JP2768624B2 - Heat-resistant siliceous foam and method for producing the same - Google Patents

Heat-resistant siliceous foam and method for producing the same

Info

Publication number
JP2768624B2
JP2768624B2 JP29060293A JP29060293A JP2768624B2 JP 2768624 B2 JP2768624 B2 JP 2768624B2 JP 29060293 A JP29060293 A JP 29060293A JP 29060293 A JP29060293 A JP 29060293A JP 2768624 B2 JP2768624 B2 JP 2768624B2
Authority
JP
Japan
Prior art keywords
foam
silica
weight
siliceous
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29060293A
Other languages
Japanese (ja)
Other versions
JPH07144934A (en
Inventor
達政 中村
朗 藤ノ木
透 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP29060293A priority Critical patent/JP2768624B2/en
Publication of JPH07144934A publication Critical patent/JPH07144934A/en
Application granted granted Critical
Publication of JP2768624B2 publication Critical patent/JP2768624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐熱性シリカ質発泡体
に関し、特に、ウエ−ハ等の半導体熱処理工業に有用な
軽量、且つ耐熱性の優れたシリカ質発泡体及びその効果
的製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant siliceous foam, and more particularly to a lightweight, heat-resistant siliceous foam useful for the semiconductor heat treatment industry for wafers and the like, and an effective method for producing the same. About.

【0002】[0002]

【従来の技術】シリカは、比較的軽量で耐熱性の優れた
高純度セラミックス材料であって、その発泡体は、例え
ば、半導体ウエ−ハの熱処理炉における断熱材や遮熱材
として用いられている。これらのシリカ発泡体は、シリ
カ粉末をアンモニアガスを含む雰囲気中で加熱してシリ
カの表面にアンモニア基を導入し、アンモニアが化学的
に結合したシリカ粉体を所望の成形型に入れて、更に高
い温度で加熱溶融させ、粉体の融着とアンモニア基の分
解,放出を同時に行わせる発泡方法が一般に採用されて
いる。この方法は、例えば、ス−ト法で得られた多孔質
シリカ母材(ス−ト体)あるいは微細な石英ガラス粉体
をポリビニルアルコ−ル等の樹脂で固めたような凝集体
が一般に用いられる。
2. Description of the Related Art Silica is a relatively lightweight, high-purity ceramic material having excellent heat resistance, and its foam is used, for example, as a heat insulating material or a heat insulating material in a heat treatment furnace for semiconductor wafers. I have. These silica foams are prepared by heating silica powder in an atmosphere containing ammonia gas to introduce ammonia groups to the surface of the silica, putting the silica powder chemically bonded with ammonia into a desired mold, A foaming method of heating and melting at a high temperature to simultaneously fuse the powder and decompose and release the ammonia group is generally adopted. In this method, for example, a porous silica base material (soot body) obtained by a soot method or an aggregate obtained by solidifying fine quartz glass powder with a resin such as polyvinyl alcohol is generally used. Can be

