JPH02215129A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02215129A
JPH02215129A JP3695389A JP3695389A JPH02215129A JP H02215129 A JPH02215129 A JP H02215129A JP 3695389 A JP3695389 A JP 3695389A JP 3695389 A JP3695389 A JP 3695389A JP H02215129 A JPH02215129 A JP H02215129A
Authority
JP
Japan
Prior art keywords
film
oxide film
region
oxidation
bird
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3695389A
Other languages
Japanese (ja)
Inventor
Toshio Nomura
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3695389A priority Critical patent/JPH02215129A/en
Publication of JPH02215129A publication Critical patent/JPH02215129A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the dependence of bird's beak length upon patterns by a method wherein the selective oxidation process from the nitride film pattern formation to the selective oxidation is divided into two time processes while O2 is fed in only one direction. CONSTITUTION:Si3N4 film pattern 5A, 5B are provided on a thermal oxide film 2 of an Si substrate. The film 5A is striped in the perpendicular direction to a region 1A while the film 5B is striped including an element isolating region 1B in parallel with the film 5A. When an isolating oxide film 61 is formed hy wet oxidation, O2 is fed in only one direction so that the bird's beak lengths may be shortened in almost the same length. In the second time oxidation, the region 1A, the isolating oxide film 61 and the region 1B are covered using an Si3N4 7A as a mask. The remaining isolating films 62, 63 are also formed by the wet oxidation to be formed into one body with the film 61. The bird's beaks 62A, 63B are shortened in almost the same length since O2 is also fed in only one direction. The Si3N4 7A is removed by hot phosphoric acid to complete the element isolation. Through these procedures, the dependence of the bird's beak length upon patterns is eliminated so that the beaks as a whole may be shortened thereby enabling this manufacturing process to contribute to the higher integration of the title semiconductor device.

Description

【発明の詳細な説明】 〔概要〕 半導体装置の製造方法に係り、素子分離酸化膜の形成方
法に関し。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a method of manufacturing a semiconductor device, and relates to a method of forming an element isolation oxide film.

素子形成領域に侵入するバーズビークの長さのパターン
依存性をなりシ、全体としてバーズビークを短くして素
子の高集積化をはかることを目的とし。
The purpose of this method is to reduce the pattern dependence of the length of the bird's beak that invades the device formation region, shorten the bird's beak as a whole, and achieve higher integration of the device.

半導体基板(1)上に端部が少なくとも2方向で分離領
域に接したストライプ状の素子形成領域(1B)を画定
する素子分離酸化膜(6)を形成するに際し。
When forming an element isolation oxide film (6) on a semiconductor substrate (1) that defines a striped element formation region (1B) whose end portions are in contact with the isolation region in at least two directions.

該素子形成領域(1B)を含んでストライプ幅方向に延
長した領域上に第1の耐酸化マスク(5B)を形成し、
該基板を選択酸化して該素子分離酸化膜(6)を形成し
ようとする領域のうちの一部領域の素子分離酸化膜(6
1)を該素子形成領域(1B)の端部に接して形成し、
該第1の耐酸化マスク(5B)を除去する工程と、該基
板の前記一部領域の素子分離酸化膜(61)及び該素子
形成°領域(1B)上に第2の耐酸化マスク(7A)を
形成し、該基板を選択酸化して残部領域の素子分離酸化
膜(62)、 (63)を形成し。
forming a first oxidation-resistant mask (5B) on a region extending in the stripe width direction including the element formation region (1B);
The device isolation oxide film (6) in a part of the region where the device isolation oxide film (6) is to be formed by selectively oxidizing the substrate.
1) is formed in contact with the end of the element formation region (1B),
The step of removing the first oxidation-resistant mask (5B) and the step of removing the second oxidation-resistant mask (7A) on the element isolation oxide film (61) in the partial region of the substrate and the element formation region (1B) are performed. ) is formed, and the substrate is selectively oxidized to form element isolation oxide films (62) and (63) in the remaining regions.

該第2の耐酸化マスク(7A)を除去する工程とを有す
るように構成する。
and a step of removing the second oxidation-resistant mask (7A).

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に係り、素子分離酸化膜
の形成方法に関する。
The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming an element isolation oxide film.

