JPH02213144A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02213144A
JPH02213144A JP3435889A JP3435889A JPH02213144A JP H02213144 A JPH02213144 A JP H02213144A JP 3435889 A JP3435889 A JP 3435889A JP 3435889 A JP3435889 A JP 3435889A JP H02213144 A JPH02213144 A JP H02213144A
Authority
JP
Japan
Prior art keywords
dummy
pattern
layer
etching
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3435889A
Other languages
Japanese (ja)
Inventor
Kazuo Hayashi
一夫 林
Takuji Sonoda
琢二 園田
Iwao Hayase
早瀬 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3435889A priority Critical patent/JPH02213144A/en
Publication of JPH02213144A publication Critical patent/JPH02213144A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form a pattern, which is fine and large in sectional area, without being restricted by the resolution of photolithography by forming dummy layers wherein etching rate is higher the lower the layer is, and then forming a dummy pattern that the dummy layers are undercut using anisotropic etching and isotropic etching, etc. CONSTITUTION:Two or more dummy layers 2 and 3 wherein etching rate is higher the lower the layer is are formed on a semiconductor substrate 1, and then with the dummy layers 2 and 3 as masks anisotropic etching is done. Next, by isotropic etching, a dummy pattern, in the form that the dummy layers 2 and 3 are more undercut the lower the layer is, is formed. Next, it is flattened with a resist film 6 and the uppermost head exposure of the dummy layer 6 is done, and then the dummy layers 2 and 3 are all removed by etching, whereby a mask by a resist pattern is formed. Thereafter, a desired metallic pattern 6 is formed by deposition and lift-off. For example, as a material for said dummy layers 2 and 3, silicide, SiO2, SiON, SiN, alumina, or the like is suitable.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体装置の製造方法に係り、特に電極パ
ターンの形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of forming an electrode pattern.

(従来の技術) 第3図(a)〜(c)は半導体基板上に微細パターンを
形成するためのりフトオフ法と呼ばれる従来法の製造工
程を示す断面図である。リフトオフ法では、半導体基板
1上に写真製版によりフォトレジスト4を所望のパター
ンにバターニングする(第3図(a))。次に、真空蒸
着により電極金属5′を蒸着する(第3図(b))。最
後にフォトレジスト4のパターンをアセント等の有機溶
媒で除去し、同時に不要の電極金属5′を除去すること
によって所望の電極5が半導体基板1上にバターニング
される(これをリフトオフ法と呼ぶ)(第3図(C))
(Prior Art) FIGS. 3(a) to 3(c) are cross-sectional views showing the manufacturing process of a conventional method called lift-off method for forming fine patterns on a semiconductor substrate. In the lift-off method, photoresist 4 is patterned into a desired pattern on semiconductor substrate 1 by photolithography (FIG. 3(a)). Next, electrode metal 5' is deposited by vacuum deposition (FIG. 3(b)). Finally, the pattern of the photoresist 4 is removed using an organic solvent such as Ascent, and at the same time, the unnecessary electrode metal 5' is removed to pattern the desired electrode 5 on the semiconductor substrate 1 (this is called a lift-off method). ) (Figure 3 (C))
.

上記従来のりフトオフ法では、パターン寸法りはフォト
レジスト4の開口部の大きさLPRで決定され、通常の
光学露光による写真製版では約0.5μm程度が限界で
あり、それ以下の寸法に対しては高価で、しかも高度な
技術のいる電子ビーム露光(EB露光と略す)が必要と
なる。
In the above-mentioned conventional lift-off method, the pattern size is determined by the size LPR of the opening in the photoresist 4, and in photolithography using normal optical exposure, the limit is about 0.5 μm; requires expensive and highly sophisticated electron beam exposure (abbreviated as EB exposure).