【0003】しかし、高純度シリカ発泡体は、例えば、
温度1300℃付近から変形が始まるので、それ以上の温度
での長時間の使用は不都合であり、上記のような方法で
製造されたシリカ発泡体も例外ではなく、そのため、そ
れらの使用の範囲や使用対象は一般に制限されている。
また、半導体ウエ−ハが大径化するにつれて大形の炉用
断熱材として一層高い耐熱温度と機械的強度を有する軽
量発泡体材料が要求されるようになり、例えば、ビ−ム
ベンディング法による1280℃の温度における粘度が10
11.7 以上、好ましくは、1011.9 以上の耐熱性を有する材
料が実用上要望されるようになった。しかし、そのよう
な産業上の要望にもかかわらず、上記のような高い耐熱
性を有する軽量のシリカ発泡体は、まだ工業的に有利に
提供されていない。
However, high-purity silica foam is, for example,
Deformation starts at a temperature of around 1300 ° C.
Use for a long time is inconvenient.
Manufactured silica foam is no exception;
The scope and target of their use is generally limited.
In addition, as semiconductor wafers have become larger in diameter,
Lighter with higher heat-resistant temperature and mechanical strength as heat insulator
Foam materials are required, e.g.
Viscosity at 1280 ° C by the bending method is 10
11.7 Or more, preferably 1011.9 Materials with the above heat resistance
Fees have come to be demanded in practice. But like that
Despite high industrial demands, high heat resistance as described above
Lightweight silica foams are still industrially advantageous
Not provided.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、一層
高い耐熱性を有するシリカ質発泡体を提供することにあ
る。また、他の課題は、大形の半導体ウエ−ハ熱処理す
る炉断熱材として工業的に使用し得る、一層向上した機
械的強度及び耐熱性を有するシリカ質発泡体の効果的製
造方法を提供することにある。
It is an object of the present invention to provide a siliceous foam having higher heat resistance. Another object is to provide a method for effectively producing a siliceous foam having improved mechanical strength and heat resistance, which can be used industrially as a furnace heat insulating material for heat treatment of large semiconductor wafers. It is in.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を克服したシリカ質発泡体に関して、高耐熱性素材とし
てのシリカに着目し、特に、添加材料について多くの試
作実験を行い、上記課題を解決する極めて実用性の優れ
たシリカ質発泡体を開発した。すなわち、本発明は、シ
リカに、該シリカ 100重量部当り、セラミックス成分を
5〜100 重量部の範囲割合で含有するシリカ質発泡体で
あって、該発泡体が、それらのシリカ質構成成分に化学
的に結合した窒素原子0.02〜0.5 重量%を含有する耐熱
性シリカ質発泡体を要旨とするものである。
Means for Solving the Problems The present inventors have focused on silica as a highly heat-resistant material for silica-based foams that have overcome the above-mentioned problems, and have carried out a number of trial production experiments on added materials. We have developed a very practical silica-based foam that solves the problems. That is, the present invention relates to a siliceous foam containing a ceramic component in a range of 5 to 100 parts by weight based on 100 parts by weight of the silica, and the foamed material is used as the siliceous constituent component. Summary of the invention is a heat-resistant siliceous foam containing 0.02 to 0.5% by weight of chemically bonded nitrogen atoms.

【0006】また、本発明は、シリカ粉 100重量部と、
アルミナ,ジルコニア,チタニア,ボロン酸化物及び炭化
けい素より成る群から選択されるセラミックス粉を5〜
100重量部の範囲割合で含有するシリカ質混合粉末を、
1〜100 容量%のアンモニア雰囲気中で、700 〜1200℃
の加熱条件下にアンモニアと反応させ、次いで、これを
所定の成形型に入れて1400〜1800℃の温度に加熱して粉
末を溶融,発泡させる耐熱性シリカ質発泡体の製造方法
を提供する。
[0006] The present invention also provides a silica powder having 100 parts by weight,
A ceramic powder selected from the group consisting of alumina, zirconia, titania, boron oxide and silicon carbide
Silica mixed powder containing in a range of 100 parts by weight,
700 to 1200 ° C in an ammonia atmosphere of 1 to 100% by volume
The present invention provides a method for producing a heat-resistant siliceous foam in which the powder is melted and foamed by reacting it with ammonia under the heating conditions described above, and then heating it at a temperature of 1400 to 1800 ° C. in a predetermined mold.

【0007】本発明は、高純度シリカに上記セラミック
ス成分を組合せた混合組成を発泡体材料とすることが特
徴的であって、かかる材料構成により発泡体の耐熱性を
向上させると共に発泡体の機械的強度を向上させること
ができ、一層軽量化された発泡体部材が提供できるとい
う利点を有する。
[0007] The present invention is characterized in that a foamed material is a mixture of high-purity silica and the above ceramic component, and the heat resistance of the foam is improved and the mechanical properties of the foam are improved by such a material structure. This has the advantage that the target strength can be improved and a further lightweight foam member can be provided.

【0008】本発明のシリカ質発泡体を構成するシリカ
質において、シリカと組合せて使用するセラミック成分
物質は、アルミナ(Al23),ジルコニア(ZrO2),
チタニア(TiO2),ボロン酸化物(B23)及び炭化
けい素(SiC)であって、それら酸化物は単独でもよ
いし二種又はそれ以上を組合せてシリカに混合使用する
こともできる。その使用量は、シリカ 100重量部に対し
5〜 100重量部の範囲である。その添加量が、5重量部
未満では、特に高温における耐熱変形性の改善効果が不
足し、また、100 重量部を超えるとシリカの本来有する
望ましい特性が損なわれるばかりでなく、所望の形状の
発泡体に形成することが困難になるので好ましくない。
In the siliceous material constituting the siliceous foam of the present invention, the ceramic component materials used in combination with silica include alumina (Al 2 O 3 ), zirconia (ZrO 2 ),
Titania (TiO 2 ), boron oxide (B 2 O 3 ), and silicon carbide (SiC), and these oxides can be used alone or in combination of two or more kinds and mixed with silica. . The amount used is in the range of 5 to 100 parts by weight based on 100 parts by weight of silica. If the addition amount is less than 5 parts by weight, the effect of improving the heat deformation resistance particularly at high temperatures is insufficient, and if it exceeds 100 parts by weight, not only the desired properties inherent to silica are impaired, but also the desired shape of the foam is reduced. It is not preferable because it becomes difficult to form it on the body.