近年、半導体装置の高集積化に伴い、素子分離領域の縮
小化が要求されるようになった。
In recent years, as semiconductor devices have become more highly integrated, there has been a demand for smaller element isolation regions.

素子分離方法の一つとして、半導体基板上の素子形成領
域を窒化膜で覆い、これを耐酸化マスクとして素子形成
領域以外の領域を熱酸化して厚い素子分離酸化膜(フィ
ールド酸化膜)を形成する方法があり、この方法による
と素子分離酸化膜が素子形成領域にバーズビーク状に浸
食し、高集積化を阻害していた。
One of the element isolation methods is to cover the element formation area on the semiconductor substrate with a nitride film, and use this as an oxidation-resistant mask to thermally oxidize the area other than the element formation area to form a thick element isolation oxide film (field oxide film). According to this method, the element isolation oxide film erodes into the element formation region in a bird's beak shape, hindering high integration.

〔従来の技術〕 第2図(1)、 (2)は従来例による素子分離酸化膜
の形成を説明する平面図と断面図である。
[Prior Art] FIGS. 2(1) and 2(2) are a plan view and a cross-sectional view illustrating the formation of an element isolation oxide film according to a conventional example.

図において、 St基板1上に薄い熱酸化膜2を形成し
、その上に窒化膜3を成長し、窒化11!3をパターニ
ングして素子分離領域上に窒化膜3Aと3Bを残して耐
酸化マスクとする。
In the figure, a thin thermal oxide film 2 is formed on a St substrate 1, a nitride film 3 is grown on it, and the nitride film 11!3 is patterned to leave nitride films 3A and 3B on the element isolation region to provide oxidation resistance. Use as a mask.

窒化膜3Aは垂直方向のストライプに形成され。The nitride film 3A is formed in vertical stripes.

窒化膜3Bは素子分離領域を隔てて窒化11i3Aのス
トライプに垂直に形成される。
The nitride film 3B is formed perpendicularly to the stripes of nitride 11i3A across the element isolation region.

次に、基板をウェット酸化して素子分離酸化膜4を形成
する。
Next, the substrate is wet oxidized to form an element isolation oxide film 4.

この場合、薄い熱酸化膜2は硬い窒化膜と基板間の影響
緩和のために敷かれるが、この酸化膜2中を酸素が拡散
するので、窒化膜下であっても窒化膜端近傍では酸化膜
が成長し、バーズビーク4A及び4Bが形成される。
In this case, a thin thermal oxide film 2 is laid to alleviate the influence between the hard nitride film and the substrate, but since oxygen diffuses through this oxide film 2, oxidation occurs near the edges of the nitride film even under the nitride film. The film grows and bird's beaks 4A and 4B are formed.

この現象は特に窒化膜3Bの端部においては3方向から
酸素の供給が行われるのでこの領域のバーズビーク4B
は、窒化膜3A側のバーズビーク4Aより更に大きくな
る。
This phenomenon occurs especially at the end of the nitride film 3B, where oxygen is supplied from three directions, so the bird's beak 4B in this region
is even larger than the bird's beak 4A on the nitride film 3A side.

又、バーズビーク4Aの成長は、レジストの丸まりによ
って窒化膜3Bの端部のコーナ部が丸まって形成される
ことによる影響も無視できない。
Furthermore, the growth of the bird's beak 4A cannot be ignored due to the fact that the end corner of the nitride film 3B is rounded due to the rounding of the resist.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように従来例による方法では、耐酸化膜のパター
ンによりバーズビークが長(なるという欠点があった。
As described above, the conventional method has the disadvantage that the bird's beak becomes long depending on the pattern of the oxidation-resistant film.