方、電極5の厚みtは、このリフトオフ法ではフォトレ
ジスト4の厚みTに依存し、フォトレジスト4の厚みT
は微細化の点からあまり厚くはできず、開口部の大台さ
LPR程度が適当である。したがって、電&5の厚みt
にも限界があり、あまり厚くすることができない。しか
も、配線の微細化、つまりパターン寸法りが小さくなる
と配線抵抗が大きくなるため素子特性を劣化させる。そ
のため、it極極面面積かせぐという目的から電極5の
厚み七をより犬ぎくしたり、電極断面をT型にしたりす
る要求がある。これらパターン寸法りの短縮、電極5の
厚みtの増大、T聖断面といった要求に対して、従来の
光学露光による写真製版を用いたりフトオフ法では実現
が困難であり、EB露光等の高価な設備を用いるしかな
かった。
On the other hand, the thickness t of the electrode 5 depends on the thickness T of the photoresist 4 in this lift-off method.
From the point of view of miniaturization, it cannot be made too thick, and the appropriate opening size is approximately LPR. Therefore, the thickness t of electric &5
However, there are limits, and it cannot be made too thick. Moreover, as the wiring becomes finer, that is, the pattern size becomes smaller, the wiring resistance increases, which deteriorates the device characteristics. Therefore, for the purpose of increasing the electrode surface area, there is a demand for making the thickness of the electrode 5 more narrow or making the electrode cross section T-shaped. It is difficult to meet these requirements such as shortening the pattern size, increasing the thickness t of the electrode 5, and the T cross section using conventional optical exposure photolithography or the foot-off method, and requires expensive equipment such as EB exposure. I had no choice but to use

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のりフトオフ法によるパターン形成は以上のような
方法により形成されているので、リフトオフ法によって
形成されるパターン線幅は写真製版技術により制約をう
け、また、形成された電極断面形状も製造的制約により
あまり断面積を太きくとれないという欠点があった。こ
のため、半導体装置の配線や電界効果トランジスタ(以
下FETと略す)のゲートに用いた場合、微細化に伴い
その配線抵抗が大きくなるという問題点があった。
Patterns are formed by the conventional lift-off method as described above, so the pattern line width formed by the lift-off method is limited by photolithography technology, and the cross-sectional shape of the electrodes formed is also subject to manufacturing constraints. Therefore, there was a drawback that the cross-sectional area could not be made very thick. For this reason, when used for the wiring of a semiconductor device or the gate of a field effect transistor (hereinafter abbreviated as FET), there is a problem that the wiring resistance increases with miniaturization.

この発明は、上記のような問題点を解決するためになさ
れたもので、写真製版の解像度に制約されることなく微
細で断面積の大きなパターンが形成できる半導体装置の
製造方法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a method for manufacturing a semiconductor device that can form fine patterns with large cross-sectional areas without being limited by the resolution of photolithography. shall be.

(課題を解決するための手段) この発明に係る半導体装置の製造方法は、半導体基板上
にエツチングレートが下層ほど速いダミー層を2M以上
形成した後、ダミー層をレジス)・パターンをマスクに
して異方性エツチングを行い、その後、等方性エツチン
グによりダミー層を下層に行く程、よりアンダーカット
が進んだ形状のダミーパターンを形成し、その後、レジ
スト膜で平坦化してダミー層の再上部の頭出しを行った
後、ダミー層のみをすべてエツチング除去し、その上に
レジストパターンによるマスクを形成し、その後、蒸着
、リフトオフにより所望の金属パターンを形成するもの
である。
(Means for Solving the Problems) A method for manufacturing a semiconductor device according to the present invention is to form a dummy layer of 2M or more on a semiconductor substrate in which the etching rate is higher in the lower layers, and then use the dummy layer as a resist pattern as a mask. Anisotropic etching is performed, and then isotropic etching is performed to form a dummy pattern in which the dummy layer has a more undercut shape as it goes to the lower layer, and is then flattened with a resist film to form a dummy pattern on the top of the dummy layer. After performing cueing, only the dummy layer is completely removed by etching, a resist pattern mask is formed thereon, and then a desired metal pattern is formed by vapor deposition and lift-off.