【0009】本発明の耐熱性シリカ質発泡体の製造方法
においては、原料シリカ及びセラミックス成分はいずれ
も微細な粉末状のものが用いられ、それらは所望の重量
割合の均一な組成物に混合される。この均一に混合され
た粉末を炉内に入れ、アンモニアガスを、例えば、窒素
ガスのような不活性ガスで適切な所望濃度に調整したア
ンモニア処理用雰囲気ガスを炉内に流しながら、炉内の
温度を700 〜1200℃に加熱昇温させてシリカ質粉末をア
ンモニア化させる。このアンモニア化は、アンモニアの
濃度,加熱温度及び反応時間によって異なるから、それ
らのファクタ−を適切に選択してアンモニア化の程度を
コントロ−ルすることができる。
In the method for producing a heat-resistant siliceous foam according to the present invention, both the raw material silica and the ceramic component are used in the form of fine powder, which are mixed into a uniform composition at a desired weight ratio. You. This uniformly mixed powder is placed in a furnace, and an ammonia gas, for example, an atmosphere for ammonia treatment adjusted to an appropriate desired concentration with an inert gas such as nitrogen gas is flowed into the furnace while the furnace is being used. The temperature is raised to 700 to 1200 ° C. to amminate the siliceous powder. Since this ammoniaation varies depending on the concentration of ammonia, the heating temperature and the reaction time, the factors can be appropriately selected to control the degree of ammoniaation.

【0010】例えば、雰囲気中のアンモニアガスの濃度
が1〜100 容量%の場合は、温度が700 〜 900℃では、
約 0.5〜8時間程度の反応時間でアンモニアがシリカ質
成分と化学的に結合し、また温度が 900〜1200℃の場合
には、約 0.5〜2時間程度の反応時間でアンモニアがシ
リカ質成分と化学的に結合する。そのアンモニアの結合
濃度は、得ようとする発泡体の所望発泡度に比例して反
応条件が選択される。発泡後の発泡体内に、窒素原子量
を0.02〜0.5 重量%残留させたものは優れた耐熱性発泡
体を提供するが、この窒素量は、結合アンモニア量に応
じて経験的にその残留量を容易にコントロ−ルすること
ができる。
For example, when the concentration of ammonia gas in the atmosphere is 1 to 100% by volume, when the temperature is 700 to 900 ° C.,
Ammonia chemically combines with the siliceous component in a reaction time of about 0.5 to 8 hours, and when the temperature is 900 to 1200 ° C, ammonia reacts with the siliceous component in a reaction time of about 0.5 to 2 hours. Chemically bond. The reaction concentration is selected in proportion to the desired foaming degree of the foam to be obtained. A foam having a nitrogen atom content of 0.02 to 0.5% by weight remaining in the foam after foaming provides an excellent heat-resistant foam, but the amount of nitrogen can be easily adjusted empirically according to the amount of bound ammonia. Can be controlled.

【0011】次いで、アンモニア化されたシリカ質粉末
は、所定の成形型に入れて、1400〜1800℃の温度に加熱
して粉末を溶融,発泡させて所望のシリカ発泡体を得る
ことができる。この発泡処理においては結合したアンモ
ニアをできるだけ離脱させガス化させるが、表面部の独
立気泡を破裂させないことが望ましい。また、本発明の
シリカ質発泡体は、その用途、あるいは適用条件に関連
して適度の強度を有することが重要であり、通常、0.2
〜2g/mlの見掛け比重に形成される。
Then, the ammoniated siliceous powder is placed in a predetermined mold, heated to a temperature of 1400 to 1800 ° C., and the powder is melted and foamed to obtain a desired silica foam. In this foaming treatment, the bound ammonia is released and gasified as much as possible, but it is desirable that the closed cells on the surface are not ruptured. In addition, it is important that the siliceous foam of the present invention has an appropriate strength in relation to its use or application conditions.
It is formed to an apparent specific gravity of 形成 2 g / ml.

