JPS5948773B2 - Fused silica and its manufacturing method - Google Patents

Fused silica and its manufacturing method

Info

Publication number
JPS5948773B2
JPS5948773B2 JP52136910A JP13691077A JPS5948773B2 JP S5948773 B2 JPS5948773 B2 JP S5948773B2 JP 52136910 A JP52136910 A JP 52136910A JP 13691077 A JP13691077 A JP 13691077A JP S5948773 B2 JPS5948773 B2 JP S5948773B2
Authority
JP
Japan
Prior art keywords
fused silica
cristobalite
silica
present
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52136910A
Other languages
Japanese (ja)
Other versions
JPS5469126A (en
Inventor
剛司 黒田
治紀 武内
勝 秋山
晃 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP52136910A priority Critical patent/JPS5948773B2/en
Publication of JPS5469126A publication Critical patent/JPS5469126A/en
Publication of JPS5948773B2 publication Critical patent/JPS5948773B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/102Forming solid beads by blowing a gas onto a stream of molten glass or onto particulate materials, e.g. pulverising
    • C03B19/1025Bead furnaces or burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 本発明は、溶融シリカおよびその製造方法に関する。[Detailed description of the invention] The present invention relates to fused silica and a method for producing the same.

溶融シリカは、高純度S i02からなる均一なガラス
であり、他のアルミナ、マグネシア等の耐火材料に比べ
、熱膨張率が0.5〜1.OX 10−”7℃と小さく
、耐熱スポーリング性に優れているため電子産業用、耐
火物用材料として拡く使用されている。
Fused silica is a uniform glass made of high-purity SiO2, and has a coefficient of thermal expansion of 0.5 to 1. Because it has a small temperature of OX 10-7°C and excellent heat spalling resistance, it is widely used in the electronic industry and as a material for refractories.

しかしながら、溶融シリカを1100〜1600℃の温
度領域で、例えば連続鋳造用浸漬ノズル、コークス製造
炉用炉材として長時間使用すると、溶融シリカの一部ま
たは全部がクリストバライトに転移し、溶融シリカ本来
の特性である耐熱スポーリング性を損う欠点があり、長
期にわたって使用することができなかった。
However, when fused silica is used for a long time in the temperature range of 1100 to 1600°C, for example as a submerged nozzle for continuous casting or as a furnace material for a coke manufacturing furnace, part or all of the fused silica is transferred to cristobalite, and the original fused silica is It had the disadvantage of impairing its characteristic heat spalling resistance, and could not be used for a long period of time.

本発明者はこれらの欠点を解決するためいろいろ研究を
行った結果、従来溶融シリカのクリストバライトの転移
を促進する物質であるとされていたAl2O3とR20
(Na20.に20)等の成分を特定量含有する珪石や
珪砂等を原料とし、これを高温で溶融し均一な組成のガ
ラス質のものとすることによりその成形物を1200℃
以上特に1500℃程度の高温で使用しても、クリスト
バライト化が極めて小さく、かつ、同温度で耐熱スポー
リング性の優れた特性を有するという知見により本発明
に到達したものである。
The present inventor conducted various studies to solve these drawbacks and found that Al2O3 and R20, which were conventionally thought to be substances that promote the transition of cristobalite in fused silica,
Silica stone or silica sand containing a specific amount of components such as Na20.
The present invention was achieved based on the knowledge that even when used at a high temperature of about 1500° C., cristobalite formation is extremely small, and the material has excellent heat spalling resistance at the same temperature.

すなわち、本発明の第1の発明は、重量比で、A120
30.9〜3%、R200,7〜2.5%およびFe2
O3,MgO,CaOの不可避成分の合計量が0.1〜
0.5%、残部がSiO2である溶融シリカであり、そ
の第2発明は重量比で、A72030.9〜3%、 R
200,7〜2.5%及びFe2038Mg02CaO
の不可避成分が合計量で0.1〜0.5%、残部がSi
O2である溶融シリカ原料粉末を溶融炉に連続的に供給
すると共に水素と酸素のモル比が1.5二1〜2.0:
1である酸水素炎により高温溶融することを特徴とする
溶融シリカの製造法である。
That is, the first invention of the present invention has a weight ratio of A120
30.9-3%, R200,7-2.5% and Fe2
The total amount of unavoidable components O3, MgO, CaO is 0.1~
0.5%, the balance is SiO2, and the second invention is A72030.9-3% by weight, R
200,7-2.5% and Fe2038Mg02CaO
The total amount of unavoidable components is 0.1 to 0.5%, the balance is Si
The fused silica raw material powder, which is O2, is continuously supplied to the melting furnace, and the molar ratio of hydrogen and oxygen is 1.5 to 2.0:
This is a method for producing fused silica characterized by high temperature melting using an oxyhydrogen flame.