本発明はバーズビークの長さのパターン依存性をなくシ
、全体としてバーズビークを短くすることを目的とする
An object of the present invention is to eliminate pattern dependence of the bird's beak length and to shorten the bird's beak as a whole.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決は、半導体基板(1)上に端部が少なく
とも2方向で分離領域に接したストライプ状の素子形成
領域 (1B)を画定する素子分離酸化膜(6)を形成
するに際して、該素子形成領域(1B)を含んでストラ
イプ幅方向に延長した領域上に第1の耐酸化マスク(5
B)を形成し、該基板を選択酸化して該素子分離酸化膜
(6)を形成しようとする領域のうちの一部領域の素子
分離酸化膜(61)を該素子形成領域(1B)の端部に
接して形成し、該第1の耐酸化マスク(5B)を除去す
る工程と、該基板の前記一部領域の素子分離酸化膜(6
1)及び該素子形成領域(1B)上に第2の耐酸化マス
ク(7A)を形成し。
The solution to the above problem is to form an element isolation oxide film (6) on a semiconductor substrate (1) that defines a striped element formation region (1B) whose end portions are in contact with the isolation region in at least two directions. A first oxidation-resistant mask (5
B) and selectively oxidize the substrate to remove the element isolation oxide film (61) in a part of the region where the element isolation oxide film (6) is to be formed in the element formation region (1B). A step of removing the first oxidation-resistant mask (5B) formed in contact with the end portion, and a step of removing the element isolation oxide film (6B) in the partial region of the substrate.
1) and a second oxidation-resistant mask (7A) is formed over the element formation region (1B).

該基板を選択酸化して残部領域の素子分離酸化膜(62
)、 (63)を形成し、該第2の耐酸化マスク(7A
)を除去する工程とを有する半導体装置の製造方法によ
り達成される。
The substrate is selectively oxidized to form an element isolation oxide film (62
), (63), and the second oxidation-resistant mask (7A
) is achieved by a method for manufacturing a semiconductor device.

〔作用〕[Effect]

本発明は選択酸化工程の窒化膜パターン形成から選択酸
化までの工程を2回に分割し、1回目及び2回目の酸化
ともバーズビーク形成の原因となる酸素の供給を1方向
よりのみ行うことによりバーズビーク長のパターン依存
性をなくするようにしたものである。
The present invention divides the process from nitride film pattern formation to selective oxidation in the selective oxidation process into two steps, and supplies oxygen, which causes bird's beak formation, from only one direction in both the first and second oxidation, thereby eliminating bird's beak formation. This eliminates the pattern dependence of length.

〔実施例〕〔Example〕

第1図(1)〜(5)は本発明の一実施例による素子分
離酸化膜の形成を説明する平面図及び断面図である。
FIGS. 1(1) to 1(5) are a plan view and a cross-sectional view illustrating the formation of an element isolation oxide film according to an embodiment of the present invention.

この例は比較のために第2図の従来例と同じパターンを
使用する。
This example uses the same pattern as the conventional example shown in FIG. 2 for comparison.

第2図の窒化膜3^及び3Bに対応する領域を、ここで
は第1の素子形成領域IA及び第2の素子形成領域1B
とする。
The regions corresponding to the nitride films 3^ and 3B in FIG. 2 are here referred to as the first element formation area IA and the second element formation area 1B.
shall be.

■ 第1回目の選択酸化 第1図(1)、 (2)において、 Si基板1上に厚
さ300人の薄い熱酸化膜2を形成し、その上に窒化膜
5を成長し、窒化膜5をパターニングして窒化膜5^及
び5Bを残し第1の耐酸化マスクとする。
■ First selective oxidation In Figures 1 (1) and (2), a thin thermal oxide film 2 with a thickness of 300 mm is formed on the Si substrate 1, and a nitride film 5 is grown on it. 5 is patterned to leave the nitride films 5^ and 5B as a first oxidation-resistant mask.

窒化膜5Aは素子形成領域IA上において垂直方向のス
トライプに形成され、窒化膜5Bは素子分離領域を隔て
て素子形成領域1Bを含んで窒化膜5Aに平行にストラ
イプ状に形成される。
The nitride film 5A is formed in vertical stripes on the element formation region IA, and the nitride film 5B is formed in a stripe shape parallel to the nitride film 5A, including the element formation region 1B with the element isolation region in between.

次に、基板をウェット酸化して素子分離酸化膜6のうち
の一部領域上に素子分離酸化膜61を形成する。
Next, the substrate is wet-oxidized to form an element isolation oxide film 61 on a partial region of the element isolation oxide film 6.

この場合、バーズビーク61A及び61Bが形成される
が、いずれも酸素の供給は1方向のみから行われるため
バーズビーク長は同程度であり、且つ短い。
In this case, bird's beaks 61A and 61B are formed, but since oxygen is supplied only from one direction, the bird's beak lengths are approximately the same and short.