【0012】本発明のシリカ質発泡体は、一般的な炉用
の耐火材あるいは断熱材として極めて有用であり、それ
ぞれの用途や適用対象条件、あるいは大きさや形状によ
って好適なかさ密度は自由に選択される。一方、本発明
のシリカ質発泡体は、高温耐熱性に優れ且つ軽量である
から、従来の耐火物と積層して炉材とする用途、例え
ば、軽量化をねらった耐火断熱性の積層炉壁材料として
特に有用である。このシリカ質発泡体と耐火物とを積層
一体化した構造体の各層の厚さは、築炉する炉の種類,
目的及び使用条件等を考慮して決定される。
The siliceous foam of the present invention is extremely useful as a refractory material or a heat insulating material for general furnaces, and a suitable bulk density can be freely selected depending on each use, application conditions, size and shape. You. On the other hand, since the siliceous foam of the present invention is excellent in high-temperature heat resistance and lightweight, it is used as a furnace material by laminating with a conventional refractory, for example, a fire-resistant and heat-insulating laminated furnace wall aiming at weight reduction. Particularly useful as a material. The thickness of each layer of the structure in which the silica foam and the refractory are laminated and integrated depends on the type of furnace to be built,
Determined in consideration of the purpose and use conditions.

【0013】[0013]

【作用】本発明のシリカ質発泡体は、軽量であるから大
形の成形体であっても操作性に優れ、また耐火材料とし
て有用であり、更に、シリコン等の半導体熱処理に使用
して、それらを汚染することのない安全、且つ寿命の長
い炉用耐火断熱材として優れた実用性を有する。
The silica-based foam of the present invention is lightweight, has excellent operability even in a large-sized molded product, is useful as a refractory material, and is used for heat treatment of semiconductors such as silicon. It has excellent utility as a safe and long-life furnace refractory insulation material that does not contaminate them.

【0014】[0014]

【実施例】次に、本発明を具体例により、更に詳細に説
明する。 実施例 1 四塩化珪素を酸水素火炎中に導入し、火炎加水分解させ
て生成する微細シリカ粒子をフィルタ−で捕集した。捕
集されたシリカは、粒径が2〜20μmを主成分とする微
細なシリカ粒子が得られた。このシリカ微粒子1000gを
純水2リッタ−中に懸濁させてスラリ−を形成させた。
このスラリ−中に化学グレ−ドのアルミナパウダ− 100
g(シリカ微粒子 100重量部に対し10重量部)を加え、
撹拌後、60℃のオ−ブン内で一夜乾燥させ、固い塊状の
シリカケ−キを得た。
Now, the present invention will be described in further detail with reference to specific examples. Example 1 Silicon tetrachloride was introduced into an oxyhydrogen flame, and fine silica particles produced by flame hydrolysis were collected by a filter. As the collected silica, fine silica particles having a particle size of 2 to 20 μm as a main component were obtained. 1000 g of the silica fine particles were suspended in 2 liters of pure water to form a slurry.
In this slurry, a chemical grade alumina powder 100 was added.
g (10 parts by weight for 100 parts by weight of silica fine particles),
After stirring, the mixture was dried overnight in an oven at 60 ° C. to obtain a hard lump silica cake.

【0015】このシリカケ−キをアルミナポット内で粉
砕した後、ふるい分けして粒径 200〜700 μmのシリカ
・アルミナ混合粉を得た。これを室温条件下に12Nの濃
塩酸に浸たした後、よく水洗し乾燥した。このシリカ・
アルミナ混合粉をロ−タリ−キルンに入れ、アンモニア
ガスと窒素ガスの等容量混合ガス雰囲気中で 800℃の温
度に5時間加熱してアンモニア化処理を行った。次に、
アンモニア化処理されたシリカ・アルミナ混合粉をグラ
ファイト製の成形型に移し、これを真空炉内で1650℃の
温度に2時間加熱処理して発泡させた。
The silica cake was pulverized in an alumina pot and sieved to obtain a silica-alumina mixed powder having a particle size of 200 to 700 μm. This was immersed in 12N concentrated hydrochloric acid at room temperature, washed well with water and dried. This silica
The alumina mixed powder was placed in a rotary kiln, and heated to a temperature of 800 ° C. for 5 hours in an atmosphere of a mixed gas of an equal volume of ammonia gas and nitrogen gas to perform an ammonia conversion treatment. next,
The silica-alumina mixed powder that had been subjected to the ammonia treatment was transferred to a graphite mold, and this was heated in a vacuum furnace at a temperature of 1650 ° C. for 2 hours to foam.

