publication Critical patent/JP2015209372A/en
Publication of JP6273997B2 publication Critical patent/JP6273997B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、吸水性がなく、赤外光の遮光性に優れる不透明石英ガラス及びその製造方法に関する。   The present invention relates to an opaque quartz glass that does not absorb water and has excellent light-shielding properties for infrared light, and a method for producing the same.

不透明石英ガラスは熱遮断性を要する用途に使用される。熱遮断性は赤外光の遮光性と関係があり、遮光性が高い不透明石英ガラスほど熱遮断性に優れている。   Opaque quartz glass is used for applications that require heat barrier properties. The heat shielding property is related to the infrared light shielding property, and the opaque quartz glass having a higher light shielding property is superior in the heat shielding property.

従来、不透明石英ガラスの製造方法としては、結晶質シリカまたは非晶質シリカに窒化珪素等の発泡剤を添加して溶融する方法(例えば、特許文献1〜3)などが知られている。しかしながら、このような製造方法で製造された不透明石英ガラスでは、発泡剤が気化して気孔を形成するため気孔の平均径が大きく、実用にたえる強度をもつものでは気孔の含有密度が低くなり、赤外光の遮光性が低下するという問題がある。   Conventionally, as a method for producing opaque quartz glass, a method in which a foaming agent such as silicon nitride is added to crystalline silica or amorphous silica and melted (for example, Patent Documents 1 to 3) is known. However, in the opaque quartz glass manufactured by such a manufacturing method, the foaming agent is vaporized to form pores, so that the average diameter of the pores is large, and those having strength that can be used practically have low pore content density. There is a problem that the light shielding property of infrared light is lowered.

一方、発泡剤を添加することなく、非晶質シリカ粉末の成形体をその溶融温度以下の温度で加熱し、完全に緻密化する前に熱処理を中断し、部分的に焼結する方法(例えば、特許文献4)も提案されている。このような製造方法で製造された不透明石英ガラスでは、気孔の平均径を小さくすることが可能であるが、気孔が閉気孔となるまで焼結させると気孔の含有密度が低くなり赤外光の遮光性が低下するという問題や、気孔の平均径が小さくなりすぎ長波長の赤外光の遮光性が低下するという問題がある。また、本方法では電気炉内の温度分布によって、不透明石英ガラスの焼結体内に密度分布が生じやすく、大型サイズで均質な不透明石英ガラスを得ることは難しいという問題もある。   On the other hand, a method in which a molded body of amorphous silica powder is heated at a temperature equal to or lower than its melting temperature without adding a foaming agent, the heat treatment is interrupted before being fully densified, and partially sintered (for example, Patent Document 4) has also been proposed. In the opaque quartz glass manufactured by such a manufacturing method, it is possible to reduce the average diameter of the pores. However, if sintering is performed until the pores become closed pores, the density of the pores decreases, and the infrared light is reduced. There is a problem that the light-shielding property is lowered, and there is a problem that the average diameter of the pores is too small and the light-shielding property of long-wavelength infrared light is lowered. Further, according to this method, there is a problem that a density distribution is easily generated in the sintered body of the opaque quartz glass due to the temperature distribution in the electric furnace, and it is difficult to obtain a homogeneous opaque quartz glass having a large size.

また、石英ガラス多孔質体を高圧条件下で加熱焼成する方法(例えば、特許文献5)も提案されているが、このような製造方法で製造された不透明石英ガラスでは、波長200〜5000nmの光の透過率が0.5〜2.0%となっており、長波長側の赤外光の遮光性が低下するという問題がある。また、本方法は高圧焼成を行うため特殊な装置が必要であり、簡易な方法とは言えない。   In addition, a method (for example, Patent Document 5) in which a quartz glass porous body is heated and fired under high-pressure conditions has been proposed. In the case of an opaque quartz glass manufactured by such a manufacturing method, light having a wavelength of 200 to 5000 nm is proposed. There is a problem that the light shielding property of infrared light on the long wavelength side is lowered. Moreover, since this method performs high-pressure baking, a special apparatus is required, and it cannot be said that it is a simple method.

特開平4−65328号公報JP-A-4-65328 特開平5−254882号公報JP-A-5-254882 特開平7−61827号公報JP 7-61827 A 特開平7−267724号公報JP-A-7-267724 WO2008/069194号公報WO2008 / 069194

本発明は、吸水性がなく、かつ赤外光の遮光性に優れる不透明石英ガラス及びその製造方法を提供することである。   An object of the present invention is to provide an opaque quartz glass that does not absorb water and is excellent in the ability to block infrared light, and a method for producing the same.

本発明者らは、非晶質シリカ粉末と造孔剤粉末(以下、単に造孔剤と言うことがある)を混合し、成形したのち、所定の温度で焼結することによって、焼結体内の密度分布が小さく、含まれる気孔が閉気孔であると共に、気孔の含有密度が高く、広い波長領域で赤外光を遮光する不透明石英ガラスを得ることができることを見出し、本発明を完成するに至った。   The inventors mixed amorphous silica powder and pore-forming agent powder (hereinafter sometimes simply referred to as a pore-forming agent), molded, and then sintered at a predetermined temperature to obtain a sintered body. In order to complete the present invention, it has been found that an opaque quartz glass having a small density distribution, closed pores and a high density of pores and shielding infrared light in a wide wavelength region can be obtained. It came.

以下、本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail.

本発明は、密度が1.95g/cm以上2.15g/cm以下であり、平均気孔径が5〜20μmであり、密度の変動係数が0.02以下であることを特徴とする不透明石英ガラスである。 In the present invention, the density is 1.95 g / cm 3 or more and 2.15 g / cm 3 or less, the average pore diameter is 5 to 20 μm, and the coefficient of variation in density is 0.02 or less. Quartz glass.

気孔の平均径が光の波長よりも小さい場合、散乱強度は波長に依存し、長波長の赤外光は短波長の赤外光に比べ散乱されにくい傾向がある。一方、気孔の平均径が光の波長と同程度か、光の波長よりも大きい場合、散乱強度の波長依存性は小さい。また、同じ密度の不透明石英ガラスを比較すると、気孔の平均径が小さいものほど散乱強度は大きくなる傾向がある。これは、気孔の平均径が小さいものほど気孔の含有密度が高くなるためと考えられる。   When the average diameter of the pores is smaller than the wavelength of light, the scattering intensity depends on the wavelength, and long-wavelength infrared light tends to be less likely to be scattered than short-wavelength infrared light. On the other hand, when the average diameter of the pores is about the same as the wavelength of light or larger than the wavelength of light, the wavelength dependence of the scattering intensity is small. Further, when comparing opaque quartz glasses having the same density, the scattering intensity tends to increase as the average pore diameter decreases. This is presumably because the smaller the average pore diameter, the higher the pore density.

したがって、不透明石英ガラスの遮光性を向上するためには、遮光したい赤外光と同程度以上のサイズの気孔を有することと、気孔の含有密度が高いことが有効である。遮光したい赤外光の波長は1.5〜5μmであるため、平均気孔径は5μm以上であることが求められる。一方で、平均気孔径が大きく、気孔の含有密度が高くなりすぎると、不透明石英ガラスの密度が低くなり、強度が低下するため好ましくない。赤外光の遮光性と不透明石英ガラスの強度のバランスを考慮して、平均気孔径は5〜20μmであることが必要であり、9〜15μmであることが好ましい。密度は1.95g/cm以上2.15g/cm以下であることが必要であり、1.97g/cm以上2.08g/cm未満であることが好ましい。 Therefore, in order to improve the light shielding property of the opaque quartz glass, it is effective to have pores having a size equal to or larger than the infrared light to be shielded and to have a high pore density. Since the wavelength of infrared light to be shielded is 1.5 to 5 μm, the average pore diameter is required to be 5 μm or more. On the other hand, when the average pore diameter is large and the pore density is too high, the density of opaque quartz glass is lowered and the strength is lowered, which is not preferable. Considering the balance between the light shielding property of infrared light and the strength of the opaque quartz glass, the average pore diameter is required to be 5 to 20 μm, and preferably 9 to 15 μm. Density is required to be not more than 1.95 g / cm 3 or more 2.15 g / cm 3, preferably less than 1.97 g / cm 3 or more 2.08 g / cm 3.