以下、さらに詳しく本発明を説明する。The present invention will be explained in more detail below.

なお明細書中の%は重量基準で示した。Note that percentages in the specification are expressed on a weight basis.

本発明の第1の発明の溶融シリカは、A12030.9
〜3.0%、 R200,7〜2.5%、及びFe2O
3゜MgO,CaOの不可避成分が合計量で0.1〜0
.5%含有した均一なガラス質のものである。
The fused silica of the first invention of the present invention is A12030.9
~3.0%, R200, 7~2.5%, and Fe2O
3゜The total amount of unavoidable components of MgO and CaO is 0.1 to 0.
.. It is a uniform glassy substance containing 5%.

ここで、R20はNa2Oおよびに20の合計量であり
、また不可避成分とは原料珪石、珪砂等に含まれる不純
物でF e2 o3. MgOt CaOの合計量であ
る。
Here, R20 is the total amount of Na2O and Ni20, and the unavoidable components are impurities contained in raw material silica stone, silica sand, etc. Fe2 o3. This is the total amount of MgOtCaO.

本発明の溶融シリカと従来品とを化学成分で比較すると
第1表のとおりである。
Table 1 shows a comparison of the chemical components of the fused silica of the present invention and conventional products.

溶融シリカの化学成分の中Al2O3が0.9%未満の
もの及びR20が0.7%未満のものは、加熱によるク
リストバライト化が大きい。
Among the chemical components of fused silica, those containing less than 0.9% Al2O3 and those containing less than 0.7% R20 are significantly converted to cristobalite by heating.

又Al2O3が3%をこえると、クリストバライト化が
増加に転じ、R20が2.5%をこえる範囲では溶融シ
リカの軟化点が小さくなるので好ましくない。
Furthermore, if Al2O3 exceeds 3%, cristobalite formation increases, and if R20 exceeds 2.5%, the softening point of the fused silica becomes low, which is not preferable.

次に第2発明の製造方法について説明する。Next, the manufacturing method of the second invention will be explained.

本発明に用いられる原料は、5i0295%以上含有す
る特定の化学成分を含有する珪石及び/又は珪砂を用い
るが、Al2O3およびR2O3が特定量の範囲より少
ない場合はこれにAl2O3及びR20の含有物質を添
加し、Al2O3が0.9〜3%。
The raw material used in the present invention is silica stone and/or silica sand containing specific chemical components containing 5i0295% or more, but if Al2O3 and R2O3 are less than a specific amount range, substances containing Al2O3 and R20 are added to this. Added, Al2O3 0.9-3%.

R20が0.7〜2.5%およびFe2032Mg02
CaOの不可避成分が0.1〜0.5%含有す゛るよう
に調整した粉状のものが用いられる。
R20 is 0.7-2.5% and Fe2032Mg02
A powder is used which is adjusted to contain an unavoidable component of CaO of 0.1 to 0.5%.

Al2O3及びR20の含有物質の具体例としては長石
があげられる。
A specific example of a substance containing Al2O3 and R20 is feldspar.

原料組成物の珪石や珪砂等のSiO2の含有量を95%
以上と限定した理由は、95%未満のものは不純物のF
e2O3,MgO,CaO等の含有量が多いので、Al
2O3およびR20の含有物質を添加しても本発明に用
いる原料組成物とすることはできないからである。
The content of SiO2 such as silica stone and silica sand in the raw material composition is 95%.
The reason for the above limitation is that anything less than 95% is impurity F.
Since the content of e2O3, MgO, CaO, etc. is high, Al
This is because even if substances containing 2O3 and R20 are added, the raw material composition for use in the present invention cannot be obtained.