【0016】冷却した炉から取り出された発泡成形体
は、見掛け比重が0.56で、実質的に独立気泡型の発泡体
であった。また、得られた発泡成形体中に存在する窒素
含有量は、燃焼法により 0.3重量%であることが測定さ
れた。また、発泡体中のアルカリ金属量を原子吸光法で
測定した結果、Na:15ppm,K:18ppm及びLi:13ppmで
あった。更に、ビ−ムベンディング法によって1280℃の
温度において測定した密度補正後の粘度ηは、1011.9
イズであった。比較のために、アルミナパウダ−を混合
しないシリカ微粒子のみを原料として、同様に操作して
純シリカ質発泡体を製造した。その発泡体に含まれる窒
素量は 0.3重量%、また見掛け比重は 0.6で、密度補正
後の粘度ηは、1011.3 ポイズであった。この粘度を対比
して明らかなように、本発明の発泡体は、顕著に改善さ
れた耐熱性を有することが判る。
[0016] The foam molded article taken out of the cooled furnace
Is a virtually closed-cell foam with an apparent specific gravity of 0.56
Met. Further, nitrogen present in the obtained foamed molded article
Content determined by combustion method to be 0.3% by weight
Was. Also, the amount of alkali metal in the foam is determined by atomic absorption method.
As a result of measurement, Na: 15 ppm, K: 18 ppm and Li: 13 ppm
there were. Further, by the beam bending method,
The viscosity η after density correction measured at temperature is 1011.9 Po
It was. For comparison, mixed alumina powder
Using the same silica fine particles alone as the raw material,
A pure siliceous foam was produced. Nitrogen contained in the foam
The density is 0.3% by weight and the apparent specific gravity is 0.6.
The later viscosity η is 1011.3 Poise. Compare this viscosity
As can be seen, the foams of the present invention have significantly improved
It can be seen that it has excellent heat resistance.

【0017】実施例 2 実施例1と同様に準備したシリカ微粒子1000gを純水2
リッタ−中に懸濁させてスラリ−を作成した。このスラ
リ−に、半導体グレ−ドの塩化アルミニウムを加水分解
し乾燥して得られたアルミナパウダ− 100g(シリカ 1
00重量部に対し10重量部)を入れ、よく混合したのち60
℃のオ−ブン内で一晩乾燥して固い塊状のシリカケ−キ
を得た。このシリカケ−キを石英ポット内で粉砕後、ふ
るい分けして粒径 200〜 700μmのシリカ・アルミナ混
合粉を得た。これを室温条件下に12Nの濃塩酸で洗浄
し、水洗,乾燥した。このシリカ・アルミナ混合粉をロ
−タリ−キルン内でアンモニア/窒素ガス50:50の混合
ガス雰囲気中で 800℃の温度に5時間加熱してアンモニ
ア化処理を行った。処理されたシリカ・アルミナ混合粉
をグラファイトの型内に移し、これを真空炉内で1650℃
の温度で2時間加熱して発泡処理を行った。
Example 2 1000 g of silica fine particles prepared in the same manner as in Example 1 were mixed with pure water 2
The slurry was suspended in a liter. 100 g of alumina powder (silica 1) obtained by hydrolyzing and drying aluminum chloride of a semiconductor grade is added to this slurry.
100 parts by weight), mix well, then add 60 parts by weight.
Drying overnight in an oven at ℃ ° C. yielded a hard, lumpy silica cake. The silica cake was pulverized in a quartz pot and sieved to obtain a silica-alumina mixed powder having a particle size of 200 to 700 μm. This was washed with 12N concentrated hydrochloric acid at room temperature, washed with water and dried. The silica / alumina mixed powder was heated in a rotary kiln at a temperature of 800 ° C. for 5 hours in a mixed gas atmosphere of ammonia / nitrogen gas at 50:50 for an ammonia treatment. The treated silica / alumina mixed powder is transferred into a graphite mold, which is then heated at 1650 ° C in a vacuum furnace.
At a temperature of 2 hours for foaming treatment.