本発明の不透明石英ガラスは、焼結体内の密度の変動係数が0.02以下であることを特徴とする。造孔剤で使用した不透明石英ガラスは造孔剤を使用していないものに比べて密度分布が小さくなり、密度の変動係数が小さいため、ガラス特性が均質となり、多様な用途に用いることができる。   The opaque quartz glass of the present invention is characterized in that the coefficient of variation of density in the sintered body is 0.02 or less. Opaque quartz glass used as a pore-forming agent has a smaller density distribution and a smaller coefficient of variation in density than those without a pore-forming agent, making the glass characteristics uniform and usable for various applications. .

本発明の不透明石英ガラスは、波長1.5μmから5μmにおける試料厚さ1mmの直線透過率が1%以下であることが好ましい。換言すれば、本発明の不透明石英ガラスは、波長1.5μm〜5μmのいずれの波長であっても、試料厚さ1mmの直線透過率が1%を超えないことが望ましい。熱遮断性は赤外光の透過率と関係し、波長1.5μmから5μmにおける試料厚さ1mmの直線透過率が1%以下である本発明の不透明石英ガラスは熱遮断性に非常に優れている。   The opaque quartz glass of the present invention preferably has a linear transmittance of 1% or less at a sample thickness of 1 mm at a wavelength of 1.5 μm to 5 μm. In other words, it is desirable for the opaque quartz glass of the present invention that the linear transmittance with a sample thickness of 1 mm does not exceed 1% at any wavelength of 1.5 μm to 5 μm. The thermal barrier property is related to the transmittance of infrared light, and the opaque quartz glass of the present invention having a linear transmittance of 1 mm or less at a wavelength of 1.5 μm to 5 μm is 1% or less has an excellent thermal barrier property. Yes.

本発明の不透明石英ガラスに含まれる気孔は閉気孔であることが好ましく、すなわち吸水率が0.1wt%以下であることが好ましい。不透明石英ガラスの吸水率が0.1wt%以下であれば、不透明石英ガラスの研削、研磨などの機械加工中に不純物を吸着することがなく、加工後に純化処理が必要ないという点で好ましい。   The pores contained in the opaque quartz glass of the present invention are preferably closed pores, that is, the water absorption is preferably 0.1 wt% or less. If the water absorption of the opaque quartz glass is 0.1 wt% or less, it is preferable in that impurities are not adsorbed during mechanical processing such as grinding and polishing of the opaque quartz glass and no purification treatment is required after processing.

本発明の不透明石英ガラスは、クリストバライト含有率が2%以下であることが好ましい。クリストバライト含有率が2%以下であると、クラックを生じることなく大型サイズの焼結体を得ることができる。   The opaque quartz glass of the present invention preferably has a cristobalite content of 2% or less. When the cristobalite content is 2% or less, a large-sized sintered body can be obtained without causing cracks.

本発明の不透明石英ガラスは、Na,Mg,Al,K,Ca,Cr,Fe,Cu,Znの各金属不純物の含有量が10ppm以下、さらには1ppm以下であることが好ましい。   In the opaque quartz glass of the present invention, the content of each metal impurity of Na, Mg, Al, K, Ca, Cr, Fe, Cu, and Zn is preferably 10 ppm or less, more preferably 1 ppm or less.

次に、本発明の不透明石英ガラスの製造方法について説明する。   Next, the manufacturing method of the opaque quartz glass of this invention is demonstrated.

本発明の不透明石英ガラスの製造方法は、非晶質シリカ粉末に造孔剤粉末を非晶質シリカ粉末との体積比で0.04以上となるように混合し、前記混合粉末を成形し、造孔剤が消失する温度で加熱して造孔剤を除去した後、シリカ粉末の焼結が進行する温度で焼結体に含まれる気孔が閉気孔となるまで焼結させることを特徴とする。   In the method for producing the opaque quartz glass of the present invention, the pore former powder is mixed with the amorphous silica powder so that the volume ratio with the amorphous silica powder is 0.04 or more, and the mixed powder is molded, After removing the pore-forming agent by heating at a temperature at which the pore-forming agent disappears, sintering is performed until the pores contained in the sintered body become closed pores at a temperature at which the sintering of the silica powder proceeds. .

以下、本発明の不透明石英ガラスの製造方法について工程ごとに詳細に説明する。なお全工程に言えることであるが、工程中に不純物汚染が起こらぬように、使用する装置などについて充分に選定する必要がある。   Hereinafter, the method for producing the opaque quartz glass of the present invention will be described in detail for each step. As can be said for all processes, it is necessary to sufficiently select the equipment to be used so that impurity contamination does not occur during the process.

(1)原料粉末の選定
まず、本発明で用いる非晶質シリカ粉末を選定する。非晶質シリカ粉末の製造方法はとくに限定されないが、例えばシリコンアルコキシドの加水分解によって製造された非晶質シリカ粉末や、四塩化珪素を酸水素炎等で加水分解して作製した非晶質シリカ粉末等を用いることができる。また、石英ガラスを破砕した粉末も用いることができる。
(1) Selection of raw material powder First, the amorphous silica powder used by this invention is selected. The method for producing the amorphous silica powder is not particularly limited. For example, amorphous silica powder produced by hydrolysis of silicon alkoxide or amorphous silica produced by hydrolyzing silicon tetrachloride with an oxyhydrogen flame or the like. Powder or the like can be used. Moreover, the powder which crushed quartz glass can also be used.

本発明で使用する非晶質シリカ粉末の平均粒径は、20μm以下が好ましい。粒径が大きすぎると、焼結に高温、長時間を要するため好ましくない。各種製造法で作製された非晶質シリカ粉末は、ジェットミル、ボールミル、ビーズミル等で粉砕、分級することで上記粒径に調整することができる。   The average particle size of the amorphous silica powder used in the present invention is preferably 20 μm or less. If the particle size is too large, sintering requires a high temperature and a long time, which is not preferable. Amorphous silica powder produced by various production methods can be adjusted to the above particle size by pulverization and classification with a jet mill, ball mill, bead mill or the like.

次に、本発明で用いる造孔剤粉末を選定する。   Next, the pore former powder used in the present invention is selected.

本発明の造孔剤の粒径は不透明石英ガラスの平均気孔径と深く関係し、得たい平均気孔径と同等あるいはそれ以上の粒径の造孔剤を用いる必要がある。気孔径より大きい粒径の造孔剤を用いる理由は、造孔剤の消失後の焼結段階において、気孔が当初のサイズよりも小さくなる場合があるためである。造孔剤として黒鉛またはアモルファスカーボンの球状粉末を用いる場合、平均気孔径5〜20μmの不透明石英ガラスを得るためには、造孔剤の粒径は5〜40μmであることが好ましく、9〜30μmであることがより好ましい。   The particle size of the pore-forming agent of the present invention is closely related to the average pore size of the opaque quartz glass, and it is necessary to use a pore-forming agent having a particle size equal to or larger than the desired average pore size. The reason for using a pore-forming agent having a particle size larger than the pore size is that the pores may be smaller than the original size in the sintering stage after the pore-forming agent disappears. When a spherical powder of graphite or amorphous carbon is used as the pore forming agent, in order to obtain an opaque quartz glass having an average pore diameter of 5 to 20 μm, the particle size of the pore forming agent is preferably 5 to 40 μm, and 9 to 30 μm. It is more preferable that

本発明の造孔剤の種類は、非晶質シリカの焼結温度以下の温度で熱分解して気化し消失するものであれば特に限定されず、黒鉛粉末やアモルファスカーボン粉末、フェノール樹脂粉末、アクリル樹脂粉末、ポリスチレン粉末などを使用することができる。このうち、黒鉛粉末またはアモルファスカーボン粉末は熱分解の際に発生するガス成分が無害、無臭であるという点で好ましい。   The type of the pore-forming agent of the present invention is not particularly limited as long as it is thermally decomposed at a temperature lower than the sintering temperature of amorphous silica and vaporizes and disappears. Graphite powder, amorphous carbon powder, phenol resin powder, Acrylic resin powder, polystyrene powder, or the like can be used. Among these, graphite powder or amorphous carbon powder is preferable in that the gas component generated during pyrolysis is harmless and odorless.