(作用) この発明においては、エツチングレートが下層に行く程
速いダミー層を多層に形成し、異方性エツチングと等方
性エツチングを用いてダミー層をアンダカットしたダミ
ーパターンを形成し、全面にフォトレジストを形成した
後、前記ダミー層によるパターンを除去した後電極金属
を蒸着し、リフトオフ法によりフォトレジストとともに
不要の電極金属を除去して半導体装置上に金属パターン
を形成するようにしたので、パターン寸法は写真製版の
解像度に制約されることなく、しかも断面積の大きいT
型の金属パターンが形成される。
(Function) In this invention, a multi-layered dummy layer whose etching rate is faster as it goes to the lower layer is formed, and a dummy pattern is formed by undercutting the dummy layer using anisotropic etching and isotropic etching. After the photoresist is formed, the dummy layer pattern is removed, an electrode metal is deposited, and the unnecessary electrode metal is removed together with the photoresist using a lift-off method to form a metal pattern on the semiconductor device. The pattern dimensions are not limited by the resolution of photolithography, and the T-shaped pattern has a large cross-sectional area.
A mold metal pattern is formed.

(実施例) 以下、この発明の一実施例を第1図Ca)〜(g)につ
いて説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1(a) to 1(g).

まず、半導体基板1上にエツチングレートの異なるダミ
ー層2.3を形成する。ダミー層2は後工程のアンダー
カットのためのエツチングの際、ダミー層3より大きな
エツチングレートを示すもので形成する。また、ダミー
層2.3の素材としては、フォトレジスト4をマスクに
してエツチングの行えるものであれば金属でも訪電体で
もよい。例えばシリサイドやS j02 、S tON
First, dummy layers 2.3 having different etching rates are formed on the semiconductor substrate 1. The dummy layer 2 is formed of a material that exhibits a higher etching rate than the dummy layer 3 during etching for undercutting in a subsequent process. Further, the material of the dummy layer 2.3 may be metal or a current-carrying body as long as it can be etched using the photoresist 4 as a mask. For example, silicide, S j02, S tON
.

SiNあるいはアルミナ等のいずれか1つまたはこれら
の組み合せたものが適当である。次に、ダミー層3上に
フォトレジスト4を形成し、これを写真製版によりバタ
ーニングしてフォトレジストパターンのマスクを形成す
る(第1図(a))。
Any one of SiN, alumina, etc. or a combination thereof is suitable. Next, a photoresist 4 is formed on the dummy layer 3 and patterned by photolithography to form a photoresist pattern mask (FIG. 1(a)).

その後、レジストパターン4をマスクにしてRIE等の
異方性エツチングによりダミー層2.3をエツチング加
工する(第1図(b))。次に、ブラスマエッチングや
ウェットエツチング等による等方性エツチングによりダ
ミー層2,3をアンダーカットし、ダミーパターンを形
成する(第1図(C))。この時、下層であるダミー層
2はダミー層3よりエツチングレートが速いため、アン
ダーカットが大きくなり、結果としてダミーバタ−ンの
断面はT型となる。次に、有機溶媒で容易に溶けるよう
な、例えばフォトレジスト6を塗布し平坦化する。この
時、平坦化でダミー層3の頭が出ない時はRIE等によ
りフォトレジスト6をエツチングし、ダミー層3の頭出
しをする(第1図(d))。この後、ウェットエツチン
グ等でダミー層2,3を除去しく第1図(e))、これ
により形成されたフォトレジストパターンを利用してt
8i金属5′を蒸着しく第1図(f))、次いで、リフ
トオフ法により電極5を形成する(第1図(g))。
Thereafter, the dummy layer 2.3 is etched by anisotropic etching such as RIE using the resist pattern 4 as a mask (FIG. 1(b)). Next, the dummy layers 2 and 3 are undercut by isotropic etching such as plasma etching or wet etching to form a dummy pattern (FIG. 1C). At this time, since the etching rate of the lower dummy layer 2 is faster than that of the dummy layer 3, the undercut becomes large, and as a result, the cross section of the dummy pattern becomes T-shaped. Next, for example, a photoresist 6 that is easily soluble in an organic solvent is applied and flattened. At this time, if the top of the dummy layer 3 cannot be exposed due to planarization, the photoresist 6 is etched by RIE or the like to expose the top of the dummy layer 3 (FIG. 1(d)). After that, the dummy layers 2 and 3 are removed by wet etching etc. (FIG. 1(e)), and the photoresist pattern thus formed is used to remove the dummy layers 2 and 3.
8i metal 5' is vapor deposited (FIG. 1(f)), and then the electrode 5 is formed by a lift-off method (FIG. 1(g)).