【0018】炉を冷却後、実質的に独立気泡型の見掛け
比重0.43の発泡成形体を得た。得られた発泡体の窒素含
有量を燃焼法により測定したところ 0.3重量%であっ
た。また、発泡体中のアルカリ金属量を原子吸光法で測
定したところ、Naが2ppm,Kが1ppm 及びLiが0.8p
pmであった。更に、ビ−ムベンディング法にて1280℃の
温度における粘度測定をしたところ、密度補正後の粘度
ηは、1012.5 ポイズであった。
After cooling the furnace, a substantially closed cell type apparent
A foam molded article having a specific gravity of 0.43 was obtained. Nitrogen content of the obtained foam
When the weight was measured by the combustion method, it was 0.3% by weight.
Was. Also, the amount of alkali metal in the foam was measured by the atomic absorption method.
As a result, Na was 2 ppm, K was 1 ppm, and Li was 0.8 p.
pm. Further, the temperature of 1280 ° C. was determined by the beam bending method.
When the viscosity was measured at temperature, the viscosity after density correction was
η is 1012.5 Poise.

【0019】実施例 3 実施例1と同様に準備したシリカ微粒子1000gを純水2
リッタ−中に懸濁させてスラリ−を作った。このスラリ
−に化学グレ−ドのジルコニアパウダ− 100g(シリカ
100重量部に対し10重量部)を投入し、撹拌後、60℃の
オ−ブン内で一晩乾燥して固い塊状のシリカケ−キを得
た。このシリカケ−キをアルミナポット内で粉砕後、ふ
るい分けして粒径 200〜 700μmのシリカ・ジルコニア
混合粉を得た。これを室温条件下に12Nの濃塩酸で洗浄
し、水洗,乾燥した。この水洗,乾燥シリカ・ジルコニ
ア混合粉をロ−タリ−キルン内でアンモニアガス:窒素
ガスが、50:50の混合ガス雰囲気中で 800℃の温度に5
時間加熱してアンモニア化処理を行った。アンモニア処
理されたシリカ・ジルコニア混合粉をグラファイトの型
内に移し、真空炉内で1650℃の温度で2時間加熱して発
泡処理を行った。
Example 3 1000 g of silica fine particles prepared in the same manner as in Example 1 were mixed with pure water 2
A slurry was made by suspending in a liter. 100g of zirconia powder of chemical grade (silica)
(100 parts by weight), stirred, and dried in an oven at 60 ° C. overnight to obtain a hard lump silica cake. This silica cake was pulverized in an alumina pot and then sieved to obtain a silica-zirconia mixed powder having a particle size of 200 to 700 μm. This was washed with 12N concentrated hydrochloric acid at room temperature, washed with water and dried. The washed and dried silica / zirconia mixed powder is heated to 800 ° C. in a 50:50 mixed gas atmosphere in a rotary kiln by mixing ammonia gas and nitrogen gas.
Ammonia treatment was performed by heating for an hour. The ammonia-treated silica-zirconia mixed powder was transferred into a graphite mold, and heated at 1650 ° C. for 2 hours in a vacuum furnace to perform a foaming treatment.

【0020】炉から取り出した発泡体は、実質的に独立
気泡のみから成る発泡体で、その見掛け比重は0.45であ
った。得られた発泡体の含有する窒素量は、燃焼法によ
る測定で 0.3重量%であり、また、ビ−ムベンディング
法によって1280℃の温度における粘度測定をしたとこ
ろ、密度補正後の粘度ηは、1012.3 ポイズであった。
The foam removed from the furnace is substantially independent
Foam consisting solely of air bubbles with an apparent specific gravity of 0.45
Was. The amount of nitrogen contained in the obtained foam is determined by the combustion method.
0.3% by weight, and beam bending
The viscosity was measured at 1280 ° C by the method
The viscosity η after density correction is 1012.3 Poise.