本発明で使用する非晶質シリカ粉末と造孔剤粉末の純度は、非晶質シリカ粉末と造孔剤粉末の混合粉末に含まれるNa,Mg,Al,K,Ca,Cr,Fe,Cu,Znの各金属不純物量が10ppm以下、より好ましくは1ppm以下であることが望ましい。石英ガラスにアルカリ金属元素、アルカリ土類元素、遷移金属元素などの不純物元素が高濃度に含まれている場合、おおよそ1300℃以上の温度において、石英ガラス中にクリストバライトが発生する。クリストバライトは230〜300℃の温度で高温型から低温型へ相転移し体積収縮を起こす。不透明石英ガラスに含有するクリストバライト量が2%より多い場合は、この体積収縮が原因で焼成体内にクラックが発生する傾向がある。特に焼成体が大型の場合、例えば直径140mm以上の不透明石英ガラスにおいてこの傾向は顕著である。非晶質シリカ粉末と造孔剤粉末の純度が低い場合は、純化処理を行なうとよい。純化の方法は特に限定されず、薬液処理や乾式ガス精製、高温焼成による不純物の蒸散などを行うことができる。なお、不透明石英ガラス中に含まれる金属不純物量が少ない場合であっても、水分量や炉内の雰囲気、炉材の純度、焼成時間などによってクリストバライトが多く発生する場合がある点についても言及しておく。   The purity of the amorphous silica powder and pore former powder used in the present invention is such that Na, Mg, Al, K, Ca, Cr, Fe, Cu contained in the mixed powder of amorphous silica powder and pore former powder. , Zn is desirably 10 ppm or less, more preferably 1 ppm or less. When quartz glass contains an impurity element such as an alkali metal element, alkaline earth element, or transition metal element at a high concentration, cristobalite is generated in the quartz glass at a temperature of about 1300 ° C. or higher. Cristobalite undergoes a phase transition from a high temperature type to a low temperature type at a temperature of 230 to 300 ° C. and causes volume shrinkage. When the amount of cristobalite contained in the opaque quartz glass is more than 2%, cracks tend to occur in the fired body due to this volume shrinkage. In particular, when the fired body is large, this tendency is remarkable in, for example, opaque quartz glass having a diameter of 140 mm or more. When the purity of the amorphous silica powder and the pore-forming agent powder is low, a purification treatment may be performed. The purification method is not particularly limited, and chemical treatment, dry gas purification, evaporation of impurities by high-temperature baking, and the like can be performed. It should be noted that even when the amount of metal impurities contained in the opaque quartz glass is small, a large amount of cristobalite may be generated depending on the moisture content, furnace atmosphere, furnace material purity, firing time, etc. Keep it.

本発明の造孔剤の形状は非晶質シリカ粉末と均質に混合することができる点、加圧によって粉末を成形するさいに圧力伝達が良好に行うことができる点で球状であることが好ましく、その粒子の長軸と短軸の比率を表すアスペクト比が3.0以下であること好ましい。   The shape of the pore-forming agent of the present invention is preferably spherical in that it can be homogeneously mixed with the amorphous silica powder and can transmit pressure well when the powder is formed by pressurization. The aspect ratio representing the ratio of the major axis to the minor axis of the particles is preferably 3.0 or less.

(2)原料粉末の混合
次に、選定した非晶質シリカ粉末及び造孔剤粉末を混合する。造孔剤粉末の添加量は、非晶質シリカ粉末に対して体積比で0.04以上となるように混合する必要があるが、好ましい範囲は造孔剤の種類、平均粒径によって異なり、造孔剤粉末が平均粒径5〜40μmの黒鉛粉末又はアモルファスカーボン粉末であれば、非晶質シリカ粉末との体積比で0.04〜0.35であることが好ましい。造孔剤粉末の添加量が少ないと、不透明石英ガラスに含まれる気孔量が少なくなり赤外光の遮光性が低下するため好ましくない。一方、添加量が多すぎると、不透明石英ガラスの密度が低くなりすぎるため好ましくない。
(2) Mixing of raw material powder Next, the selected amorphous silica powder and pore former powder are mixed. The addition amount of the pore-forming agent powder needs to be mixed so that the volume ratio is 0.04 or more with respect to the amorphous silica powder, but the preferred range varies depending on the type of pore-forming agent and the average particle diameter, If the pore former powder is a graphite powder or an amorphous carbon powder having an average particle diameter of 5 to 40 μm, the volume ratio with respect to the amorphous silica powder is preferably 0.04 to 0.35. If the amount of the pore-forming agent powder is small, the amount of pores contained in the opaque quartz glass is small, and the light shielding property of infrared light is lowered, which is not preferable. On the other hand, if the addition amount is too large, the density of the opaque quartz glass becomes too low, which is not preferable.

非晶質シリカ粉末と造孔剤の混合方法は特に限定されず、ロッキングミキサー、クロスミキサー、ポットミル、ボールミル等を用いることができる。   The mixing method of the amorphous silica powder and the pore-forming agent is not particularly limited, and a rocking mixer, a cross mixer, a pot mill, a ball mill, or the like can be used.

(3)混合粉末の成形
次に、混合粉末を成形する。成形方法は、鋳込み成型法、冷間静水圧プレス(CIP)法、金型プレス法等の乾式プレスを用いることができる。特に本発明の成型には、CIP法を用いると、工程が少なく容易に成形体を得ることができる点で好ましい。さらにCIP法を用いて、円板形状や円筒形状、リング形状の成形体を作製する方法としては、特に限定しないが、発泡スチロールのような塑性変形可能な鋳型を用いる成形法(例えば、特開平4−105797参照)や、底板が上パンチよりも圧縮変形の少ない材料で構成されている組立式型枠を用いる方法(例えば、特開2006−241595参照)で成形することが可能である。
(3) Molding of mixed powder Next, the mixed powder is molded. As a molding method, a dry press such as a casting method, a cold isostatic press (CIP) method, a mold press method, or the like can be used. In particular, it is preferable to use the CIP method for molding according to the present invention because a molded body can be easily obtained with few steps. Further, a method for producing a disk-shaped, cylindrical, or ring-shaped molded body using the CIP method is not particularly limited. -107797) and a method using a mold form (for example, see Japanese Patent Application Laid-Open No. 2006-241595) using a bottom plate made of a material having less compression deformation than the upper punch.

(4)成形体の焼結
次に、上記の方法により成形した成形体を所定の温度で加熱し、成形体内に含まれる造孔剤を消失させる。加熱温度は造孔剤の種類によって異なるが、例えば造孔剤として黒鉛粉末やアモルファスカーボンを用いる場合、加熱温度は700℃から1000℃で行う。
(4) Sintering of molded body Next, the molded body molded by the above method is heated at a predetermined temperature to eliminate the pore-forming agent contained in the molded body. Although the heating temperature varies depending on the type of pore forming agent, for example, when graphite powder or amorphous carbon is used as the pore forming agent, the heating temperature is 700 ° C. to 1000 ° C.