上記のような方法によれば、パターン寸法りは写真製版
による開口部の大きさLPRよりダミー層2がアンダー
カットされる分短くすることが可能であり、容易に1層
4μm以下のパターンが形成できる。また、電極5の厚
みtを制約するりフトオフに用いるフォトレジスト4の
厚みTは、従来と異なり写真製版の解像度にはなんら影
響を与えずダミー層2.3の厚さのみで決まる。また、
ダミー層2,3の厚さを厚くすることは途中の工程のダ
ミー層3の頭出しを容易にする。したがって、この発明
の製造方法では電極5の厚みtを厚くするほうがむしろ
容易といえる。また、断面形状もダミー層2,3のエツ
チングレートを下層のダミー層2をより大きなものとす
ることで容易にT型形状を得ることができる。
According to the method described above, the pattern size can be made shorter than the opening size LPR by photolithography by the amount that the dummy layer 2 is undercut, and a pattern of 4 μm or less per layer can be easily formed. can. Further, the thickness T of the photoresist 4 used for limiting the thickness t of the electrode 5 or for lift-off is determined only by the thickness of the dummy layer 2.3 without affecting the resolution of photolithography in any way, unlike in the conventional case. Also,
Increasing the thickness of the dummy layers 2 and 3 makes it easier to locate the beginning of the dummy layer 3 in the middle of the process. Therefore, in the manufacturing method of the present invention, it is easier to increase the thickness t of the electrode 5. Further, the cross-sectional shape can easily be T-shaped by making the etching rate of the dummy layers 2 and 3 larger than that of the lower dummy layer 2.

また、第1図の実施例ではダミー層2.3の2層による
T型の場合を示したが、層をさらに増やし下層程エツチ
ングレートの大きな素材を用いれば逆三角形の形状も得
ることができる。
Furthermore, although the embodiment shown in Fig. 1 shows a T-shaped case with two dummy layers 2 and 3, an inverted triangular shape can also be obtained by adding more layers and using a material with a higher etching rate for the lower layers. .

このような製造方法を用いれば、配線抵抗の増加なしに
写真製版の解像度に制約されることなく容易に微細なパ
ターンが形成できる。
By using such a manufacturing method, fine patterns can be easily formed without increasing wiring resistance and without being limited by the resolution of photolithography.

第2図はこの発明の製造方法を用いて製造されたFET
の断面図を示す。すなわち、半導体基板1上に活性層7
を有し、その上にソース、ドレインの各オーミック電極
8.9を形成した半導体基板1上に第1図(a)〜(g
)の方法を用いてゲート電極10を形成したものである
。ゲート部の溝(リセスと呼ぶ)は第1図(e)の後で
活性層7の一部をエツチングすることにより得られるが
、リセスの有無はこの発明の製造方法をなんら阻害する
ものではない。例えば第2図のような断面形状を有する
GaAsFETでは、ゲート長とゲート抵抗を共に大き
く減少させることができるため、FETの高速性、低雑
音性を大幅に改善することができる。
Figure 2 shows an FET manufactured using the manufacturing method of this invention.
A cross-sectional view is shown. That is, the active layer 7 is formed on the semiconductor substrate 1.
1(a) to (g) are placed on a semiconductor substrate 1 on which source and drain ohmic electrodes 8.9 are formed.
) The gate electrode 10 is formed using the method described above. The groove (referred to as a recess) in the gate portion can be obtained by etching a part of the active layer 7 after the process shown in FIG. . For example, in a GaAsFET having a cross-sectional shape as shown in FIG. 2, both the gate length and the gate resistance can be greatly reduced, so that the high speed and low noise characteristics of the FET can be greatly improved.