【0021】比較例 1 実施例1と同様に準備したシリカ微粒子1000gを純水2
リッタ−中に入れ、よく掻き混ぜて懸濁させてスラリ−
を作製した。このスラリ−に化学グレ−ドのジルコニア
パウダ−30g(シリカ 100重量部に対し3重量部)を投
入し、よくかき混ぜて均質化した後、60℃のオ−ブン内
で一晩乾燥して固い塊状のシリカケ−キを作製し、この
シリカケ−キを実施例2と同様に操作して、発泡体を製
造した。得られた発泡体は、実質的に独立気泡型発泡体
で、その見掛け比重は0.45であった。得られた発泡体の
窒素含有量は、燃焼法の測定で 0.3重量%であったが、
ビ−ムベンディング法により1280℃の温度で粘度を測定
をしたところ、密度補正後の粘度ηは、1011.4 ポイズに
すぎず、満足し得るジルコニア混合効果が得られないこ
とが判った。
Comparative Example 1 1000 g of silica fine particles prepared in the same manner as in Example 1 were mixed with pure water 2
Put in a liter, stir well and suspend to make a slurry.
Was prepared. This slurry has a chemical grade of zirconia
30 g of powder (3 parts by weight for 100 parts by weight of silica)
After mixing well and homogenizing, in an oven at 60 ° C
And dried overnight to produce a hard, massive silica cake.
The silica cake was operated in the same manner as in Example 2 to produce a foam.
Built. The resulting foam is a substantially closed cell foam
The apparent specific gravity was 0.45. Of the resulting foam
The nitrogen content was 0.3% by weight as measured by the combustion method,
Measure viscosity at 1280 ° C by beam bending method
The viscosity η after density correction is 1011.4 Poise
That the zirconia mixing effect is not satisfactory.
I understood.

【0022】比較例 2 実施例1と同様に準備したシリカ微粒子 500gを純水2
リッタ−中に懸濁させてよく掻き混ぜスラリ−を調製し
た。このスラリ−に化学グレ−ドのジルコニアパウダ−
750g(シリカ 100重量部に対し 150重量部)を導入
し、撹拌後、60℃のオ−ブン内で一晩乾燥して固い塊状
シリカケ−キを得た。このシリカケ−キを実施例2と同
様に操作して、発泡体を製造したが、均一な発泡体を得
ることはできなかった。このように、シリカ成分に対し
て他のセラミック材料を等量以上混合使用した場合に
は、所望形状のシリカ質発泡体を製造すること実質的に
困難である。
Comparative Example 2 500 g of silica fine particles prepared in the same manner as in Example 1 were mixed with pure water 2
The slurry was suspended in a liter and stirred well to prepare a slurry. The slurry is coated with chemical grade zirconia powder.
After introducing 750 g (150 parts by weight with respect to 100 parts by weight of silica), the mixture was stirred and dried overnight in an oven at 60 ° C. to obtain a hard bulky silica cake. This silica cake was operated in the same manner as in Example 2 to produce a foam, but a uniform foam could not be obtained. As described above, when other ceramic materials are mixed and used in equal amounts or more with respect to the silica component, it is substantially difficult to produce a siliceous foam having a desired shape.

【0023】[0023]