造孔剤の消失のための加熱は造孔剤の種類や造孔剤の添加量、成形体のサイズ、加熱温度によって任意の時間行われるが、例えば造孔剤として黒鉛粉末やアモルファスカーボンを用い、添加量が非晶質シリカ粉末との体積比で0.1〜0.2、成形体の体積が2×10cm、加熱温度が800℃の場合、加熱時間は24時間から100時間で行う。 Heating for disappearance of the pore forming agent is performed for an arbitrary time depending on the type of pore forming agent, the amount of the pore forming agent added, the size of the molded body, and the heating temperature. For example, graphite powder or amorphous carbon is used as the pore forming agent. When the addition amount is 0.1 to 0.2 in volume ratio with the amorphous silica powder, the volume of the molded body is 2 × 10 3 cm 3 , and the heating temperature is 800 ° C., the heating time is 24 hours to 100 hours. To do.

次に、造孔剤が消失した成形体を所定の温度で、焼結体に含まれる気孔が閉気孔となるまで焼成する。焼成温度は1350〜1500℃であることが好ましい。焼成温度が1350℃より低いと、気孔が閉気孔となるまでに長時間の焼成が必要となるため好ましくない。焼成温度が1500℃を超えると、焼成体内に含まれるクリストバライト量が多くなり、クリストバライトの高温型から低温型への相転移に伴う体積収縮によって、焼成体にクラックが発生する恐れがあり好ましくない。   Next, the molded body from which the pore forming agent has disappeared is fired at a predetermined temperature until the pores contained in the sintered body become closed pores. The firing temperature is preferably 1350 to 1500 ° C. When the firing temperature is lower than 1350 ° C., it is not preferable because firing for a long time is required before the pores become closed pores. When the firing temperature exceeds 1500 ° C., the amount of cristobalite contained in the fired body increases, and cracks may occur in the fired body due to volume shrinkage accompanying the phase transition from the high temperature type to the low temperature type of cristobalite, which is not preferable.

焼成時間は造孔剤の添加量や焼成温度に応じて任意の時間行われるが、例えば添加量が非晶質シリカ粉末との体積比で0.1〜0.2、焼成温度が1350〜1500℃の場合、焼成時間は1時間から20時間で行う。焼成時間が短いと焼結が十分進まず、気孔が開気孔となるため好ましくない。また、焼成時間が長すぎると焼結が進み過ぎ気孔が小さくなるため赤外光の遮光性が低下するとともに、焼成体内に含まれるクリストバライト量が多くなり、クリストバライトの高温型から低温型への相転移に伴う体積収縮によって、焼成体にクラックが発生する恐れがあり好ましくない。   The firing time is carried out for an arbitrary time depending on the addition amount of the pore-forming agent and the firing temperature. For example, the addition amount is 0.1 to 0.2 by volume ratio with the amorphous silica powder, and the firing temperature is 1350 to 1500. In the case of ° C., the firing time is 1 to 20 hours. If the firing time is short, sintering does not proceed sufficiently and the pores become open pores, which is not preferable. In addition, if the firing time is too long, the sintering proceeds too much and pores become smaller, so that the light shielding property of infrared light is reduced, and the amount of cristobalite contained in the fired body is increased. Due to the volume shrinkage accompanying the transition, cracks may occur in the fired body, which is not preferable.

造孔剤の消失のための加熱は造孔剤が消失する雰囲気で行われ、例えば造孔剤として黒鉛粉末やアモルファスカーボンを用いる場合は、酸素が存在する雰囲気下で行われる。   Heating for disappearance of the pore forming agent is performed in an atmosphere in which the pore forming agent disappears. For example, when graphite powder or amorphous carbon is used as the pore forming agent, it is performed in an atmosphere in which oxygen is present.

閉気孔化のための焼成の雰囲気は特に限定されず、大気雰囲気下、窒素雰囲気下、真空雰囲気下で行うことができる。   There is no particular limitation on the atmosphere for firing for closed pore formation, and it can be performed in an air atmosphere, a nitrogen atmosphere, or a vacuum atmosphere.

本発明の不透明石英ガラスは、熱遮断性能に優れることから、熱処理装置用部材、半導体製造装置用部材、FPD製造装置用部材、太陽電池製造装置用部材、LED製造装置用部材、MEMS製造装置用部材、光学部材などに利用することができる。具体的には、フランジ、断熱フィン、炉芯管、均熱管、薬液精製筒等の構成材料、シリコン溶融用ルツボ等の構成材料などが挙げられる。   Since the opaque quartz glass of the present invention is excellent in heat shielding performance, it is a member for a heat treatment device, a member for a semiconductor manufacturing device, a member for an FPD manufacturing device, a member for a solar cell manufacturing device, a member for an LED manufacturing device, and a MEMS manufacturing device. It can utilize for a member, an optical member, etc. Specific examples include constituent materials such as flanges, heat insulating fins, furnace core tubes, soaking tubes, chemical solution refining cylinders, and other constituent materials such as silicon melting crucibles.

上記のような部材は、不透明石英ガラス単独で使用してもよいし、不透明石英ガラス表面の一部または全体に透明石英ガラス層を付与して使用してもよい。透明石英ガラス層は、不透明石英ガラスをシール性の要求される用途に使用する場合に、不透明石英ガラス中に含まれている気孔がシール面に露出しパッキンを使用しても完全なシールをすることが困難であることを考慮して付与される。また、不透明石英ガラスを各種用途で使用する中で随時行われる洗浄工程において、その最表面に露出している気孔が削られ、不透明石英ガラスの表面の一部が脱落し、パーティクルの発生の原因となる場合がある。これを防止する目的でも透明石英ガラス層は付与される。   The member as described above may be used alone by the opaque quartz glass, or may be used by providing a transparent quartz glass layer on a part or the whole of the opaque quartz glass surface. The transparent quartz glass layer provides perfect sealing even when opaque quartz glass is used for applications that require sealing properties, and the pores contained in the opaque quartz glass are exposed on the sealing surface and packing is used. It is given considering that it is difficult. In addition, in the cleaning process that is performed as needed while using opaque quartz glass in various applications, the pores exposed on the outermost surface are scraped, and part of the surface of the opaque quartz glass falls off, causing the generation of particles. It may become. For the purpose of preventing this, a transparent quartz glass layer is provided.

不透明石英ガラスへの透明石英ガラス層の付与の方法は特に限定されず、不透明ガラスの表面を酸水素炎で溶融して透明石英ガラスとする方法、不透明石英ガラスと透明石英ガラスとを酸水素炎や電気炉で加熱して貼り合わせる手法、不透明石英ガラスとなる非晶質シリカ粉末と造孔剤の混合粉末と透明石英ガラスとなる非晶質シリカ粉末とを所望のガラスにおける透明部及び不透明部の位置に対応させて成形し焼成する方法などがある。   The method of applying the transparent quartz glass layer to the opaque quartz glass is not particularly limited. The method of melting the surface of the opaque glass with an oxyhydrogen flame to form the transparent quartz glass, and the opaque quartz glass and the transparent quartz glass to the oxyhydrogen flame. Heating and bonding with an electric furnace, an amorphous silica powder that becomes opaque quartz glass, a mixed powder of a pore-forming agent, and an amorphous silica powder that becomes transparent quartz glass. There is a method of forming and firing in accordance with the position of the above.