又原料組成物中に含まれるAl2O3が0.9%未満、
R20が0.7%未満に限定した理由は、得られる溶融
シリカが1400〜1500℃で殆んどクリストバライ
トに転移し好ましくなく、一方Al2O3が3%をこえ
ると、クリストバライト化が増加すること、又R20が
2.5%をこえると溶融シリカの軟化点が低下するから
である。
Further, Al2O3 contained in the raw material composition is less than 0.9%,
The reason why R20 is limited to less than 0.7% is that the obtained fused silica almost transforms into cristobalite at 1400 to 1500°C, which is undesirable, while if Al2O3 exceeds 3%, cristobalite increases. This is because when R20 exceeds 2.5%, the softening point of fused silica decreases.

又不可避成分が0.1%未満であると高純度のSiO2
原料のみを溶融することになり、製品となる溶融シリカ
を加熱した場合の結晶化(クリストバライト化)を抑制
する役割をするAl1203およびR20の必要量を添
加することはできない。
Also, if the unavoidable components are less than 0.1%, high purity SiO2
Since only the raw materials are melted, it is not possible to add the necessary amounts of Al1203 and R20, which play a role in suppressing crystallization (cristobalite formation) when the fused silica product is heated.

又0.5%をこえると、不純物であるF e 203
、MgO。
Moreover, if it exceeds 0.5%, F e 203 which is an impurity
, MgO.

CaO等の不可避成分が多くなり、これらはSiO□と
は異物質であるので、溶融シリカを加熱する場合、結晶
化の核となりクリストバライト化を促進するので好まし
くない。
Unavoidable components such as CaO increase, and since these are different substances from SiO□, when fused silica is heated, they become crystallization nuclei and promote cristobalite formation, which is not preferable.

従って珪石や珪砂を選択すると共に添加する長石の種類
や量を選択して調整する必要がある。
Therefore, it is necessary to select silica stone or silica sand, and also select and adjust the type and amount of feldspar to be added.

本発明の原料を溶融炉に供給して酸水素炎により加熱し
溶融するので、その粒度としては、1mm以下の粉末が
好ましい。
Since the raw material of the present invention is supplied to a melting furnace and heated and melted by an oxyhydrogen flame, the particle size thereof is preferably a powder of 1 mm or less.

次に、前記した原料を溶融炉の上部バーナーから酸素と
水素と共に連続的に炉内に供給し酸水素炎により加熱溶
融し、溶融炉内に溶融体のプールを形成し炉底よりイン
ゴットとして取り出すことにより本発明品が得られる。
Next, the above-mentioned raw materials are continuously fed into the furnace together with oxygen and hydrogen from the upper burner of the melting furnace, heated and melted by an oxyhydrogen flame, and a pool of molten material is formed in the melting furnace, which is taken out as an ingot from the bottom of the furnace. In this way, the product of the present invention can be obtained.

なお水素は、水素のみのガスが好ましいが、これに限ら
れるものではなく、水素を主成分として含有するガスで
あってもよく、これを酸素により燃焼させ、加熱溶融す
る。
Note that hydrogen is preferably a gas containing only hydrogen, but is not limited to this, and may be a gas containing hydrogen as a main component, which is combusted with oxygen and then heated and melted.

酸水素炎の水素と酸素のモル比は1.5:1〜2.0
: 1の範囲が好ましい。
The molar ratio of hydrogen and oxygen in oxyhydrogen flame is 1.5:1 to 2.0
: The range of 1 is preferable.

その理由は水素と酸素のモル比が酸素に対し1,5未満
では水素が少なく、高温例えば1900℃以上の温度が
得られず、2をこえると酸素が不足しシリカの溶融に必
要な温度が得られないからである。
The reason for this is that if the molar ratio of hydrogen to oxygen is less than 1.5 to oxygen, there will be less hydrogen and it will not be possible to obtain a high temperature, e.g., 1900°C or higher. Because you can't get it.

さらに説明すると、一般的に水素と酸素は次の反応式で
燃焼する。
To explain further, hydrogen and oxygen generally burn according to the following reaction formula.

2H2+02→2H20 モル比がH210□=2の場合は理論モル比であるが、
H2102<1.5の場合は強酸化炎となり、1900
℃以上の温度が得られない。
2H2+02→2H20 If the molar ratio is H210□=2, it is the theoretical molar ratio, but
If H2102<1.5, it will be a strong oxidizing flame, and 1900
Temperatures above ℃ cannot be obtained.