【発明の効果】本発明のセラミックス含有耐熱性シリカ
質発泡体は、純シリカ発泡体に比べて顕著に改善された
高い耐熱性を有し、シリコン等の半導体の熱処理工業技
術分野に極めて有利に使用されるだけでなく、操作性の
一層改善された発泡体として提供される。また、本発明
のシリカ質発泡体は、汚染のおそれのない安全な炉用耐
火断熱材として有用であり、工業上の利用性は極めて広
い。
Industrial Applicability The ceramic-containing heat-resistant siliceous foam of the present invention has remarkably improved high heat resistance as compared with pure silica foam, and is extremely advantageous in the field of heat treatment of semiconductors such as silicon. In addition to being used, it is provided as a foam with further improved operability. Further, the siliceous foam of the present invention is useful as a safe refractory heat insulating material for furnaces without fear of contamination, and has extremely wide industrial applicability.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−345636(JP,A) 特開 平7−17731(JP,A) 特開 平4−59632(JP,A) 特開 平4−59633(JP,A) 特開 平5−306142(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03C 11/00 C03B 19/08 C03C 14/00────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-345636 (JP, A) JP-A-7-17731 (JP, A) JP-A-4-59632 (JP, A) 59633 (JP, A) JP-A-5-306142 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C03C 11/00 C03B 19/08 C03C 14/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリカに、該シリカ 100重量部当りセラ
ミックスを5〜100 重量部の範囲割合で含有するシリカ
質発泡体であって、該発泡体が、それらのシリカ質構成
成分に化学的に結合した窒素原子0.02〜0.5 重量%を含
有する耐熱性シリカ質発泡体。
1. A siliceous foam containing silica in an amount of 5 to 100 parts by weight of a ceramic per 100 parts by weight of the silica, wherein the foam is chemically added to those siliceous components. A heat-resistant siliceous foam containing 0.02-0.5% by weight of bound nitrogen atoms.
【請求項2】 発泡体が、 0.2〜2g/mlの見掛け比重
を有する請求項1に記載の耐熱性シリカ質発泡体。
2. The heat-resistant siliceous foam according to claim 1, wherein the foam has an apparent specific gravity of 0.2 to 2 g / ml.
【請求項3】 シリカ粉 100重量部と、アルミナ,ジル
コニア,チタニア,ボロン酸化物及び炭化けい素より成
る群から選択されるセラミックス粉を5〜100 重量部の
範囲割合で含有するシリカ質混合粉末を、1〜100 容量
%のアンモニア雰囲気中で、700 〜1200℃の温度条件下
にアンモニアと反応させ、次いで、これを所定の成形型
に入れて1400〜1800℃の温度に加熱して粉末を溶融,発
泡させることを特徴とする耐熱性シリカ質発泡体の製造
方法。
3. A siliceous mixed powder containing 100 parts by weight of silica powder and 5 to 100 parts by weight of a ceramic powder selected from the group consisting of alumina, zirconia, titania, boron oxide and silicon carbide. Is reacted with ammonia under a temperature condition of 700 to 1200 ° C. in an atmosphere of 1 to 100% by volume of ammonia, and then put into a predetermined mold and heated to a temperature of 1400 to 1800 ° C. to powder. A method for producing a heat-resistant siliceous foam, characterized by melting and foaming.
JP29060293A 1993-11-19 1993-11-19 Heat-resistant siliceous foam and method for producing the same Expired - Fee Related JP2768624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29060293A JP2768624B2 (en) 1993-11-19 1993-11-19 Heat-resistant siliceous foam and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29060293A JP2768624B2 (en) 1993-11-19 1993-11-19 Heat-resistant siliceous foam and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07144934A JPH07144934A (en) 1995-06-06
JP2768624B2 true JP2768624B2 (en) 1998-06-25

Family

ID=17758133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29060293A Expired - Fee Related JP2768624B2 (en) 1993-11-19 1993-11-19 Heat-resistant siliceous foam and method for producing the same

Country Status (1)

Country Link
JP (1) JP2768624B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080066438A1 (en) * 2004-06-02 2008-03-20 Ebara Ballard Corporation Fuel Treating Device

Also Published As

Publication number Publication date
JPH07144934A (en) 1995-06-06

Similar Documents

Publication Publication Date Title
US4200445A (en) Method of densifying metal oxides
US3762935A (en) Foamed ceramic material
MXPA05006031A (en) Vessel for holding silicon and method of producing the same.
JPS5924111B2 (en) Method for producing mullite ceramic fiber
JPH054834A (en) Oxynitride glass and production thereof
JP3086704B2 (en) Manufacturing method of siliceous refractory materials
JP2768624B2 (en) Heat-resistant siliceous foam and method for producing the same
JPH11310423A (en) Synthetic quartz glass and its production
US3974315A (en) Closed cellular fused silica bodies
JPH06122543A (en) Fire brick and its preparation
JPH10502324A (en) Sintered quartz glass product and method for producing the same
WO1998046539A1 (en) High-radiation glass base covering material, high-radiation glass film, and process for the production of high-radiation glass film
JPH0640763A (en) Preparation of highly crystalline article
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JPH0517172B2 (en)
JP2660383B2 (en) Fine ceramics sintered body having fine voids and method for producing the same
JPH0151443B2 (en)
JPH0568433B2 (en)
JPH10152332A (en) Opaque silica glass and production thereof
JPS5948773B2 (en) Fused silica and its manufacturing method
JP4297578B2 (en) Method for producing opaque quartz glass
JP2614583B2 (en) Cristobalite sintered body and method for producing the same
JPH10130075A (en) Production of lightweight ceramic compact
JPH054827A (en) Silica glass powder, its production and formed silica glass using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090410

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090410

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100410

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees