JP2568347B2 - Copper clad laminate for printed circuit - Google Patents

Copper clad laminate for printed circuit

Info

Publication number
JP2568347B2
JP2568347B2 JP4097515A JP9751592A JP2568347B2 JP 2568347 B2 JP2568347 B2 JP 2568347B2 JP 4097515 A JP4097515 A JP 4097515A JP 9751592 A JP9751592 A JP 9751592A JP 2568347 B2 JP2568347 B2 JP 2568347B2
Authority
JP
Japan
Prior art keywords
inorganic filler
parts
epoxy resin
weight
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4097515A
Other languages
Japanese (ja)
Other versions
JPH05121850A (en
Inventor
謹一 長谷川
亮二 加藤
国夫 池谷
Original Assignee
住友ベークライト 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト 株式会社 filed Critical 住友ベークライト 株式会社
Priority to JP4097515A priority Critical patent/JP2568347B2/en
Publication of JPH05121850A publication Critical patent/JPH05121850A/en
Application granted granted Critical
Publication of JP2568347B2 publication Critical patent/JP2568347B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は無機質充填剤を大量に含
有したエポキシ樹脂含浸プリプレグを用いてなる印刷回
路用銅張積層板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper-clad laminate for a printed circuit using an epoxy resin impregnated prepreg containing a large amount of an inorganic filler.

【0002】[0002]

【従来の技術】近年、印刷回路用銅張積層板としてガラ
ス不織布を中間層基材とし、ガラス織布を表面層基材と
した構成で、エポキシ樹脂を含浸させ結合剤とした積層
板(以下、コンポジット積層板と略称する)が多量に使
用されるようになった。ガラス織布基材のみにエポキシ
樹脂を含浸させた積層板は機械的強度、寸法安定性、耐
湿性、耐熱性に優れ、スルーホールメッキの信頼性が高
いので電子計算機、通信機、電子交換機等の産業用電子
機器に多く使用されている。しかし、基材にガラス織布
のみを使用するので、印刷回路板の加工工程の一つであ
る孔あけ工程では打抜加工が不可能であり、ドリル加工
されているのが実状である。
2. Description of the Related Art In recent years, a copper-clad laminate for a printed circuit has a structure in which a glass non-woven fabric is used as an intermediate layer base material and a glass woven fabric is used as a surface layer base material. , Composite laminates) have been used in large quantities. Laminates made by impregnating only glass woven fabric with epoxy resin have excellent mechanical strength, dimensional stability, moisture resistance, heat resistance, and high reliability of through-hole plating, so computers, communication equipment, electronic exchanges, etc. Is widely used in industrial electronic devices. However, since only a glass woven fabric is used as a base material, punching cannot be performed in a drilling step, which is one of the processing steps of a printed circuit board, and drilling is a reality.

【0003】一方、コンポジット積層板はガラス織布基
材の積層板より経済的に安価で、かつ打抜き孔あけ加工
が可能な点で優れており、加工性の良いガラス基材積層
板として注目をあびたが、スルーホールメッキの信頼性
がガラス織布基材積層板より低いと評価されていた。こ
の理由として、ガラス織布基材エポキシ積層板の構成
は、有機物であるエポキシ樹脂と無機物であるガラス織
布の重量比率が約40:60である。この場合、エポキ
シ樹脂が主に各種電気性能を優れたものにし、ガラス織
布が曲げ強度、寸法安定性などの機械的性能を良好にし
ていると考えられる。
[0003] On the other hand, composite laminates are economically less expensive than glass woven substrate laminates and are superior in that they can be punched. It was evaluated that the reliability of the through-hole plating was lower than that of the glass woven fabric substrate laminate. For this reason, the weight ratio of the epoxy resin, which is an organic substance, and the glass woven cloth, which is an inorganic substance, is about 40:60 in the configuration of the glass woven fabric base epoxy laminate. In this case, it is considered that the epoxy resin mainly improves various electric performances, and the glass woven fabric improves mechanical performance such as bending strength and dimensional stability.

【0004】ところで、一般のコンポジット積層板は機
械的性能に寄与する無機基材、阻ちガラス織布とガラス
不織布の合計量がガラス織布積層板より少ない。有機物
と無機物の比率が約60:40でありガラス織布積層板
と比率が逆転しているため寸法安定性やスルーホールメ
ッキの信頼性が低いと評価されていた。これに対し、無
機物の比率を高めるために、無機充填剤を含有せしめた
ガラス不織布にエポキシ樹脂を含浸せしめる方法が知ら
れている(特開昭50−136377号公報)が、無機
充填剤粒子間への樹脂の含浸性が悪いので、得られたコ
ンポジット積層板は吸水率、強度が十分はなく、スルー
ホールメッキの密着性の改善が十分ではない。
[0004] By the way, a general composite laminate has a smaller total amount of an inorganic base material, a glass woven fabric and a glass nonwoven fabric which contribute to mechanical performance than a glass woven laminate. Since the ratio of the organic substance to the inorganic substance was about 60:40, and the ratio was reversed to that of the glass woven laminate, it was evaluated that the dimensional stability and the reliability of through-hole plating were low. On the other hand, a method of impregnating a glass nonwoven fabric containing an inorganic filler with an epoxy resin in order to increase the ratio of inorganic substances is known (Japanese Patent Laid-Open No. 50-136377). Since the resin impregnating property is poor, the resulting composite laminate does not have sufficient water absorption and strength, and the adhesion of through-hole plating is not sufficiently improved.

【0005】[0005]

【発明が解決しようとする課題】本発明の発明者等はコ
ンポジット積層板の優れた特徴をいかしながら、これら
の欠点を改良すべく検討し、一般のコンポジット積層板
の構成において、中間層のエポキシ樹脂ワニスに無機充
填剤を大量に配合することにより無機物の比率を高め
て、従来のものでは得られない特徴ある新規コンポジッ
ト積層板を得た。
DISCLOSURE OF THE INVENTION The inventors of the present invention have studied to improve these disadvantages while taking advantage of the excellent characteristics of the composite laminate. By adding a large amount of an inorganic filler to the resin varnish, the ratio of the inorganic substance was increased, and a novel composite laminate was obtained which could not be obtained by the conventional one.

【0006】[0006]

【課題を解決するための手段】本発明は、表面層はエポ
キシ樹脂ガラス織布からなり、中間層はエポキシ樹脂ガ
ラス不織布からなり、表面層表面の一方又は両方に銅箔
が積層され、これらが加熱加圧により一体化されてなる
銅張積層板において、中間層には中間層のエポキシ樹脂
100重量部に対して無機充填剤100〜200重量部
が含まれ、かつ、無機充填剤中に超微粒子シリカが配合
されていることを特徴とする印刷回路用銅張積層板であ
る。
According to the present invention, the surface layer is made of woven epoxy resin glass, the intermediate layer is made of non-woven epoxy resin glass, and copper foil is laminated on one or both of the surface layers. In the copper-clad laminate integrated by heating and pressing, the intermediate layer contains 100 to 200 parts by weight of the inorganic filler based on 100 parts by weight of the epoxy resin of the intermediate layer, and the inorganic filler contains A copper-clad laminate for printed circuits, characterized by containing fine-particle silica.

【0007】本発明に用いられる無機充填剤として、ク
レー、タルク、マイカ、シリカ粉末、アルミナ、水酸化
アルミニウム、ガラス粉末、チタンホワイト、ワラスト
ナイト、三酸化アンチモン等が用いられる。好ましい無
機充填剤として、シリカ及び/又はアルミナ、と、水酸
化アルミニウムの混合粉末が用いられる。シリカ、アル
ミナは積層板の耐熱性向上に効果があり、水酸化アルミ
ニウムは耐熱性向上に有効である。
As the inorganic filler used in the present invention, clay, talc, mica, silica powder, alumina, aluminum hydroxide, glass powder, titanium white, wollastonite, antimony trioxide and the like are used. As a preferred inorganic filler, a mixed powder of silica and / or alumina and aluminum hydroxide is used. Silica and alumina are effective in improving the heat resistance of the laminate, and aluminum hydroxide is effective in improving the heat resistance.

【0008】無機充填剤がエポキシ樹脂中でいわゆるま
まこにならないで均一に分散するためには、充填剤の平
均粒径が5〜10μmであり、最大粒径が40μm以下
であることが好ましい。最大粒径40μmより大きいあ
るいは平均粒径が10μmより大きい場合には、無機充
填剤含有エポキシ樹脂をガラス不織布に含浸させた時に
不織布による濾過作用のため積層板のガラス不織布中で
無機充填剤の分布が不均一になる傾向がある。一方、無
機充填剤の粒子の平均粒径が5μより小さい場合には無
機充填剤の微粒子が固まりままこの状態になりやすく、
やはり無機充填剤の分布が不均一になる傾向がある。エ
ポキシ樹脂100重量部に対する無機充填剤の量が10
0重量部より少ないと無機充填剤の配合効果が小さく、
200重量部より多いとガラス不織布への樹脂ワニスの
含浸性が低下するようになる。
In order to uniformly disperse the inorganic filler in the epoxy resin without causing so-called self-standing, it is preferable that the filler has an average particle size of 5 to 10 μm and a maximum particle size of 40 μm or less. When the maximum particle size is larger than 40 μm or the average particle size is larger than 10 μm, the distribution of the inorganic filler in the glass nonwoven fabric of the laminate is due to the filtering action by the nonwoven fabric when the epoxy resin containing the inorganic filler is impregnated into the glass nonwoven fabric. Tend to be non-uniform. On the other hand, when the average particle diameter of the particles of the inorganic filler is smaller than 5μ, the fine particles of the inorganic filler are likely to be in this state as solidified,
Again, the distribution of the inorganic filler tends to be non-uniform. The amount of the inorganic filler is 10 per 100 parts by weight of the epoxy resin.
If the amount is less than 0 parts by weight, the compounding effect of the inorganic filler is small,
If the amount is more than 200 parts by weight, the impregnating property of the resin varnish into the glass nonwoven fabric is reduced.

【0009】次に、平均粒径が10nm〜40nmであ
る超微粒子シリカを無機充填剤の一部として配合するこ
とにより、エポキシ樹脂ワニス中の無機充填剤の沈降を
防止し、さらにガラス不織布に含浸させたときに無機充
填剤の分布を均一にするのに効果的である。かかる超微
粒子シリカとしては、具体的には、塩野義製薬(株)製
の「カープレックス」、日本アエロジル(株)製の「ア
エロジル(AEROSIL)」等がある。この配合量は
無機充填剤全体の0.5〜15重量%の範囲において効
果がある。無機充填剤全体に対する配合量が0.5重量
%より少ないとその効果がほとんどなく、15重量%よ
り多いと粘度上昇により含浸性が大きく低下するように
なる。特に2〜10重量%の範囲において効果的であ
る。特に、エポキシ樹脂100重量部に対する無機充填
剤の割合が150重量部以上の場合においては、粘度を
低下させるためエポキシ樹脂ワニスの溶剤量を多くする
と、無機充填剤が沈降しやすくなるが、超微粒子シリカ
の存在によりこれを防止することができる。
Next, by adding ultrafine silica having an average particle size of 10 nm to 40 nm as a part of the inorganic filler, sedimentation of the inorganic filler in the epoxy resin varnish is prevented, and the glass nonwoven fabric is impregnated. It is effective to make the distribution of the inorganic filler uniform when it is made. Specific examples of such ultrafine silica include "Carplex" manufactured by Shionogi & Co., Ltd. and "AEROSIL" manufactured by Nippon Aerosil Co., Ltd. This amount is effective in the range of 0.5 to 15% by weight of the whole inorganic filler. If the amount is less than 0.5% by weight based on the total amount of the inorganic filler, the effect is almost negligible. It is particularly effective in the range of 2 to 10% by weight. In particular, when the ratio of the inorganic filler to 100 parts by weight of the epoxy resin is 150 parts by weight or more, if the amount of the solvent in the epoxy resin varnish is increased to reduce the viscosity, the inorganic filler is likely to settle, but This can be prevented by the presence of silica.

【0010】[0010]

【実施例】以下、実施例により本発明を説明する。配合
は重量部である。 [実施例1]エポキシ樹脂ワニスの組成は次の通りであ
る。 (1)臭素化エポキシ樹脂(油化シェル製、EP−1046) 100部 (2)ジシアンジアミド 4部 (3)2エチル4メチルイミダゾール 0.15部 (4)メチルセロソルブ 36部 (5)アセトン 60部 上記材料を混合して均一なワニスを作製した。次に該ワ
ニスをガラス織布(日東紡製、WE−18KBZ−2)
に樹脂含有量が42〜45%になるように含浸乾燥し、
ガラス織布プリプレグを得た。続いて、前記エポキシ樹
脂ワニスに樹脂分100部に対し次の配合の無機充填剤
を添加し撹拌混合し無機充填剤含有ワニスを作製した。 (1)シリカ(龍森製、クリスタルライトVX−3) 30部 (2)水酸化アルミニウム(昭和軽金属製、ハイジライトH−42) 70部 (3)超微粉末シリカ(シオノギ製薬製、カープレックス) 5部 次のこの無機充填剤含有ワニスをガラス不織布(日本バ
イリーン製、EP−4075)に樹脂及び無機充填剤の
含有量が90重量%になるように含浸乾燥してガラス不
織布プリプレグを得た。次に前記ガラス不織布プリプレ
グを中間層とし、表面層に前記のガラス織布プリプレグ
を配置し、さらにその上に銅箔を重ね成形温度165
℃、圧力60kg/cmで90分間積層成形して厚さ
1.6mmの銅張積層板を得た。
The present invention will be described below with reference to examples. Formulations are by weight. Example 1 The composition of the epoxy resin varnish is as follows. (1) 100 parts of brominated epoxy resin (manufactured by Yuka Shell, EP-1046) (2) 4 parts of dicyandiamide (3) 0.15 part of 2-ethyl 4-methylimidazole (4) 36 parts of methyl cellosolve (5) 60 parts of acetone The above materials were mixed to produce a uniform varnish. Next, the varnish is made of a glass woven fabric (WE-18KBZ-2, manufactured by Nitto Bo).
Impregnated and dried so that the resin content becomes 42-45%,
A glass woven prepreg was obtained. Subsequently, an inorganic filler having the following composition was added to the epoxy resin varnish based on 100 parts of the resin component, and the mixture was stirred and mixed to prepare an inorganic filler-containing varnish. (1) 30 parts of silica (Crystallite VX-3, manufactured by Tatsumori) (2) 70 parts of aluminum hydroxide (manufactured by Showa Light Metal, Hijilite H-42) (3) Ultrafine powdered silica (manufactured by Shionogi Pharmaceutical, Carplex) 5 parts) The following inorganic filler-containing varnish was impregnated and dried in a glass nonwoven fabric (EP-4075, manufactured by Japan Vilene Co., Ltd.) so that the content of the resin and the inorganic filler was 90% by weight to obtain a glass nonwoven prepreg. . Next, the glass nonwoven fabric prepreg was used as an intermediate layer, and the glass woven fabric prepreg was disposed on the surface layer.
Laminate molding was performed at 90 ° C. and a pressure of 60 kg / cm 3 for 90 minutes to obtain a 1.6 mm-thick copper-clad laminate.

【0011】[実施例2]実施例1において、エポキシ
樹脂ワニスに添加する無機充填剤の配合割合を前記ワニ
ス中の樹脂分100部に対して、 (1)シリカ 5部 (2)水酸化アルミニウム 95部 (3)超微粉末シリカ 5部 とした以外は実施例1と同様にして、厚さ1.6mmの
銅張積層板を得た。
[Example 2] In Example 1, the mixing ratio of the inorganic filler to be added to the epoxy resin varnish was 100 parts by weight of the resin in the varnish. (1) 5 parts of silica (2) Aluminum hydroxide A copper-clad laminate having a thickness of 1.6 mm was obtained in the same manner as in Example 1 except that 95 parts (3) 5 parts of ultrafine powdered silica were used.

【0012】[比較例1]ガラス織布プリプレグは実施
例と同様にして得た。続いて、実施例で使用したエポキ
シ樹脂ワニスをガラス不織布に樹脂含有量が70〜75
重量%になるように含浸乾燥しガラス不織布プリプレグ
を得た。その後は実施例と同様にして厚さ1.6mmの
銅張積層板を得た。 [比較例2]実施例1において、エポキシ樹脂ワニスに
添加する無機充填剤の配合割合を前記ワニス中の樹脂分
100部に対して、 (1)シリカ 20部 (2)水酸化アルミニウム 45部 (3)超微粉末シリカ 3.5部 とし、樹脂及び無機充填剤の含有量が85重量%になる
ように含浸し乾燥してガラス不織布プリプレグを得た。
以下、実施例1と同様にして厚さ 1.6mmの銅張積
層板を得た。
Comparative Example 1 A glass woven prepreg was obtained in the same manner as in the example. Subsequently, the epoxy resin varnish used in the examples was applied to a glass nonwoven fabric with a resin content of 70 to 75.
It was impregnated and dried to obtain a glass non-woven fabric prepreg so as to have a weight percent. Thereafter, a copper-clad laminate having a thickness of 1.6 mm was obtained in the same manner as in the example. [Comparative Example 2] In Example 1, the mixing ratio of the inorganic filler to be added to the epoxy resin varnish was 100 parts by weight of the resin component in the varnish. (1) Silica 20 parts (2) Aluminum hydroxide 45 parts ( 3) 3.5 parts of ultrafine powdered silica, impregnated so that the content of resin and inorganic filler was 85% by weight, and dried to obtain a glass nonwoven fabric prepreg.
Thereafter, a copper-clad laminate having a thickness of 1.6 mm was obtained in the same manner as in Example 1.

【0013】[比較例3]実施例1において、エポキシ
樹脂ワニスに添加する無機充填剤の配合割合を前記ワニ
ス中の樹脂分100部に対して、 (1)シリカ 70部 (2)水酸化アルミニウム 170部 (3)超微粉末シリカ 10部 としたが、無機充填剤が多すぎて、十分に混合すること
ができなかった。溶剤の量を多くして混合したところ、
ガラス不織布への含浸時、無機充填剤がガラス不織布内
部まで含浸せず、プリプレグを得ることができなかっ
た。 [比較例4]実施例1と同様にしてガラス織布プリプレ
グを得た。続いて、ガラス不織布に水酸化アルミニウム
とシリカ(重量比7:3)からなるの無機充填剤をガラ
ス不織布の3倍量を含有せしめ、これに前記エポキシ樹
脂ワニスを樹脂分が45重量%になるように含浸し、乾
燥してガラス不織布プリプレグを得た。以下、実施例1
と同様にして厚さ1.6mmの銅張積層板を得た。実施
例1、2及び比較例1、2、4において、それぞれ得ら
れた銅張積層板の特性は表1及び表2の通りである。測
定方法は耐熱性、収縮率、打抜性以外についてはJIS
C6481により行った。
Comparative Example 3 In Example 1, the mixing ratio of the inorganic filler to be added to the epoxy resin varnish was 100 parts by weight of the resin in the varnish, (1) 70 parts of silica (2) aluminum hydroxide 170 parts (3) 10 parts of ultrafine silica powder, but the amount of the inorganic filler was too large to be sufficiently mixed. When mixing with increasing amount of solvent,
When impregnating the glass non-woven fabric, the inorganic filler did not impregnate the inside of the glass non-woven fabric, and a prepreg could not be obtained. Comparative Example 4 A woven glass prepreg was obtained in the same manner as in Example 1. Subsequently, the glass nonwoven fabric is made to contain an inorganic filler composed of aluminum hydroxide and silica (weight ratio 7: 3) in an amount three times that of the glass nonwoven fabric, and the epoxy resin varnish has a resin content of 45% by weight. And dried to obtain a glass nonwoven prepreg. Hereinafter, Example 1
1.6 mm thick copper-clad laminate was obtained in the same manner as described above. In Examples 1 and 2 and Comparative Examples 1, 2, and 4, the properties of the obtained copper-clad laminates are as shown in Tables 1 and 2. The measurement method is JIS except for heat resistance, shrinkage and punching property.
C6481.

【0014】[0014]

【表1】 [Table 1]

【0015】(注1) 初期寸法をLとし、銅箔をエ
ッチングにより除去した後、150℃30分間加熱処理
した後の寸法をLとし、次の式で算出した。 加熱収縮率(%)=[(L−L)/L]×100 (注2) 銅箔をエッチングにより除去した後、常温で
の厚さをLとし、常温から240℃まで加熱して24
0℃における厚さをLとし、次の式で算出した。 膨張率(%)=[(L−L)/L]×100
[0015] The (1) initial dimensions and L 0, after removing the copper foils by etching, the size after heat treatment 0.99 ° C. 30 minutes and L 1, was calculated by the following equation. Heat shrinkage (%) = [(L 0 −L 1 ) / L 0 ] × 100 (Note 2) After the copper foil is removed by etching, the thickness at room temperature is set to L 0, and heating is performed from room temperature to 240 ° C. 24
The thickness at 0 ℃ and L 1, was calculated by the following equation. Expansion coefficient (%) = [(L 1 −L 0 ) / L 0 ] × 100

【0016】[0016]

【表2】 [Table 2]

【0017】スルーホールメッキの密着性の測定方法は
次の通りである(図1参照)。銅張積層板(1)にドリ
ル加工により所定の径のスルーホール(2)を設け、ス
ルーホールメッキ(3)を行った後、表面の銅箔を除去
する。次に0.6mmφの洋白線(4)をスルーホール
内でハンダ(5)で固定する。この洋白線(4)をA方
向に引抜き、その引抜き強度を測定する。
The method of measuring the adhesion of through-hole plating is as follows (see FIG. 1). A through hole (2) having a predetermined diameter is provided in the copper clad laminate (1) by drilling, and after performing through hole plating (3), the copper foil on the surface is removed. Next, a 0.6 mmφ nickel silver wire (4) is fixed in the through hole with solder (5). The nickel-white wire (4) is drawn in the direction A, and the drawing strength is measured.

【0018】[0018]

【発明の効果】以上のように、本発明は無機充填剤を大
量に含有した構成になっているので、従来品(比較例)
に比べてスルーホールメッキの密着性がすぐれ、スルー
ホールメッキの信頼性が向上することがわかる。この他
一般特性においては、吸水率、収縮率等が向上し、電気
特性もほぼ同等及至それ以上である。なお、エポキシ樹
脂100重量部に対する無機充填剤の配合割合と150
〜200重量部としても、スルーホールメッキの密着性
は実施例1及び実施例2の場合と同様にすぐれているこ
とが確認された。
As described above, since the present invention has a constitution containing a large amount of an inorganic filler, a conventional product (comparative example) is used.
It can be seen that the adhesion of the through-hole plating is superior to that of the above, and the reliability of the through-hole plating is improved. In addition to the above, in general characteristics, the water absorption ratio, the shrinkage ratio, and the like are improved, and the electric characteristics are almost the same or higher. The mixing ratio of the inorganic filler to 100 parts by weight of the epoxy resin was
It was confirmed that the adhesion of through-hole plating was excellent as in the case of Example 1 and Example 2 even when the content was 200 parts by weight.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スルーホールメッキの密着性の測定方法を示す
断面図。
FIG. 1 is a cross-sectional view showing a method for measuring the adhesion of through-hole plating.

【符号の説明】[Explanation of symbols]

1 銅張積層板 2 スルーホール 3 スルーホールメッキ 4 洋白線 5 ハンダ DESCRIPTION OF SYMBOLS 1 Copper-clad laminate 2 Through-hole 3 Through-hole plating 4 Western wire 5 Solder

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭50−136377(JP,A) 特開 昭60−7796(JP,A) 特開 昭56−59837(JP,A) 特開 昭57−195117(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-50-136377 (JP, A) JP-A-60-7796 (JP, A) JP-A-56-59837 (JP, A) 195117 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面層はエポキシ樹脂ガラス織布からな
り、中間層はエポキシ樹脂ガラス不織布からなり、表面
層表面の一方又は両方に銅箔が積層され、これらが加熱
加圧により一体化されてなる銅張積層板において、中間
層には中間層のエポキシ樹脂100重量部に対して無機
充填剤100〜200重量部が含まれ、かつ、無機充填
剤中に平均粒径が10nm〜40nmである超微粒子シ
リカが配合されていることを特徴とする印刷回路用銅張
積層板。
The surface layer is made of a woven epoxy resin glass fabric, the intermediate layer is made of an epoxy resin glass nonwoven fabric, and copper foil is laminated on one or both of the surface layer surfaces, and these are integrated by heating and pressing. In the copper clad laminate, the intermediate layer contains 100 to 200 parts by weight of the inorganic filler based on 100 parts by weight of the epoxy resin of the intermediate layer, and the inorganic filler has an average particle size of 10 nm to 40 nm. A copper-clad laminate for printed circuits, characterized by containing ultrafine silica.
JP4097515A 1992-03-06 1992-03-06 Copper clad laminate for printed circuit Expired - Lifetime JP2568347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4097515A JP2568347B2 (en) 1992-03-06 1992-03-06 Copper clad laminate for printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4097515A JP2568347B2 (en) 1992-03-06 1992-03-06 Copper clad laminate for printed circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11511883A Division JPS607796A (en) 1983-06-28 1983-06-28 Copper-lined laminated board for printed circuit and method of producing same

Publications (2)

Publication Number Publication Date
JPH05121850A JPH05121850A (en) 1993-05-18
JP2568347B2 true JP2568347B2 (en) 1997-01-08

Family

ID=14194398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4097515A Expired - Lifetime JP2568347B2 (en) 1992-03-06 1992-03-06 Copper clad laminate for printed circuit

Country Status (1)

Country Link
JP (1) JP2568347B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136377A (en) * 1974-04-17 1975-10-29
JPS5659837A (en) * 1979-09-28 1981-05-23 Hitachi Chem Co Ltd Epoxy resin composition

Also Published As

Publication number Publication date
JPH05121850A (en) 1993-05-18

Similar Documents

Publication Publication Date Title
JP2009138201A (en) Resin composition for printed wiring board, prepreg, laminate, and printed wiring board using the same
JP3119577B2 (en) Laminated board
JP3520604B2 (en) Composite laminate
WO2004102589A1 (en) Insulating material, film, circuit board and method for manufacture thereof
JPH0221667B2 (en)
JPS6059795A (en) Laminated board for printed circuit
JP2568347B2 (en) Copper clad laminate for printed circuit
JPH0197633A (en) Manufacture of laminated plate for printed circuit
JPH06216484A (en) Metal-based copper-clad laminated board
JP2787846B2 (en) Printed circuit laminate
JPH0573077B2 (en)
JP2659490B2 (en) Printed circuit laminate
JP2894496B2 (en) Manufacturing method of printed circuit board
JP2740600B2 (en) Printed circuit laminate
JPH01152138A (en) Production of laminate for printed circuit
JP2924966B2 (en) Printed circuit laminate
JP3383440B2 (en) Copper clad laminate
JP3596819B2 (en) Printed circuit laminate
JPH05327150A (en) Laminated plate for printed circuit
JP3288819B2 (en) Copper clad laminate
JP3343330B2 (en) Method for producing insulating varnish, insulating varnish obtained by this method, and multilayer printed wiring board using this insulating varnish
JPS6259021A (en) Manufacture of laminated sheet for printed circuit
JP3243027B2 (en) Copper clad laminate
JP2742124B2 (en) Manufacturing method of printed circuit board
JPH0429391A (en) Manufacture of laminated plate for printed circuit