従って完全なガラス状のものが得られないのでクリスト
バライト化しやすく、耐熱スポーリング性等にすぐれた
ものは得られない。
Therefore, it is not possible to obtain a completely glass-like product, which tends to convert into cristobalite, and it is not possible to obtain a product with excellent heat resistance and spalling properties.

H210□〉2の場合は還元炎となりすぎるので、H2
102=2の場合と同様に完全なガラス状のものを製造
するのに必要な温度が得られない。
In the case of H210□〉2, it becomes too much of a reduction flame, so H2
As in the case of 102=2, the temperature required to produce a completely glass-like product cannot be obtained.

本発明品の溶融シリカは、実施例第2表第4表に示すよ
うに、加熱した際にそのクリストバライト化は、温度1
350℃近傍より起り、1500℃の高温下においても
僅か20%程度である。
As shown in Table 4 of Example 2, the fused silica of the present invention does not change into cristobalite when heated.
It occurs from around 350°C and is only about 20% even at a high temperature of 1500°C.

この現象は、加熱時の雰囲気が空気、酸化、還元のいず
れであっても得られるが、特に還元雰囲気下の加熱にお
いてクリストバライト化し難い特性がある。
This phenomenon can be obtained whether the atmosphere at the time of heating is air, oxidation, or reduction, but it has a characteristic that it is difficult to convert into cristobalite especially when heated under a reducing atmosphere.

一方、従来の溶融シリカは1400〜1500℃の温度
領域ではその殆んどがクリストバライトに転移し、耐熱
スポーリング性が低下するため普及されていなかった。
On the other hand, conventional fused silica has not been widely used because most of it transforms to cristobalite in the temperature range of 1400 to 1500°C, resulting in a decrease in heat spalling resistance.

本発明の溶融シリカは、1200°C以上の温度でクリ
ストバライト化が小さいため単独もしくは従来の溶融シ
リカあるいはその他の耐火材料と配合して種々の用途に
用いることができる。
Since the fused silica of the present invention does not convert into cristobalite at a temperature of 1200° C. or higher, it can be used alone or in combination with conventional fused silica or other refractory materials for various purposes.

その用途としては具体的には連続鋳造用浸漬ノズル、コ
ークス製造炉用炉材、ストッパーヘッド、定盤のコーテ
ィング材料、ガラス工業用炉村なとあげられる。
Specific uses include immersion nozzles for continuous casting, furnace materials for coke manufacturing furnaces, stopper heads, coating materials for surface plates, and furnaces for the glass industry.

さらに各種耐火材料例えばC,SiC。ZrO2、Z
r02 、S 102 、 A12o32MgO。
Furthermore, various refractory materials such as C and SiC. ZrO2, Z
r02, S102, A12o32MgO.

3A70 ・2S t 02 、S i s N1.
B N等への添加3 材料としての使用が期待できる。
3A70 ・2S t 02 , S i s N1.
Addition to BN etc. 3 It is expected to be used as a material.

。以下、本発明を実施例により説明す
る。
. The present invention will be explained below using examples.

実施例1、比較例1 白珪石A89重量部と長石B11重量部とを混合した粒
度1 mm以下の原料Cを溶融炉に連続的に投原すると
共に、純度92.24容量%の水素と酸素とをN2:0
□−1,8:1の割合で吹込み温度1950〜2000
℃で溶融した。
Example 1, Comparative Example 1 Raw material C with a particle size of 1 mm or less, which is a mixture of 89 parts by weight of white silica A and 11 parts by weight of feldspar B, is continuously charged into a melting furnace, and hydrogen and oxygen with a purity of 92.24% by volume are added. and N2:0
□-1,8:1 ratio blowing temperature 1950-2000
Melted at °C.

得られた本発明品の溶融シリカDは全く非晶質でいわゆ
るガラス状のものであった。
The obtained fused silica D of the present invention was completely amorphous and so-called glass-like.

原料及び溶融シリカの成分を第1表に示す。The ingredients of the raw materials and fused silica are shown in Table 1.

なお比較のために白珪石Eを用いた以外は実施例1と同
様に行い従来品の溶融シリカFを得た。
For comparison, a conventional product of fused silica F was obtained in the same manner as in Example 1 except that white silica E was used.