本発明の不透明石英ガラスは、熱遮断性に優れるため、特に半導体製造分野で使用される各種の炉芯管、治具類及びベルジャー等の容器類、例えば、シリコンウェーハ処理用の炉芯管やそのフランジ部、断熱フィン、薬液精製筒及びシリコン溶解用ルツボ等の構成材料として利用できる。   Since the opaque quartz glass of the present invention is excellent in heat shielding properties, various furnace core tubes, jigs, and containers such as bell jars used particularly in the field of semiconductor manufacturing, such as furnace core tubes for silicon wafer processing, It can be used as a constituent material for the flange portion, heat insulating fins, chemical solution purification cylinder, silicon melting crucible and the like.

実施例1で作製した不透明石英ガラスの赤外スペクトルである。2 is an infrared spectrum of the opaque quartz glass produced in Example 1. 実施例2で作製した不透明石英ガラスの赤外スペクトルである。2 is an infrared spectrum of the opaque quartz glass produced in Example 2. 実施例3で作製した不透明石英ガラスの赤外スペクトルである。4 is an infrared spectrum of the opaque quartz glass produced in Example 3. 実施例4で作製した不透明石英ガラスの赤外スペクトルである。It is an infrared spectrum of the opaque quartz glass produced in Example 4. 比較例1で作製した不透明石英ガラスの赤外スペクトルである。2 is an infrared spectrum of an opaque quartz glass produced in Comparative Example 1. 実施例1で作製した不透明石英ガラスの断面の一部の写真である。2 is a photograph of a part of a cross section of an opaque quartz glass produced in Example 1. FIG. 実施例3で作製した不透明石英ガラスの断面の一部の写真である。4 is a photograph of a part of a cross section of an opaque quartz glass produced in Example 3. 実施例4で作製した不透明石英ガラスの断面の一部の写真である。6 is a photograph of a part of a cross section of an opaque quartz glass produced in Example 4. 実施例1〜4で作製した不透明石英ガラスの吸水率と波長4μmにおける透過率の関係を示す図である。It is a figure which shows the relationship between the water absorption of the opaque quartz glass produced in Examples 1-4, and the transmittance | permeability in wavelength 4micrometer.

以下に実施例によって本発明を具体的に説明するが、本発明は係る実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to such examples.

非晶質シリカ粉末の平均粒径はレーザー回折式粒度分布測定装置((株)島津製作所製、商品名「SALD−7100」)を用いて測定されるメディアン径(D50)の値を用いた。   As the average particle size of the amorphous silica powder, the median diameter (D50) value measured using a laser diffraction particle size distribution analyzer (trade name “SALD-7100” manufactured by Shimadzu Corporation) was used.

造孔剤粉末のアスペクト比は、粉末の長軸径と短軸径を光学顕微鏡により観察し、(長軸径/短軸径)により求めた。   The aspect ratio of the pore former powder was determined by (major axis diameter / minor axis diameter) by observing the major axis diameter and minor axis diameter of the powder with an optical microscope.

不透明石英ガラスの密度および吸水率は次の方法で測定した。まず試料を乾燥した後、質量W1を測定する。次に試料を水中に保って2時間煮沸したのち放冷により常温に戻し、この試料の水中での質量W2を測定する。次に試料に撥水性の有機溶剤を塗布し、乾燥した後、この試料の水中での質量W3を測定する。密度および吸水率をW1、W2、W3から次式で求める。
密度=W1/((W1−W3)/ρ)
吸水率(%)=((W2−W3)/W1)×100
ここでρは測定時の水温での水の密度である。
The density and water absorption of the opaque quartz glass were measured by the following methods. First, after the sample is dried, the mass W1 is measured. Next, the sample is kept in water and boiled for 2 hours, then allowed to cool to room temperature, and the mass W2 of this sample in water is measured. Next, after applying a water-repellent organic solvent to the sample and drying, the mass W3 of the sample in water is measured. The density and water absorption are obtained from the following equations from W1, W2, and W3.
Density = W1 / ((W1-W3) / ρ)
Water absorption rate (%) = ((W2-W3) / W1) × 100
Here, ρ is the density of water at the water temperature at the time of measurement.

不透明石英ガラスの焼結体内の密度の変動係数は、焼結体を中央部から外周部、頂部から底部にかけて分割した27点の密度を測定し、(密度の標準偏差/密度の平均値)で求めた。   The coefficient of variation of density in the sintered body of opaque quartz glass was measured by measuring the density at 27 points obtained by dividing the sintered body from the center to the outer periphery and from the top to the bottom, and (standard deviation of density / average value of density) Asked.

不透明石英ガラスの赤外スペクトルはFTIR装置((株)島津製作所製、商品名「IRPrestige−21」)を用いて測定した。測定試料は、平面研削により加工し、140番ダイヤモンド砥石仕上げ、厚さ1mmとした。なお、測定試料には平均密度の密度をもつ部分を用いた。   The infrared spectrum of the opaque quartz glass was measured using an FTIR apparatus (manufactured by Shimadzu Corporation, trade name “IR Prestige-21”). The measurement sample was processed by surface grinding and finished with a No. 140 diamond grinding wheel with a thickness of 1 mm. In addition, the part which has the density of average density was used for the measurement sample.

不透明石英ガラスの平均気孔径は不透明石英ガラスの切断面を光学研磨し、光学顕微鏡像を画像解析して算出した。画像解析にはImageJ1.47v(National Institutes of Health)を用い、光学顕微鏡像に写る気孔の平均面積を求め、この平均面積から気孔を円径と仮定した場合の気孔径を求め、これを平均気孔径とした。なお、測定試料には平均密度の密度をもつ部分を用いた。   The average pore diameter of the opaque quartz glass was calculated by optically polishing the cut surface of the opaque quartz glass and analyzing the optical microscope image. ImageJ1.47v (National Institutes of Health) was used for image analysis, the average area of the pores shown in the optical microscope image was obtained, and the pore diameter when the pores were assumed to be a circular diameter was obtained from this average area, and this was calculated as the average pore size. The pore size was used. In addition, the part which has the density of average density was used for the measurement sample.

不透明石英ガラスのクリストバライト含有率はX線回折装置((株)リガク製、商品名「RINT UltimaIII」)を用いて、不透明石英ガラスを粉砕した試料中の非晶質シリカとクリストバライト結晶の回折ピーク強度比を測定し、その強度比からクリストバライト含有率を算出した。   The cristobalite content of opaque quartz glass is the diffraction peak intensity of amorphous silica and cristobalite crystals in a sample obtained by grinding opaque quartz glass using an X-ray diffractometer (trade name “RINT Ultimate III” manufactured by Rigaku Corporation). The ratio was measured, and the cristobalite content was calculated from the intensity ratio.

不透明石英ガラスに含有する金属およびアルカリ、アルカリ土類元素の不純物量はICP発光分光分析装置(セイコーインスツルメンツ(株)製、商品名「Vista−PRO」)を用いて分析した。   Impurity amounts of metals, alkalis and alkaline earth elements contained in the opaque quartz glass were analyzed using an ICP emission spectroscopic analyzer (trade name “Vista-PRO” manufactured by Seiko Instruments Inc.).

(実施例1)
原料粉末として平均粒径が6μmの合成非晶質シリカ粉末を選定した。
Example 1
A synthetic amorphous silica powder having an average particle size of 6 μm was selected as the raw material powder.

造孔剤粉末として、平均粒径18μm、アスペクト比1.5、Ca、Cr、Fe、Tiの濃度が0.1ppm以下の球状黒鉛粉末を選定した。   Spherical graphite powder having an average particle diameter of 18 μm, an aspect ratio of 1.5, and a Ca, Cr, Fe, and Ti concentration of 0.1 ppm or less was selected as the pore former powder.

合成非晶質シリカ粉末に黒鉛粉末を添加し、ポットミルで3時間混合した。黒鉛粉末の添加量は、非晶質シリカ粉末との体積比で0.16であった。   Graphite powder was added to the synthetic amorphous silica powder and mixed for 3 hours in a pot mill. The amount of graphite powder added was 0.16 in volume ratio with the amorphous silica powder.