〔発明の効果〕 以上説明したようにこの発明は、半導体基板上にエツチ
ングレートが下層ほど速いダミー層を2層以上形成した
後、ダミー層をレジストパターンをマスクにして異方性
エツチングを行い、その後、等方性エツチングによりダ
ミー層を下層に行く程、よりアンダーカットが進んだ形
状のダミーパターンを形成し、その後、レジスト膜で平
坦化してダミー層の再上部の頭出しを行った後、ダミー
層のみをすべてエツチング除去し、その上にレジストパ
ターンによるマスクを形成し、その後、蒸着、リフトオ
フにより所望の金属パターンを形成するので、写真製版
の解像度に無関係に容易に微細なパターンを形成でき、
しかも、その断面形状をT型や逆三角形にできるため配
線抵抗も低減できる効果がある。また、この製造方法を
FETのゲート電極形成に用いることによって、ゲート
長とゲート抵抗の低減を同時に達成できためFETの高
速、高周波化、低雑音化等が実現できる効果がある。
[Effects of the Invention] As explained above, the present invention includes forming two or more dummy layers on a semiconductor substrate, the etching rate of which is higher as the lower layer is lower, and then anisotropically etching the dummy layer using a resist pattern as a mask. After that, the dummy layer is isotropically etched to form a dummy pattern in which the undercut becomes more advanced toward the bottom, and then, after flattening with a resist film and re-locating the top of the dummy layer, Only the dummy layer is completely removed by etching, a resist pattern mask is formed on it, and then the desired metal pattern is formed by vapor deposition and lift-off, so fine patterns can be easily formed regardless of the resolution of photolithography. ,
Furthermore, since the cross-sectional shape can be made into a T-shape or an inverted triangle, wiring resistance can also be reduced. In addition, by using this manufacturing method for forming the gate electrode of an FET, it is possible to simultaneously reduce the gate length and gate resistance, which has the effect of realizing higher speed, higher frequency, lower noise, etc. of the FET.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の製造工程を示す断面図、
第2図はこの発明の製造方法をゲート電極の形成に用い
たFETの断面図、第3図は従来の製造方法を示す断面
図である。 図において、1は半導体基板、2,3はエツチングレー
トの異なるダミー層、4.6はフォトレジスト、5は電
極である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄    (外2名)第 図その1 LpH1 第 図 第 図そ の2 第 図 [P霞
FIG. 1 is a sectional view showing the manufacturing process of an embodiment of the present invention;
FIG. 2 is a sectional view of an FET using the manufacturing method of the present invention for forming a gate electrode, and FIG. 3 is a sectional view showing a conventional manufacturing method. In the figure, 1 is a semiconductor substrate, 2 and 3 are dummy layers having different etching rates, 4.6 is a photoresist, and 5 is an electrode. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1 LpH1 Figure Figure 2 Figure [P Kasumi]