これらの化学成分の分析値を第1表に示す。The analytical values of these chemical components are shown in Table 1.

次に、この溶融シリカDおよびFを粒度297〜149
μに調整し、空気中およびCOガ゛ス中1200〜15
00℃温度で、3時間加熱処理した後にクリストバライ
トの転移量(至)を測定した。
Next, the fused silica D and F were mixed with a particle size of 297 to 149.
1200-15 in air and CO gas.
After heat treatment at 00° C. for 3 hours, the amount of cristobalite transition (total) was measured.

結果を第2表に示す。The results are shown in Table 2.

クリストバライトの測定は、X線回析によりクリストバ
ライト(2θ=21.9°)のピークを測定する方法(
セラミックデータブック1973.P366記載の「石
英ガラスの失透の測定方法」)によった。
The measurement of cristobalite is carried out by measuring the peak of cristobalite (2θ=21.9°) using X-ray diffraction (
Ceramic Data Book 1973. "Method for measuring devitrification of quartz glass" described on page 366).

実施例2、比較例2 200μ以下の粒度の珪砂Gを用いた以外は実施例1と
同様な方法で行い本発明品の溶融シリカHを得た。
Example 2, Comparative Example 2 Fused silica H of the present invention was obtained in the same manner as in Example 1 except that silica sand G having a particle size of 200 μm or less was used.

これは全てガラス質であった。比較のために白珪石■を
用いた以外は同様に行い比較品の溶融シリカJを得た。
This was all glassy. A comparison product of fused silica J was obtained in the same manner except that white silica stone (2) was used for comparison.

これらの化学成分の分析値を第3表に示す。The analytical values of these chemical components are shown in Table 3.

次に、この溶融シリカを空気中およびCOガス中120
0〜1500℃の温度で3時間加熱処理した後に、クリ
ストバライトの転移量をm1lfflした。
Next, this fused silica was dissolved in air and CO gas at 120°C.
After heat treatment at a temperature of 0 to 1500°C for 3 hours, the amount of cristobalite transition was mlfffl.

測定法は実施例1と同様である。The measurement method is the same as in Example 1.

結果を第4表に示す。The results are shown in Table 4.

比較例3〜5 実施例1に用いた白珪石Aと長石Bとの割合をそれぞれ
比較例3では80重量部と20重量部、比較例4では7
5重量部と25重量部、比較例5では70重量部と30
重量部とした以外は実施例1と同様に行った。
Comparative Examples 3 to 5 The proportions of white silica A and feldspar B used in Example 1 were 80 parts by weight and 20 parts by weight in Comparative Example 3, and 7 parts by weight in Comparative Example 4, respectively.
5 parts by weight and 25 parts by weight, and in Comparative Example 5, 70 parts by weight and 30 parts by weight.
The same procedure as in Example 1 was carried out except that the parts by weight were changed.

次に得られた溶融シリカを空気中及びCOガス中で12
00〜1500℃の温度で3時間加熱処理をし、クリス
トバライトの転移量を測定した。
Next, the obtained fused silica was dissolved in air and CO gas for 12
A heat treatment was performed at a temperature of 00 to 1500°C for 3 hours, and the amount of cristobalite transition was measured.

これらの原料の化学分析値を第5表に、加熱試験による
クリストバライトの転移量を第6表に示す。
Table 5 shows the chemical analysis values of these raw materials, and Table 6 shows the amount of cristobalite transferred by heating tests.

本発明品の溶融シリカは、比較品と比較すると、その化
学成分中S i02含有量を小とし、A A’ 203
Compared to comparative products, the fused silica of the present invention has a lower SiO2 content in its chemical components, and A A' 203
.

Na2O,に20の化学成分を多くしたことを特徴とす
るもので、これは加熱によるクリストバライトへの転移
量が少なく、特に1400〜1600℃の高温化でかつ
COガスのような還元雰囲気下において、その効果が著
しい。
It is characterized by increasing the amount of chemical component 20 in Na2O, which means that the amount of transformation to cristobalite due to heating is small, especially at high temperatures of 1400 to 1600°C and in a reducing atmosphere such as CO gas. The effect is remarkable.

このことから、溶融シリカの新しい用途を期待すること
が可能であり工業的に有用である。
From this, it is possible to expect new uses for fused silica, and it is industrially useful.