次に、熱燐酸を用いて耐酸化マスク5A及び5Bを除去
する。
Next, oxidation-resistant masks 5A and 5B are removed using hot phosphoric acid.

■ 第2回目の選択酸化 第1図(3)〜(5)にいて、基板全面に窒化膜7を成
長し、窒化膜7をパターニングして窒化膜7^を残して
第2の耐酸化マスクとする。
■ Second selective oxidation In Figures 1 (3) to (5), a nitride film 7 is grown on the entire surface of the substrate, and the nitride film 7 is patterned to leave the nitride film 7 as a second oxidation-resistant mask. shall be.

窒化膜7Aは、素子形成領域1^、素子分離酸化膜61
及び素子形成領域1B上を覆って形成する。
The nitride film 7A covers the element formation region 1^ and the element isolation oxide film 61.
and is formed to cover the element formation region 1B.

次に、基板をウェット酸化して残部の素子分離酸化膜6
2.63を形成し、前記の素子分離酸化膜61と一体化
して全体の素子分離酸化膜6を得る。
Next, wet oxidize the substrate to remove the remaining element isolation oxide film 6.
2.63 is formed and integrated with the element isolation oxide film 61 to obtain the entire element isolation oxide film 6.

この場合、バーズビーク62^及び63Bが形成される
が、いずれも酸素の供給は1方向のみから行われるため
バーズビーク長は同程度で短い。
In this case, bird's beaks 62^ and 63B are formed, but since oxygen is supplied from only one direction in both cases, the bird's beak lengths are similar and short.

次に、熱燐酸を用いて窒化膜7Aを除去して素子分離工
程を終了する。
Next, the nitride film 7A is removed using hot phosphoric acid to complete the element isolation process.

上記の素子分離酸化膜の形成は水蒸気雰囲気中で900
℃、320分で500人の膜厚が得られる。
The above element isolation oxide film was formed for 900 minutes in a water vapor atmosphere.
A film thickness of 500 layers can be obtained in 320 minutes at ℃.

又、この膜厚に対してバーズビーク長は従来長いもので
0.4μm程度であったが、実施例ではすべて0.15
μm程度に形成することができた。
Furthermore, for this film thickness, the bird's beak length was conventionally long at about 0.4 μm, but in the examples it was all 0.15 μm.
It was possible to form a film with a size of approximately μm.

又、耐酸化マスク用の窒化膜はいずれも、気相成長(C
VD)法を用いて厚さ1500人に成長した。
In addition, all nitride films for oxidation-resistant masks are grown by vapor phase growth (C
The film was grown to a thickness of 1500 using the VD) method.

この後通常の工程を経て素子形成領域に素子形成を行い
半導体装置を完成する。
Thereafter, elements are formed in the element formation region through normal steps to complete the semiconductor device.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、半導体装置の製造
における素子分離酸化膜形成工程において、バーズビー
クの長さのパターン依存性をなくすることができる。こ
の結果、全体としてバーズビークを短くでき、デバイス
の高集積化に寄与することができる。
As described above, according to the present invention, pattern dependence of the length of a bird's beak can be eliminated in the element isolation oxide film forming step in manufacturing a semiconductor device. As a result, the overall bird's beak can be shortened, contributing to higher integration of devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(υ〜(5)は本発明の一実施例による素子分離
酸化膜の形成を説明する平面図及び断面図。 第2図(1)、 (2)は従来例による素子分離酸化膜
の形成を説明する平面図と断面図である。 1はSt基板。 IAは第1の素子形成領域。 1Bは第2の素子形成領域。 2は薄い熱酸化膜。 5は窒化膜。 5A、 5Bは窒化膜で第1の耐酸化マスク。 6 (61,62,63)は素子分離酸化膜。 7は窒化膜。 7Aは窒化膜で第2の耐酸化マスク 第 図 平面図 (2)A−八 新開 従来例を説明する図 第 図
FIG. 1 (υ to (5)) is a plan view and a cross-sectional view illustrating the formation of an element isolation oxide film according to an embodiment of the present invention. FIGS. 2 (1) and (2) are element isolation oxide films according to a conventional example. 1 is a plan view and a cross-sectional view illustrating the formation of. 1 is a St substrate. IA is a first element formation region. 1B is a second element formation region. 2 is a thin thermal oxide film. 5 is a nitride film. 5A, 5B is a nitride film and is the first oxidation-resistant mask. 6 (61, 62, 63) is an element isolation oxide film. 7 is a nitride film. 7A is a nitride film and is the second oxidation-resistant mask. -8 Figures explaining the new and conventional examples