発泡スチロール製の型に混合粉末を充填し、発泡スチロール型全体をポリスチレン製袋で減圧封入し、圧力は200MPa、保持時間は1分間の条件でCIP成形した。   The mixed powder was filled in a foam polystyrene mold, and the whole foam polystyrene mold was sealed under reduced pressure in a polystyrene bag, and CIP molding was performed under the conditions of a pressure of 200 MPa and a holding time of 1 minute.

CIP成形後の直径170mm、厚み85mmの円柱状成形体を、炉床昇降式抵抗加熱電気炉((株)広築製、型式「HPF−7020」)にて、大気雰囲気下で、室温から650℃までは100℃/時、650℃から800℃まで50℃/時、800℃で72時間保持、800℃から最高焼成温度1425℃までは50℃/時で昇温し、最高焼成温度1425℃で4時間保持して焼成した。100℃/時で50℃まで降温し、その後炉冷し直径145mm、厚み75mmの不透明石英ガラスを得た。   After the CIP molding, a cylindrical molded body having a diameter of 170 mm and a thickness of 85 mm is heated from a room temperature to 650 ° C. in an atmosphere atmosphere in a hearth raising / lowering resistance heating electric furnace (model “HPF-7020” manufactured by Hiroki Co., Ltd.). Up to 100 ° C / hour, 50 ° C / hour from 650 ° C to 800 ° C, held at 800 ° C for 72 hours, heated from 800 ° C to maximum firing temperature of 1425 ° C at 50 ° C / hour, maximum firing temperature of 1425 ° C And baked for 4 hours. The temperature was lowered to 50 ° C. at 100 ° C./hour, and then cooled in a furnace to obtain an opaque quartz glass having a diameter of 145 mm and a thickness of 75 mm.

得られた不透明石英ガラスの平均密度、密度変動係数、平均気孔径、吸水率、波長2μmおよび4μmにおける透過率、クリストバライト含有率(結晶化率)、クラックの有無を表2に示す。図1に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%以下である。   Table 2 shows the average density, density variation coefficient, average pore diameter, water absorption, transmittance at wavelengths of 2 μm and 4 μm, cristobalite content (crystallization rate), and presence / absence of cracks of the obtained opaque quartz glass. FIG. 1 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less.

表3に不透明石英ガラスに含まれる不純物濃度を示す。測定した各種アルカリ金属、アルカリ土類金属、金属元素濃度は1ppm以下であった。   Table 3 shows the concentration of impurities contained in the opaque quartz glass. The measured concentrations of various alkali metals, alkaline earth metals, and metal elements were 1 ppm or less.

得られた不透明石英ガラスの断面の一部を図6に示す。これによると不透明石英ガラスにクラックは発生していない。   A part of the cross section of the obtained opaque quartz glass is shown in FIG. According to this, cracks are not generated in the opaque quartz glass.

(実施例2)
実施例1と同様の原料粉末と造孔剤を選定し、黒鉛粉末の添加量を非晶質シリカ粉末との体積比で0.22に変更した以外は実施例1と同様の手順で直径170mm、厚み85mmの円柱状成形体を得た。
(Example 2)
170 mm A cylindrical molded body having a thickness of 85 mm was obtained.

得られた成形体を最高焼成温度1425℃で6時間保持した以外は実施例1と同様の焼成条件で焼成を行い、直径145mm、厚み75mmの不透明石英ガラスを得た。   Except for holding the resulting molded body at a maximum firing temperature of 1425 ° C. for 6 hours, firing was performed under the same firing conditions as in Example 1 to obtain an opaque quartz glass having a diameter of 145 mm and a thickness of 75 mm.

得られた不透明石英ガラスの平均密度、密度変動係数、平均気孔径、吸水率、波長2μmおよび4μmにおける透過率、クリストバライト含有率(結晶化率)、クラックの有無を表2に示す。図2に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率が1%以下である。   Table 2 shows the average density, density variation coefficient, average pore diameter, water absorption, transmittance at wavelengths of 2 μm and 4 μm, cristobalite content (crystallization rate), and presence / absence of cracks of the obtained opaque quartz glass. FIG. 2 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less.

(実施例3)
実施例1と同様の原料粉末を選定し、造孔剤として平均粒径15μm、アスペクト比1.0、Ca、Cr、Fe、Tiの濃度がそれぞれ6.5、85、150、1.3ppmの球状アモルファスカーボン粉末を選定した。
(Example 3)
The same raw material powder as in Example 1 was selected, and the average particle diameter was 15 μm, the aspect ratio was 1.0, and the concentrations of Ca, Cr, Fe, and Ti were 6.5, 85, 150, and 1.3 ppm, respectively, as the pore former. Spherical amorphous carbon powder was selected.

合成非晶質シリカ粉末にアモルファスカーボン粉末を添加し、ポットミルで3時間混合した。アモルファスカーボン粉末の添加量は、非晶質シリカ粉末との体積比で0.16であった。   Amorphous carbon powder was added to the synthetic amorphous silica powder and mixed in a pot mill for 3 hours. The amount of amorphous carbon powder added was 0.16 in volume ratio with the amorphous silica powder.

混合粉末を実施例1と同様の方法でCIP成形し、直径170mm、厚み85mmの円柱状成形体を得た。   The mixed powder was CIP-molded in the same manner as in Example 1 to obtain a cylindrical molded body having a diameter of 170 mm and a thickness of 85 mm.

得られた成形体を、炉床昇降式抵抗加熱電気炉((株)広築製、型式「HPF−7020」)にて、大気雰囲気下で、室温から650℃までは100℃/時、650℃から1000℃まで50℃/時、1000℃で24時間保持、1000℃から最高焼成温度1425℃までは50℃/時で昇温し、最高焼成温度1425℃で6時間保持して焼成した。100℃/時で50℃まで降温し、その後炉冷し直径145mm、厚み75mmの不透明石英ガラスを得た。   The obtained molded body was heated at 100 ° C./hour from 650 ° C. to 650 ° C. in the atmosphere in a hearth raising / lowering resistance heating electric furnace (manufactured by Hiroki Co., Ltd., model “HPF-7020”). C. to 1000.degree. C. at 50.degree. C./hour, held at 1000.degree. C. for 24 hours, 1000.degree. C. to the maximum firing temperature of 1425.degree. The temperature was lowered to 50 ° C. at 100 ° C./hour, and then cooled in a furnace to obtain an opaque quartz glass having a diameter of 145 mm and a thickness of 75 mm.

得られた不透明石英ガラスの平均密度、密度変動係数、平均気孔径、吸水率、波長2μmおよび4μmにおける透過率、クリストバライト含有率(結晶化率)、クラックの有無を表2に示す。図3に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率は1%以下である。   Table 2 shows the average density, density variation coefficient, average pore diameter, water absorption, transmittance at wavelengths of 2 μm and 4 μm, cristobalite content (crystallization rate), and presence / absence of cracks of the obtained opaque quartz glass. FIG. 3 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less.

表3に不透明石英ガラスに含まれる不純物濃度を示す。測定した各種アルカリ金属、アルカリ土類金属、金属元素濃度のうちFeは10ppm以上であった。得られた不透明石英ガラスの断面の一部を図7に示す。これによると不透明石英ガラスにはクラックが発生している。不透明石英ガラスの純度が低いためにクリストバライト含有率が2%以上となり、クラックが発生したと考えられる。   Table 3 shows the concentration of impurities contained in the opaque quartz glass. Of various alkali metal, alkaline earth metal, and metal element concentrations measured, Fe was 10 ppm or more. FIG. 7 shows a part of the cross section of the obtained opaque quartz glass. According to this, a crack is generated in the opaque quartz glass. Since the purity of the opaque quartz glass is low, the cristobalite content is 2% or more, and it is considered that cracks occurred.

(実施例4)
実施例3と同様の原料粉末と造孔剤を選定し、実施例3と同様の手順で直径170mm、厚み85mmの円柱状成形体を得た。
Example 4
The same raw material powder and pore former as those in Example 3 were selected, and a cylindrical molded body having a diameter of 170 mm and a thickness of 85 mm was obtained in the same procedure as in Example 3.

得られた成形体を最高焼成温度1425℃で6時間保持した以外は実施例1と同様の焼成条件で焼成を行い、直径145mm、厚み75mmの不透明石英ガラスを得た。   Except for holding the resulting molded body at a maximum firing temperature of 1425 ° C. for 6 hours, firing was performed under the same firing conditions as in Example 1 to obtain an opaque quartz glass having a diameter of 145 mm and a thickness of 75 mm.

得られた不透明石英ガラスの平均密度、密度変動係数、平均気孔径、吸水率、波長2μmおよび4μmにおける透過率、クリストバライト含有率(結晶化率)、クラックの有無を表2に示す。図4に不透明石英ガラスの赤外スペクトルを示す。これによると波長1.5μmから5μmにおける直線透過率は1%以下である。   Table 2 shows the average density, density variation coefficient, average pore diameter, water absorption, transmittance at wavelengths of 2 μm and 4 μm, cristobalite content (crystallization rate), and presence / absence of cracks of the obtained opaque quartz glass. FIG. 4 shows an infrared spectrum of opaque quartz glass. According to this, the linear transmittance at a wavelength of 1.5 μm to 5 μm is 1% or less.

得られた不透明石英ガラスの断面の一部を図8に示す。これによると不透明石英ガラスにはクラックが発生している。不透明石英ガラスの純度が低いためにクリストバライト含有率が2%以上となり、クラックが発生したと考えられる。   A part of the cross section of the obtained opaque quartz glass is shown in FIG. According to this, a crack is generated in the opaque quartz glass. Since the purity of the opaque quartz glass is low, the cristobalite content is 2% or more, and it is considered that cracks occurred.

(比較例1)
実施例1と同様の原料粉末のみを実施例1と同様の方法でCIP成形し、直径170mm、厚み85mmの円柱状成形体を得た。
(Comparative Example 1)
Only the same raw material powder as in Example 1 was CIP-molded by the same method as in Example 1 to obtain a cylindrical molded body having a diameter of 170 mm and a thickness of 85 mm.

得られた成形体を、実施例3と同様の焼成条件で焼成を行い、直径145mm、厚み75mmの不透明石英ガラスを得た。   The obtained molded body was fired under the same firing conditions as in Example 3 to obtain an opaque quartz glass having a diameter of 145 mm and a thickness of 75 mm.

得られた不透明石英ガラスの平均密度、密度変動係数、平均気孔径、吸水率、波長2μmおよび4μmにおける透過率、クラックの有無を表2に示す。図5に不透明石英ガラスの赤外スペクトルを示す。造孔剤を添加せずに作製した不透明石英ガラスは焼結体内の密度分布が大きい。   Table 2 shows the average density, density variation coefficient, average pore diameter, water absorption, transmittance at wavelengths of 2 μm and 4 μm, and the presence or absence of cracks of the obtained opaque quartz glass. FIG. 5 shows an infrared spectrum of opaque quartz glass. Opaque quartz glass produced without adding a pore-forming agent has a large density distribution in the sintered body.

Figure 0006273997
Figure 0006273997

Figure 0006273997
Figure 0006273997

Figure 0006273997
Figure 0006273997

吸水率と波長4μmの透過率の関係について、実施例1〜4を▲印でプロットしたものを図9に示す。造孔剤を添加して作製した不透明石英ガラスは、低透過率、低吸水率であった。 About the relationship between a water absorption rate and the transmittance | permeability of a wavelength of 4 micrometers, what plotted Examples 1-4 by (triangle | delta) is shown in FIG. The opaque quartz glass produced by adding a pore-forming agent had low transmittance and low water absorption.

熱遮断効果が高い不透明石英ガラスおよびその製造方法であり、半導体製造装置用部材などに好適に用いることができる。   It is an opaque quartz glass having a high heat-blocking effect and a method for producing the same, and can be suitably used for a member for a semiconductor manufacturing apparatus.

Claims (25)

密度が1.95g/cm以上2.15g/cm以下であり、平均気孔径が5〜20μmであり、密度の変動係数が0.02以下であることを特徴とする不透明石英ガラス。 An opaque quartz glass having a density of 1.95 g / cm 3 or more and 2.15 g / cm 3 or less, an average pore diameter of 5 to 20 μm, and a density variation coefficient of 0.02 or less. 試料厚さ1mmのときの波長1.5μmから5μmにおける直線透過率が1%以下であることを特徴とする請求項1に記載の不透明石英ガラス。   2. The opaque quartz glass according to claim 1, wherein a linear transmittance at a wavelength of 1.5 μm to 5 μm when the sample thickness is 1 mm is 1% or less. 吸水率が0.1wt%以下であることを特徴とする請求項1又は2に記載の不透明石英ガラス。   The opaque quartz glass according to claim 1, wherein the water absorption is 0.1 wt% or less. クリストバライト含有率が2%以下であることを特徴とする請求項1〜3のいずれかに記載の不透明石英ガラス。   The opaque quartz glass according to any one of claims 1 to 3, wherein the cristobalite content is 2% or less. 密度が1.97g/cm以上2.08g/cm未満であることを特徴とする請求項1〜4のいずれかに記載の不透明石英ガラス。 Opaque quartz glass according to claim 1, density and less than 1.97 g / cm 3 or more 2.08 g / cm 3. 平均気孔径が9〜15μmであることを特徴とする請求項1〜5のいずれかに記載の不透明石英ガラス。   The opaque quartz glass according to any one of claims 1 to 5, wherein an average pore diameter is 9 to 15 µm. Na,Mg,Al,K,Ca,Cr,Fe,Cu,Znの各金属不純物の含有量が10ppm以下であることを特徴とする請求項1〜6のいずれかに記載の不透明石英ガラス。   The opaque quartz glass according to any one of claims 1 to 6, wherein the content of each metal impurity of Na, Mg, Al, K, Ca, Cr, Fe, Cu, and Zn is 10 ppm or less. Na,Mg,Al,K,Ca,Cr,Fe,Cu,Znの各金属不純物の含有量が1ppm以下であることを特徴とする請求項1〜7のいずれかに記載の不透明石英ガラス。   The opaque quartz glass according to any one of claims 1 to 7, wherein the content of each metal impurity of Na, Mg, Al, K, Ca, Cr, Fe, Cu, and Zn is 1 ppm or less. 非晶質シリカ粉末に造孔剤粉末を非晶質シリカ粉末との体積比で0.04以上となるように混合し、前記混合粉末を成形し、造孔剤が消失する温度で加熱して造孔剤を除去した後、シリカ粉末の焼結が進行する温度で焼結体に含まれる気孔が閉気孔となるまで焼結させることを特徴とする請求項1〜8のいずれかに記載の不透明石英ガラスの製造方法。   The pore-forming agent powder is mixed with the amorphous silica powder so that the volume ratio with the amorphous silica powder is 0.04 or more, the mixed powder is molded, and heated at a temperature at which the pore-forming agent disappears. After removing the pore-forming agent, sintering is performed until the pores contained in the sintered body become closed pores at a temperature at which the sintering of the silica powder proceeds. A method for producing opaque quartz glass. 前記造孔剤粉末が平均粒径5〜40μmであり、造孔剤粉末の添加量が、非晶質シリカ粉末との体積比で0.04〜0.35であることを特徴とする請求項9に記載の不透明石英ガラスを製造する方法。   The pore forming powder has an average particle size of 5 to 40 µm, and the addition amount of the pore forming powder is 0.04 to 0.35 in volume ratio with the amorphous silica powder. A method for producing the opaque quartz glass according to 9. 前記造孔剤粉末が平均粒径9〜30μmであることを特徴とする請求項9又は10に記載の不透明石英ガラスを製造する方法。   The method for producing an opaque quartz glass according to claim 9 or 10, wherein the pore former powder has an average particle size of 9 to 30 µm. 前記造孔剤が黒鉛粉末であることを特徴とする請求項9〜11のいずれかに記載の不透明石英ガラスを製造する方法。   The method for producing an opaque quartz glass according to any one of claims 9 to 11, wherein the pore-forming agent is graphite powder. 前記混合粉末に含まれるNa,Mg,Al,K,Ca,Cr,Fe,Cu,Znの各金属不純物量が10ppm以下であることを特徴とする請求項9〜12のいずれかに記載の不透明石英ガラスを製造する方法。   The opaque metal according to any one of claims 9 to 12, wherein the amount of each metal impurity of Na, Mg, Al, K, Ca, Cr, Fe, Cu, and Zn contained in the mixed powder is 10 ppm or less. A method for producing quartz glass. 焼結体中のクリストバライト含有率が2%以下となる条件において製造されることを特徴とする請求項9〜13のいずれかに記載の不透明石英ガラスを製造する方法。   The method for producing an opaque quartz glass according to any one of claims 9 to 13, wherein the opaque quartz glass is produced under a condition that a cristobalite content in the sintered body is 2% or less. 前記造孔剤粉末のアスペクト比が3.0以下であることを特徴とする請求項9〜14のいずれかに記載の不透明石英ガラスを製造する方法。   The method for producing an opaque quartz glass according to claim 9, wherein an aspect ratio of the pore former powder is 3.0 or less. 加熱の雰囲気が大気雰囲気下であることを特徴とする請求項9〜15のいずれかに記載の不透明石英ガラスを製造する方法。   The method for producing an opaque quartz glass according to any one of claims 9 to 15, wherein the heating atmosphere is an air atmosphere. 非晶質シリカ粉末の平均粒径が20μm以下であることを特徴とする請求項9〜16のいずれかに記載の不透明石英ガラスを製造する方法。   The average particle diameter of an amorphous silica powder is 20 micrometers or less, The method to manufacture the opaque quartz glass in any one of Claims 9-16 characterized by the above-mentioned. 請求項1〜8のいずれかに記載の不透明石英ガラス表面の一部または全体に透明石英ガラス層を有していることを特徴とする石英ガラス。   A quartz glass having a transparent quartz glass layer on part or all of the surface of the opaque quartz glass according to claim 1. 請求項1〜8のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とする熱処理装置用部材。   A member for a heat treatment apparatus, wherein the opaque quartz glass according to any one of claims 1 to 8 is partially or entirely formed. 請求項1〜8のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とする半導体製造装置用部材。   A member for a semiconductor manufacturing apparatus, wherein the opaque quartz glass according to claim 1 is partially or entirely formed. 請求項1〜8のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とするFPD製造装置用部材。   A member for an FPD manufacturing apparatus, wherein a part or the whole is formed of the opaque quartz glass according to claim 1. 請求項1〜8のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とする太陽電池製造装置用部材。   A member for a solar cell manufacturing apparatus, wherein the opaque quartz glass according to any one of claims 1 to 8 is partially or entirely formed. 請求項1〜8のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とするLED製造装置用部材。   A member for an LED manufacturing apparatus, wherein the opaque quartz glass according to any one of claims 1 to 8 is partially or entirely formed. 請求項1〜8のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とするMEMS製造装置用部材。   A member for a MEMS manufacturing apparatus, wherein the opaque quartz glass according to any one of claims 1 to 8 is partially or entirely formed. 請求項1〜8のいずれかに記載の不透明石英ガラスによって一部または全体が形成されていることを特徴とする光学部材。   An optical member characterized in that a part or all of the opaque quartz glass according to any one of claims 1 to 8 is formed.
JP2014094127A 2014-02-17 2014-04-30 Opaque quartz glass and method for producing the same Active JP6273997B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014094127A JP6273997B2 (en) 2014-04-30 2014-04-30 Opaque quartz glass and method for producing the same
TW104104937A TWI652240B (en) 2014-02-17 2015-02-13 Opaque quartz glass and method of manufacturing same
US15/118,368 US10005693B2 (en) 2014-02-17 2015-02-16 Opaque quartz glass and method for its production
KR1020167023083A KR102246056B1 (en) 2014-02-17 2015-02-16 Opaque quartz glass and method for producing same
PCT/JP2015/054129 WO2015122517A1 (en) 2014-02-17 2015-02-16 Opaque quartz glass and method for producing same
CN201580009038.8A CN106029586B (en) 2014-02-17 2015-02-16 Opaque silica glass and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014094127A JP6273997B2 (en) 2014-04-30 2014-04-30 Opaque quartz glass and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015209372A JP2015209372A (en) 2015-11-24
JP6273997B2 true JP6273997B2 (en) 2018-02-07

Family

ID=54611860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014094127A Active JP6273997B2 (en) 2014-02-17 2014-04-30 Opaque quartz glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP6273997B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166547A1 (en) * 2022-03-01 2023-09-07 東ソ-・エスジ-エム株式会社 Opaque quartz glass and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912325A (en) * 1995-06-29 1997-01-14 Nitto Chem Ind Co Ltd High-purity opaque quartz glass and its production as well as its application
JPH11199252A (en) * 1998-01-07 1999-07-27 Sumikin Sekiei Kk Opaque quartz glass
JP4452059B2 (en) * 2003-11-05 2010-04-21 東ソー株式会社 Method for producing opaque silica glass molded body
DE202010018292U1 (en) * 2010-06-02 2015-07-14 Thomas Kreuzberger Quartz glass body and yellow body for producing a quartz glass body
JP2014091634A (en) * 2012-10-31 2014-05-19 Tosoh Corp Opaque quartz glass and method for manufacturing the same

Also Published As

Publication number Publication date
JP2015209372A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
US10005693B2 (en) Opaque quartz glass and method for its production
JP5314429B2 (en) Synthetic opaque quartz glass and method for producing the same
KR101313647B1 (en) Silica Vessel and Process for Producing Same
JP6379508B2 (en) Opaque quartz glass and method for producing the same
JP6698585B2 (en) Method for producing opaque quartz glass containing pores
JP2016069275A (en) PRODUCTION METHOD OF SYNTHETIC QUARTZ GLASS OF SiO2 GRANULATED BODY, AND SiO2 GRANULATED BODY SUITABLE FOR PRODUCTION METHOD
KR20160085314A (en) Composite material, heat-absorbing component, and method for producing the composite material
JPWO2011083710A1 (en) Synthetic amorphous silica powder and method for producing the same
JP2014091634A (en) Opaque quartz glass and method for manufacturing the same
JP2014088286A (en) Opaque quartz glass and production method thereof
JP6273997B2 (en) Opaque quartz glass and method for producing the same
JPWO2011083697A1 (en) Synthetic amorphous silica powder and method for producing the same
JP6252257B2 (en) Opaque quartz glass and method for producing the same
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
JP4473653B2 (en) Manufacturing method of high purity quartz glass
JP2017154945A (en) Opaque quartz glass
JP2002137913A (en) Silica gel and its manufacturing method
JP6885002B2 (en) Opaque quartz glass
JP2017036155A (en) Opaque quartz glass material and manufacturing method thereof
JP4176872B2 (en) Opaque silica glass, method for producing the same, and silica glass molding
WO2023049228A1 (en) Opaque quartz and method of making the same
KR20230079075A (en) Black quartz glass and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R151 Written notification of patent or utility model registration

Ref document number: 6273997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151