Claims (1)

【特許請求の範囲】 1 重量比で、A72030.9〜3%、R200,7
〜2.5%およびFe 20a 、 MgO、CaOの
不可避成分が合計量で0.1〜0.5%含有してなる溶
融シリカ。 2 重量比でA12030.9〜3%、R200,7〜
2.5%およびFe2O3,MgO,CaOの不可避成
分が合計量で0.1〜0.5%、残部がS i02であ
る溶融シリカ原料粉末を溶融炉に連続的に供給すると共
に水素と酸素のモル比が1.5:1〜2.0二1である
酸水素炎により高温溶融することを特徴とする溶融シリ
カの製造法。
[Claims] 1 Weight ratio: A72030.9-3%, R200.7
2.5% and 0.1 to 0.5% of the total amount of unavoidable components Fe20a, MgO, and CaO. 2 Weight ratio A12030.9~3%, R200.7~
Fused silica raw material powder containing 2.5% and 0.1 to 0.5% of the unavoidable components of Fe2O3, MgO, and CaO in total, with the remainder being Si02, is continuously supplied to the melting furnace, and hydrogen and oxygen are A method for producing fused silica, characterized by high temperature melting using an oxyhydrogen flame having a molar ratio of 1.5:1 to 2.021.
JP52136910A 1977-11-15 1977-11-15 Fused silica and its manufacturing method Expired JPS5948773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52136910A JPS5948773B2 (en) 1977-11-15 1977-11-15 Fused silica and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52136910A JPS5948773B2 (en) 1977-11-15 1977-11-15 Fused silica and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5469126A JPS5469126A (en) 1979-06-02
JPS5948773B2 true JPS5948773B2 (en) 1984-11-28

Family

ID=15186424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52136910A Expired JPS5948773B2 (en) 1977-11-15 1977-11-15 Fused silica and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5948773B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021827A (en) * 1983-07-13 1985-02-04 Toshiba Ceramics Co Ltd Production of opaque quartz glass
JPH04200840A (en) * 1990-11-29 1992-07-21 Kubota Corp Coat for metal mold for casting
CN101090944B (en) * 2005-01-13 2012-05-30 住友电木株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
US10604437B2 (en) * 2014-10-20 2020-03-31 Navus Automation, Inc. Fused silica furnace system and method for continuous production of fused silica
JP7130903B2 (en) * 2018-06-04 2022-09-06 東京窯業株式会社 Refractory materials for low-melting non-ferrous metals

Also Published As

Publication number Publication date
JPS5469126A (en) 1979-06-02

Similar Documents

Publication Publication Date Title
Curtis et al. Investigation of the thermal dissociation, reassociation, and synthesis of zircon
Curtis Development of zirconia resistant to thermal shock
JPH0328175A (en) Molten, cast fire-proof product containing a large amount of zirconium dioxide
JP2019137605A (en) Heat proof clay raw material and heat proof ceramic
EA023785B1 (en) Refractory product having high zirconia content
JPH08165131A (en) Apparatus for producing synthetic quartz glass
GB2024799A (en) Fused refractory
JPS5948773B2 (en) Fused silica and its manufacturing method
JPH092870A (en) High zirconia electro brick
CN1068860C (en) Method for prodn. of fused ZrO2 with stable calcium oxide
US3463650A (en) Vitreous silica refractories
US10584065B2 (en) Refractory block and glass-melting furnace
Dingwell Density of Ga2O3 liquid
JP2004508271A (en) Refractory
RU1796601C (en) Melted and cast fire-proof material having high aluminum content
JPH0639483A (en) Ceramic core
CN101941846B (en) Superhigh temperature refractory pyrometric cone and preparation method thereof
FI78447B (en) TILLSAETTNING AV FERROKROMSLAGG FOER FRAMSTAELLNING AV ELDFASTA OCH KEMISKT BESTAENDIGA FIBER.
US3416938A (en) Mgo-zr-o2 fused cast refractory
JPS599509B2 (en) Melt-cast refractory composition
Kreidl Zirconium oxide and thorium oxide in ceramics
JPS62252364A (en) Alumina ceramic
JPH07277819A (en) Aluminum titanate clinker and refractory using the same
JPS5927731B2 (en) Method for producing calcia clinker
JPH0151443B2 (en)