Claims (1)

【特許請求の範囲】 半導体基板(1)上に端部が少なくとも2方向で分離領
域に接したストライプ状の素子形成領域(1B)を画定
する素子分離酸化膜(6)を形成するに際し、 該素子形成領域(1B)を含んでストライプ幅方向に延
長した領域上に第1の耐酸化マスク(5B)を形成し、
該基板を選択酸化して該素子分離酸化膜(6)を形成し
ようとする領域のうちの一部領域の素子分離酸化膜(6
1)を該素子形成領域(1B)の端部に接して形成し、
該第1の耐酸化マスク(5B)を除去する工程と、 該基板の前記一部領域の素子分離酸化膜(61)及び該
素子形成領域(1B)上に第2の耐酸化マスク(7A)
を形成し、該基板を選択酸化して残部領域の素子分離酸
化膜(62)、(63)を形成し、該第2の耐酸化マス
ク(7A)を除去する工程 とを有することを特徴とする半導体装置の製造方法。
[Claims] When forming an element isolation oxide film (6) on a semiconductor substrate (1) that defines a striped element formation region (1B) whose end portions are in contact with the isolation region in at least two directions, forming a first oxidation-resistant mask (5B) on a region extending in the stripe width direction including the element formation region (1B);
The device isolation oxide film (6) in a part of the region where the device isolation oxide film (6) is to be formed by selectively oxidizing the substrate.
1) is formed in contact with the end of the element formation region (1B),
removing the first oxidation-resistant mask (5B); and removing a second oxidation-resistant mask (7A) over the element isolation oxide film (61) in the partial region of the substrate and the element formation region (1B).
forming the substrate, selectively oxidizing the substrate to form element isolation oxide films (62) and (63) in the remaining regions, and removing the second oxidation-resistant mask (7A). A method for manufacturing a semiconductor device.
JP3695389A 1989-02-16 1989-02-16 Manufacture of semiconductor device Pending JPH02215129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3695389A JPH02215129A (en) 1989-02-16 1989-02-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3695389A JPH02215129A (en) 1989-02-16 1989-02-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02215129A true JPH02215129A (en) 1990-08-28

Family

ID=12484111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3695389A Pending JPH02215129A (en) 1989-02-16 1989-02-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02215129A (en)

Similar Documents

Publication Publication Date Title
JPH02215129A (en) Manufacture of semiconductor device
JPH02222160A (en) Manufacture of semiconductor device
JPS60133739A (en) Manufacture of semiconductor device
JPH03236235A (en) Manufacture of semiconductor device
JP2975496B2 (en) Method of forming element isolation structure
JPS63152155A (en) Manufacture of semiconductor device
JPH05206263A (en) Manufacture of semiconductor device
JPH0338733B2 (en)
JPH01162351A (en) Manufacture of semiconductor device
JPS6260231A (en) Manufacture of semiconductor device
JPS6398131A (en) Manufacture of semiconductor device
JPH0413852B2 (en)
JPH03159240A (en) Manufacture of semiconductor device
JPH1167752A (en) Manufacture of semiconductor device
KR100266024B1 (en) Semiconductor element isolation method
JPH04213828A (en) Manufacture of semiconductor device
KR960006974B1 (en) Manufacturing method of field oxide of semiconductor device
JPH1032264A (en) Semiconductor device and manufacture thereof
JPH04142035A (en) Manufacture of semiconductor device
JPS6165447A (en) Manufacture of semiconductor device
JPS63275137A (en) Manufacture of semiconductor device
JPS6336565A (en) Manufacture of semiconductor device
JPS6010732A (en) Manufacture of semiconductor device
JPH04144134A (en) Manufacture of semiconductor device
JPH08298261A (en) Forming method of inter-element isolating region