JPH0221667B2 - - Google Patents

Info

Publication number
JPH0221667B2
JPH0221667B2 JP58115118A JP11511883A JPH0221667B2 JP H0221667 B2 JPH0221667 B2 JP H0221667B2 JP 58115118 A JP58115118 A JP 58115118A JP 11511883 A JP11511883 A JP 11511883A JP H0221667 B2 JPH0221667 B2 JP H0221667B2
Authority
JP
Japan
Prior art keywords
copper
inorganic filler
epoxy resin
clad laminate
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58115118A
Other languages
Japanese (ja)
Other versions
JPS607796A (en
Inventor
Kinichi Hasegawa
Ryoji Kato
Kunio Iketani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP11511883A priority Critical patent/JPS607796A/en
Publication of JPS607796A publication Critical patent/JPS607796A/en
Publication of JPH0221667B2 publication Critical patent/JPH0221667B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無機質充填剤を大量に含有したエポキ
シ樹脂含浸プリプレグを用いてなる印刷回路用銅
張積層板及びその製造方法に関する。 近年、印刷回路用銅張積層板としてガラス不織
布を中間層基材とし、ガラス織布を表面層基材と
した構成で、エポキシ樹脂を含浸させ結合剤とし
た積層板(以下、コンポジツト積層板と略称す
る)が多量に使用されるようになつた。 ガラス織布基材のみにエポキシ樹脂を含浸させ
た積層板は機械的強度、寸法安定性、耐湿性、耐
熱性に優れ、スルーホールメツキの信頼性が高い
ので電子計算機、通信機、電子交換機等の産業用
電子機器に多く使用されている。しかし、基材に
ガラス織布のみを使用するので、印刷回路板の加
工工程の一つである孔あけ工程では打抜加工が不
可能であり、ドリル加工されているのが実状であ
る。 一方、コンポジツト積層板はガラス織布基材の
積層板より経済的に安価で且つ、打抜き孔あけ加
工が可能な点で優れており、加工性の良いガラス
基材積層板として注目をあびたが、スルーホール
メツキの信頼性がガラス織布基材積層板より低い
と評価されていた。この理由として、ガラス織布
基材エポキシ積層板の構成は有機物であるエポキ
シ樹脂と無機物であるガラス織布の重量比率が約
40:60である。この場合、エポキシ樹脂が主に各
種電気性能を優れたものにし、ガラス織布が曲げ
強度、寸法安定性などの機械的性能を良好にして
いると考えられる。 ところで、一般のコンポジツト積層板は機械的
性能に寄与する無機基材、阻ちガラス織布とガラ
ス不織布の合計量がガラス織布積層板より少な
い。有機物と無機物の比率が約60:40でありガラ
ス織布積層板と比率が逆転しているため寸法安定
性やスルーホールメツキの信頼性が低いと評価さ
れていた。 本発明の発明者等はコンポジツト積層板の優れ
た特徴を活かしながら、これらの欠点を改良すべ
く検討し、一般のコンポジツト積層板の構成にさ
らに無機充填剤を大量に配合することにより単一
組成では得られない特徴ある新規コンポジツト積
層板を得た。 本発明のコンポジツト積層板においては、エポ
キシ樹脂に無機充填剤を大量に配合し、コンポジ
ツト積層板の無機物の比率を高めることにより、
スルーホールメツキの信頼性等をガラス織布積層
板と同等又はそれ以上にまで向上させることがで
きた。 本発明はコンポジツト積層板において、中間層
中に無機充填剤が中間層のエポキシ樹脂100部
(実量部、以下同じ)に対し100〜200部含まれて
いることを特徴とするものである。 本発明に用いられる無機充填剤として、クレ
ー、タルク、マイカ、シリカ粉末、アルミナ、水
酸化アルミニウム、ガラス粉末、チタンホワイ
ト、ワラストナイト、三酸化アンチモン等が用い
られる。好ましい無機充填剤として、シリカ及
び/又はアルミナ、と、水酸化アルミニウムの混
合粉末が用いられる。シリカ、アルミナは積層板
の耐熱性向上に効果があり、水酸化アルミニウム
は耐燃性向上に有効である。 無機充填剤がエポキシ樹脂中でいわゆるままこ
にならないで均一に分散するためには、充填剤の
平均粒径が5〜10μであり、最大粒径が40μ以下
であることが好ましい。粒径40μより大きい場合
には無機充填剤含有エポキシ樹脂をガラス不織布
に含浸させた時に不織布による濾過作用のため積
層板のガラス不織布中で無機充填剤の分布が不均
一になる。一方、無機充填剤の粒子の多くが粒径
5μより小さい場合には無機充填剤の微粉末が固
まりままこの状態になりやすく、やはり無機充填
剤の分布が不均一になる。 次に超微粒子シリカを無機充填剤の中に全体量
の2〜10%配合することによりエポキシ樹脂ワニ
ス中の無機充填剤の沈降を防止し、さらにガラス
不織布に含浸させた時に無機充填剤の分布を均一
にするのに大きな効果がある。 実施例 1 エポキシ樹脂配合ワニスの組成は次の通りであ
る。 (1) 臭素化エポキシ樹脂(油化シエル製、EP−
1046) 100部 (2) ジシアンジアミド 4 (3) 2エチル4メチルイミダゾール 0.15 (4) メチルセロソルブ 36 (5) アセトン 60 上記材料を混合して均一なワニスを作製した。 次に該ワニスをガラス織布(日東紡製、WE−
18K BZ−2)に樹脂含有量が42〜45%になるよ
うに含浸乾燥し、ガラス織布プリプレグを得た。 続いて前記エポキシ樹脂配合ワニスに樹脂分
100部に対し次の配合の無機充填剤を添加し撹拌
混合し無機充填剤含有ワニスを作製した。 (1) シリカ(龍森製、クリスタルライトVX−
3) 30部 (2) 水酸化アルミニウム(昭和軽金属製、ハジラ
イトH−42) 70 (3) 超微粉末シリカ(シオノギ製薬製、カープレ
ツクス) 5 次のこの無機充填剤含有ワニスをガラス不織布
(日本バイリーン製、EP−4075)に樹脂及び無機
充填剤の含有量が90%になるように含浸乾燥して
ガラス不織布プリプレグを得た。 次に前記ガラス不織布プリプレグを中間層と
し、表面層に前記のガラス織布プリプレグを配置
し、さらにその上に銅箔を重ね成形温度165℃、
圧力60Kg/cm3で90分間積層成形して厚さ1.6mmの
銅張積層板を得た。 実施例 2 実施例1において、エポキシ樹脂ワニスに添加
する無機充填剤の配合割合を前記ワニス中の樹脂
分100部に対して (1) シリカ 5部 (2) 水酸化アルミニウム 95 (3) 超微粉末シリカ 5 とした以外は実施例1と同様にして、銅張積層板
を得た。 比較例 ガラス織布プリプレグは実施例と同様にして得
た。続いて、実施例で使用したエポキシ樹脂ワニ
スをガラス不織布に樹脂含有量が70〜75%になる
ように含浸乾燥しガラス不織布プリプレグを得
た。 その後は実施例と同様にして厚さ1.6mmの銅張
積層板と得た。 それぞれ得られた銅張積層板の特性は第1表及
び第2表の通りである。測定方法は耐燃性、収縮
率、打抜性以外についてはJIS C 6481により行
つた。
The present invention relates to a copper-clad laminate for printed circuits using an epoxy resin-impregnated prepreg containing a large amount of inorganic filler, and a method for manufacturing the same. In recent years, laminates (hereinafter referred to as composite laminates) have been developed as copper-clad laminates for printed circuits, which have a structure in which glass nonwoven fabric is used as an intermediate layer base material and glass woven fabric is used as a surface layer base material, and epoxy resin is impregnated and used as a binder. ) has come to be used in large quantities. The laminate, which is made by impregnating only the woven glass fabric base material with epoxy resin, has excellent mechanical strength, dimensional stability, moisture resistance, and heat resistance, and has high reliability in through-hole plating, so it can be used in electronic computers, communication equipment, electronic exchange equipment, etc. It is widely used in industrial electronic equipment. However, since only glass woven fabric is used as the base material, punching is not possible in the hole-drilling process, which is one of the processing steps for printed circuit boards, and in reality, drilling is required. On the other hand, composite laminates are superior in that they are economically cheaper than laminates made of woven glass fabric and can be punched and punched, and have attracted attention as glass-based laminates with good workability. The reliability of through-hole plating was evaluated to be lower than that of glass woven fabric base laminates. The reason for this is that the composition of the glass woven fabric base epoxy laminate is such that the weight ratio of the organic epoxy resin and the inorganic glass woven fabric is approximately
It's 40:60. In this case, it is thought that the epoxy resin mainly provides excellent electrical performance, and the glass woven fabric provides excellent mechanical performance such as bending strength and dimensional stability. By the way, in general composite laminates, the total amount of inorganic base material, barrier glass woven fabric, and glass nonwoven fabric that contribute to mechanical performance is smaller than that of glass woven fabric laminates. The ratio of organic matter to inorganic matter is approximately 60:40, which is the opposite of that of the glass woven laminate, so it was evaluated as having low dimensional stability and reliability of through-hole plating. The inventors of the present invention made use of the excellent characteristics of composite laminates while studying to improve these drawbacks, and by adding a large amount of inorganic filler to the structure of general composite laminates, a single composition was created. We have obtained a new composite laminate with characteristics that cannot be obtained with other materials. In the composite laminate of the present invention, by incorporating a large amount of inorganic filler into the epoxy resin and increasing the ratio of inorganic substances in the composite laminate,
We were able to improve the reliability of through-hole plating to the same level as or even higher than that of glass woven fabric laminates. The present invention is a composite laminate, which is characterized in that the intermediate layer contains 100 to 200 parts of an inorganic filler based on 100 parts (actual parts, hereinafter the same) of the epoxy resin of the intermediate layer. Examples of inorganic fillers used in the present invention include clay, talc, mica, silica powder, alumina, aluminum hydroxide, glass powder, titanium white, wollastonite, and antimony trioxide. A mixed powder of silica and/or alumina and aluminum hydroxide is used as a preferred inorganic filler. Silica and alumina are effective in improving the heat resistance of the laminate, and aluminum hydroxide is effective in improving the flame resistance. In order for the inorganic filler to be uniformly dispersed in the epoxy resin without becoming lumpy, it is preferable that the filler has an average particle size of 5 to 10 microns and a maximum particle size of 40 microns or less. If the particle size is larger than 40μ, the distribution of the inorganic filler in the glass nonwoven fabric of the laminate becomes uneven due to the filtration action of the nonwoven fabric when the glass nonwoven fabric is impregnated with the inorganic filler-containing epoxy resin. On the other hand, many of the particles of inorganic fillers have a particle size of
If it is smaller than 5μ, the fine powder of the inorganic filler tends to remain solid, resulting in uneven distribution of the inorganic filler. Next, by blending 2 to 10% of the total amount of ultrafine particle silica into the inorganic filler, the sedimentation of the inorganic filler in the epoxy resin varnish is prevented, and the distribution of the inorganic filler when impregnated into a glass nonwoven fabric. It has a great effect on making it even. Example 1 The composition of an epoxy resin-containing varnish is as follows. (1) Brominated epoxy resin (manufactured by Yuka Ciel, EP-
1046) 100 parts (2) Dicyandiamide 4 (3) 2-ethyl-4-methylimidazole 0.15 (4) Methyl cellosolve 36 (5) Acetone 60 The above materials were mixed to prepare a uniform varnish. Next, the varnish was applied to a glass woven fabric (manufactured by Nittobo, WE-
18K BZ-2) was impregnated with a resin content of 42 to 45% and dried to obtain a glass woven prepreg. Next, a resin component is added to the epoxy resin-containing varnish.
An inorganic filler having the following composition was added to 100 parts and mixed with stirring to prepare an inorganic filler-containing varnish. (1) Silica (Tatsumori, Crystal Light VX−
3) 30 parts (2) Aluminum hydroxide (Showa Light Metal Co., Ltd., Hajilite H-42) 70 (3) Ultrafine powder silica (Shionogi Pharmaceutical Co., Ltd., Carplex) A glass nonwoven fabric prepreg was obtained by impregnating and drying the resin and inorganic filler in 90% resin and inorganic filler. Next, the glass non-woven fabric prepreg was used as an intermediate layer, the glass woven fabric prepreg was placed on the surface layer, and copper foil was further layered on top of it, at a molding temperature of 165°C.
Lamination molding was performed for 90 minutes at a pressure of 60 kg/cm 3 to obtain a copper-clad laminate with a thickness of 1.6 mm. Example 2 In Example 1, the proportions of inorganic fillers added to the epoxy resin varnish were (1) 5 parts of silica (2) 95 parts of aluminum hydroxide (3) Ultrafine, based on 100 parts of resin in the varnish. A copper-clad laminate was obtained in the same manner as in Example 1 except that powdered silica 5 was used. Comparative Example A glass woven prepreg was obtained in the same manner as in the example. Subsequently, a glass nonwoven fabric was impregnated with the epoxy resin varnish used in the examples to a resin content of 70 to 75% and dried to obtain a glass nonwoven fabric prepreg. Thereafter, a copper-clad laminate having a thickness of 1.6 mm was obtained in the same manner as in the example. The properties of the copper-clad laminates obtained are shown in Tables 1 and 2. Measurements other than flame resistance, shrinkage rate, and punchability were measured in accordance with JIS C 6481.

【表】【table】

【表】 スルーホールメツキの密着性の測定方法は次の
通りである(第1図参照)。銅張積層板1にドリ
ル加工により所定の径のスルーホール2を設け、
スルーホールメツキ3を行つた後、表面の銅箔を
除去する。次に0.6mmφの洋白線4をスルーホー
ル内でハンダ5で固定する。この洋白線4をA方
向に引抜き、その引抜き強度を測定する。 以上のように、本発明は無機充填剤を大量に含
有した構成になつているので、従来品(比較例)
に比べてスルーホールメツキの密着性がすぐれ、
スルーホールメツキの信頼性が向上することがわ
かる。この他一般特性においては、吸水率、収縮
率等が向上し、電気特性もほぼ同等乃至それ以上
である。
[Table] The method for measuring the adhesion of through-hole plating is as follows (see Figure 1). A through hole 2 of a predetermined diameter is provided in the copper clad laminate 1 by drilling,
After performing through-hole plating 3, the copper foil on the surface is removed. Next, fix the nickel silver wire 4 of 0.6 mmφ in the through hole with solder 5. This nickel silver wire 4 was pulled out in the direction A, and its pulling strength was measured. As described above, the present invention has a structure containing a large amount of inorganic filler, so compared to the conventional product (comparative example)
The adhesion of through-hole plating is superior to that of
It can be seen that the reliability of through-hole plating is improved. In terms of other general properties, the water absorption rate, shrinkage rate, etc. are improved, and the electrical properties are also almost the same or better.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスルーホールメツキの密着性の測定方
法を示す断面図である。
FIG. 1 is a cross-sectional view showing a method for measuring the adhesion of through-hole plating.

Claims (1)

【特許請求の範囲】 1 表面層はエポキシ樹脂ガラス織布からなり、
中間層はエポキシ樹脂ガラス不織布からなり、表
面層表面の一方又は両方に銅箔が積層され、これ
らが加熱加圧により一体化されてなる銅張積層板
において、中間層には中間層のエポキシ樹脂100
重量部に対して無機充填剤100〜200重量部が含ま
れていることを特徴とする印刷回路用銅張積層
板。 2 無機充填剤がシリカ及び/又はアルミナと水
酸化アルミニウムの混合粉末からなることを特徴
とする特許請求の範囲第1項記載の印刷回路用銅
張積層板。 3 無機充填剤の平均粒径が5〜10μであり最大
粒径が40μ以下であることを特徴とする第1項記
載の印刷回路用銅張積層板。 4 無機充填剤の中のシリカとして平均粒径が10
〜40mμの超微粒子シリカが配合されていること
を特徴とする第1項記載の印刷回路用銅張積層
板。 5 エポキシ樹脂100重量部に対し無機充填剤100
〜200重量部を配合してなるワニスをガラス不織
布に含浸乾燥させて得られたプリプレグの一枚又
は複数枚を中間層とし、表面層にエポキシ樹脂ガ
ラス織布プリプレグを用い、その表面の一方又は
両方に銅箔を配置し加熱加圧成形することを特徴
とする印刷回路用銅張積層板の製造方法。
[Claims] 1. The surface layer is made of epoxy resin glass woven fabric,
In a copper-clad laminate in which the intermediate layer is made of epoxy resin glass nonwoven fabric and copper foil is laminated on one or both surfaces of the surface layer and these are integrated by heating and pressing, the intermediate layer is made of epoxy resin as the intermediate layer. 100
A copper-clad laminate for printed circuits, which contains 100 to 200 parts by weight of an inorganic filler. 2. The copper-clad laminate for printed circuits according to claim 1, wherein the inorganic filler is composed of a mixed powder of silica and/or alumina and aluminum hydroxide. 3. The copper-clad laminate for printed circuits according to item 1, wherein the inorganic filler has an average particle size of 5 to 10 μm and a maximum particle size of 40 μm or less. 4 As silica in the inorganic filler, the average particle size is 10
2. The copper-clad laminate for printed circuits according to item 1, characterized in that ultrafine silica particles of ~40 mμ are blended. 5 100 parts by weight of inorganic filler per 100 parts by weight of epoxy resin
One or more sheets of prepreg obtained by impregnating and drying a glass nonwoven fabric with a varnish containing ~200 parts by weight is used as the intermediate layer, and an epoxy resin glass woven fabric prepreg is used as the surface layer, and one or more of the surfaces A method for manufacturing a copper-clad laminate for printed circuits, characterized by placing copper foil on both sides and forming under heat and pressure.
JP11511883A 1983-06-28 1983-06-28 Copper-lined laminated board for printed circuit and method of producing same Granted JPS607796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11511883A JPS607796A (en) 1983-06-28 1983-06-28 Copper-lined laminated board for printed circuit and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11511883A JPS607796A (en) 1983-06-28 1983-06-28 Copper-lined laminated board for printed circuit and method of producing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4097515A Division JP2568347B2 (en) 1992-03-06 1992-03-06 Copper clad laminate for printed circuit

Publications (2)

Publication Number Publication Date
JPS607796A JPS607796A (en) 1985-01-16
JPH0221667B2 true JPH0221667B2 (en) 1990-05-15

Family

ID=14654690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11511883A Granted JPS607796A (en) 1983-06-28 1983-06-28 Copper-lined laminated board for printed circuit and method of producing same

Country Status (1)

Country Link
JP (1) JPS607796A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274931A (en) * 1985-05-31 1986-12-05 東芝ケミカル株式会社 Copper lined laminated board
JPS61284989A (en) * 1985-06-11 1986-12-15 住友ベークライト株式会社 Laminate board for printed circuit
JPS6260877A (en) * 1985-09-11 1987-03-17 Toshiba Chem Corp Laminated sheet for chemical plating
JPS62156953U (en) * 1986-03-27 1987-10-05
JPH07100360B2 (en) * 1986-05-20 1995-11-01 東芝ケミカル株式会社 Copper clad laminate
JPH07115444B2 (en) * 1986-06-13 1995-12-13 東芝ケミカル株式会社 Copper clad laminate
JPH0192237A (en) * 1987-10-02 1989-04-11 Toshiba Chem Corp Production of copper-clad laminated sheet
JPH0197634A (en) * 1987-10-09 1989-04-17 Kanegafuchi Chem Ind Co Ltd Continuous manufacture of laminated plate for glass fiber reinforcing electricity
US5177399A (en) * 1988-06-27 1993-01-05 Kabushiki Kaisha Toshiba Color cathode ray tube apparatus
JP2924966B2 (en) * 1989-04-27 1999-07-26 住友ベークライト株式会社 Printed circuit laminate
US5206559A (en) * 1989-08-04 1993-04-27 Kabushiki Kaisha Toshiba Cathode ray tube which improves deflection aberration
JP2551249B2 (en) * 1991-03-20 1996-11-06 新神戸電機株式会社 Composite laminate
JP4715035B2 (en) * 2001-05-28 2011-07-06 パナソニック電工株式会社 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136377A (en) * 1974-04-17 1975-10-29
JPS5236904A (en) * 1975-09-19 1977-03-22 Hitachi Ltd Signal transmission circuit
JPS5530315A (en) * 1978-08-22 1980-03-04 Ishikawajima Harima Heavy Ind Co Ltd Distributing and generating device for pressure fluid to reforming tool
JPS5540424A (en) * 1978-09-14 1980-03-21 Canon Inc Processor camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136377A (en) * 1974-04-17 1975-10-29
JPS5236904A (en) * 1975-09-19 1977-03-22 Hitachi Ltd Signal transmission circuit
JPS5530315A (en) * 1978-08-22 1980-03-04 Ishikawajima Harima Heavy Ind Co Ltd Distributing and generating device for pressure fluid to reforming tool
JPS5540424A (en) * 1978-09-14 1980-03-21 Canon Inc Processor camera

Also Published As

Publication number Publication date
JPS607796A (en) 1985-01-16

Similar Documents

Publication Publication Date Title
JP3119577B2 (en) Laminated board
JP3520604B2 (en) Composite laminate
JPH0221667B2 (en)
JPS6059795A (en) Laminated board for printed circuit
JPH01222950A (en) Laminated plate
JP2612129B2 (en) Laminated board
JPH0573077B2 (en)
JP2894496B2 (en) Manufacturing method of printed circuit board
JP2659490B2 (en) Printed circuit laminate
JP2787846B2 (en) Printed circuit laminate
JP2568347B2 (en) Copper clad laminate for printed circuit
JP2740600B2 (en) Printed circuit laminate
JP2557325B2 (en) Multilayer copper clad laminate
JPS60203438A (en) Laminated board for printed circuit
JPH05327150A (en) Laminated plate for printed circuit
JPS60203642A (en) Manufacture of composite laminate board
JP3343330B2 (en) Method for producing insulating varnish, insulating varnish obtained by this method, and multilayer printed wiring board using this insulating varnish
JPH04215492A (en) Manufacture of laminated board for printed circuit
JPH07176843A (en) Laminated board for printed circuit
JPH0571157B2 (en)
JP2924966B2 (en) Printed circuit laminate
JPH05327149A (en) Laminated plate for printed circuit
JPS59222337A (en) Metallic foil lined laminated board
JPH0573076B2 (en)
JPS62292428A (en) Copper-lined laminated board