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上にエッチングレートが下層ほど速いダミ
ー層を2層以上形成した後、前記ダミー層をレジストパ
ターンをマスクにして異方性エッチングを行い、その後
、等方性エッチングにより前記ダミー層を下層に行く程
、よりアンダーカットが進んだ形状のダミーパターンを
形成し、その後、レジスト膜で平坦化して前記ダミー層
の最上部の頭出しを行った後、前記ダミー層のみをすべ
てエッチング除去し、その上にレジストパターンによる
マスクを形成し、その後、蒸着、リフトオフにより所望
の金属パターンを形成することを特徴とする半導体装置
の製造方法。
After forming two or more dummy layers on a semiconductor substrate, the etching rate of which is higher for the lower layer, anisotropic etching is performed on the dummy layer using a resist pattern as a mask, and then isotropic etching is performed to remove the dummy layer from the lower layer. A dummy pattern with a shape that becomes more undercut is formed as the pattern progresses, and after that, it is flattened with a resist film to locate the top of the dummy layer, and only the dummy layer is completely etched away. A method for manufacturing a semiconductor device, comprising forming a mask using a resist pattern thereon, and then forming a desired metal pattern by vapor deposition and lift-off.
JP3435889A 1989-02-14 1989-02-14 Manufacture of semiconductor device Pending JPH02213144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3435889A JPH02213144A (en) 1989-02-14 1989-02-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3435889A JPH02213144A (en) 1989-02-14 1989-02-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02213144A true JPH02213144A (en) 1990-08-24

Family

ID=12411940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3435889A Pending JPH02213144A (en) 1989-02-14 1989-02-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02213144A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219787A (en) * 1990-07-23 1993-06-15 Microelectronics And Computer Technology Corporation Trenching techniques for forming channels, vias and components in substrates
CN103811337A (en) * 2012-11-13 2014-05-21 三菱电机株式会社 Method of manufacturing semiconductor device
KR20160114922A (en) * 2015-03-25 2016-10-06 경북대학교 산학협력단 Manufacturing method for semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219787A (en) * 1990-07-23 1993-06-15 Microelectronics And Computer Technology Corporation Trenching techniques for forming channels, vias and components in substrates
CN103811337A (en) * 2012-11-13 2014-05-21 三菱电机株式会社 Method of manufacturing semiconductor device
JP2014099463A (en) * 2012-11-13 2014-05-29 Mitsubishi Electric Corp Semiconductor device manufacturing method
CN103811337B (en) * 2012-11-13 2017-07-14 三菱电机株式会社 The manufacture method of semiconductor device
DE102013217565B4 (en) 2012-11-13 2019-06-19 Mitsubishi Electric Corporation Method for producing a semiconductor device
KR20160114922A (en) * 2015-03-25 2016-10-06 경북대학교 산학협력단 Manufacturing method for semiconductor device

Similar Documents

Publication Publication Date Title
JP3406302B2 (en) Method of forming fine pattern, method of manufacturing semiconductor device, and semiconductor device
JPH02213144A (en) Manufacture of semiconductor device
JPS5972133A (en) Method of metallizing semiconductor element with two stages
JPS6155969A (en) Semiconductor device and manufacture thereof
JPH03108330A (en) Manufacture of semiconductor
JPH0330428A (en) Formation of wiring substrate
JP2612357B2 (en) Method of manufacturing gate electrode of transistor
JPH02238636A (en) Manufacture of semiconductor device
KR100247642B1 (en) Method for forming a contact hole in semiconductor device
JPH0350837A (en) Manufacture of semiconductor element
JPS58197849A (en) Formation of electrode wiring
JPH03268334A (en) Manufacture of semiconductor device
JP2872298B2 (en) Method for manufacturing semiconductor device
JPH04324673A (en) Formation of thin film resistance
JPS6222485A (en) Pattern forming method
JPH01209726A (en) Method for forming electrode of semiconductor device
JPH05218212A (en) Manufacture of semiconductor device
JPH02138751A (en) Manufacture of semiconductor device
JPH0294439A (en) Manufacture of semiconductor device
JPH0334319A (en) Manufacture of semiconductor device
JPS6352412A (en) Etching method for thin film
JPH0567611A (en) Semiconductor device and manufacture thereof
JPH0330369A (en) Manufacture of mis type semiconductor device
JPS6142967A (en) Electrode formation of semiconductor device
JPH04338638A (en) Manufacture of semiconductor device