JPH02205323A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02205323A
JPH02205323A JP2507289A JP2507289A JPH02205323A JP H02205323 A JPH02205323 A JP H02205323A JP 2507289 A JP2507289 A JP 2507289A JP 2507289 A JP2507289 A JP 2507289A JP H02205323 A JPH02205323 A JP H02205323A
Authority
JP
Japan
Prior art keywords
nitride film
silicon nitride
film
bonding pad
reliability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2507289A
Other languages
Japanese (ja)
Inventor
Yukio Morozumi
幸男 両角
Hiroshi Yamamoto
宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2507289A priority Critical patent/JPH02205323A/en
Publication of JPH02205323A publication Critical patent/JPH02205323A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve yield in assembly and mounting and reliability without damaging the characteristics of a laminated metallic wiring by removing the dissimilar metals of a bonding pad section within a range wider than the opening size of a passivation film. CONSTITUTION:A bonding pad 18 is patterned by a positive photo-resist 19, the resist 19 is peeled, and a silicon nitride film formed by plasma vapor- growing SiH4 and NH3 in decompression is laminated in approximately 1.0mum as a passivation film 17. The silicon nitride film 17 for boring the bonding pad section 18 is dry-etched. Since opening size is made narrower than glass mask size by approximately 0.5mum through under-exposure, a titanium nitride film 16 having low moisture resistance is coated completely with the silicon nitride film 17 while no eave of the silicon nitride film 17 is shaped, thus generating no crack and particle. Accordingly, yield in assembly and mounting is improved, and reliability is also enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に関し、特に外部電極
取り出し用のボンディングパッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a bonding pad for taking out an external electrode.

〔従来の技術] 従来微細化された半導体装置の配線方法は、第2図の如
く、例^ば半導体素子が形成された半導体基板21上の
第1、第2のフィールド酸化膜23.24を介して不純
物層22等からコンタクトボールが開孔され、例えばA
l2−3iの様なA9合金It@25を0.5〜1.0
umスパックしてからマイグレーション特性の向上とフ
ォトリソ工程のハレーション防止の為に、例えば窒化チ
タン膜26を0.3〜1.0μm程度スパッタする。次
に前記積層膜を同時にドライエツチングしてから、パシ
ベーションl!27として気相反応のシリコン酸化膜や
シリコン窒化膜を析出させ、外部電極取り出し用のボン
ディングパッド部28を形成する為、パシベーション膜
27の一部をウェット及びドライエツチングする。この
時窒化チタン膜26の表面は気相反応や、0.プラズマ
等によるレジスト剥離の際に反応し、後工程で行なうワ
イヤーボンディングの密着性や信頼性が劣る、従って、
CF 4に0□を添加したプラズマエッチングにより、
パッド部の窒化チタン膜26を完全除去している。
[Prior Art] Conventionally, as shown in FIG. 2, a wiring method for a miniaturized semiconductor device involves, for example, connecting first and second field oxide films 23 and 24 on a semiconductor substrate 21 on which a semiconductor element is formed. A contact ball is opened from the impurity layer 22 etc. through the hole, for example, A.
A9 alloy It@25 like l2-3i from 0.5 to 1.0
After um spacking, a titanium nitride film 26 is sputtered to a thickness of about 0.3 to 1.0 μm, for example, in order to improve migration characteristics and prevent halation in the photolithography process. Next, the laminated film is dry etched at the same time, and then passivation l! As step 27, a silicon oxide film or a silicon nitride film is deposited by vapor phase reaction, and a part of the passivation film 27 is wet and dry etched to form a bonding pad section 28 for taking out the external electrode. At this time, the surface of the titanium nitride film 26 undergoes a gas phase reaction or a 0. It reacts during resist removal using plasma, etc., and the adhesion and reliability of wire bonding performed in the subsequent process are poor.
By plasma etching with 0□ added to CF4,
The titanium nitride film 26 on the pad portion is completely removed.

〔発明が解決しようとする課題1 しかしながら従来技術では、パッド部28の窒化チタン
膜26を除去する為プラズマエツチングを行なっている
が、エツチング形状が等方性で、窒化チタン膜26はチ
タンをN2中でスパッタして形成するが、ウェハー内に
均一に成膜するのは難しく、よって除去には過剰のオー
バーエツチングが必要な為、パシベーション膜の下に大
きなサイドエッチが入ってしまい、コンタミネーション
トラップになったり、半導体装置チップを高温でグイボ
ンディングする時にパッド部周辺の雪庇となったパシベ
ーション膜からのクラック、パーティクルが発生し、組
み立て、実装の歩留りや信頼性上の問題となっている。
[Problem to be Solved by the Invention 1] However, in the prior art, plasma etching is performed to remove the titanium nitride film 26 on the pad portion 28, but the etched shape is isotropic and the titanium nitride film 26 is It is formed by sputtering inside the passivation film, but it is difficult to form a film uniformly on the wafer, so excessive overetching is required to remove it, resulting in large side etches under the passivation film, creating a contamination trap. When semiconductor device chips are bonded at high temperatures, cracks and particles are generated from the passivation film around the pads, causing problems in assembly and mounting yields and reliability.

しかるに本発明は、かかる課題を解決するものであり、
その目的とするところは、組み立て実装の歩留りや信頼
性を向上した微細半導体装置を安定供給することにある
However, the present invention solves these problems,
The aim is to stably supply microscopic semiconductor devices with improved assembly and mounting yields and reliability.

[課題を解決するための手段] 本発明の半導体装置の製造方法は、Aff合金薄膜上に
高融点金属またはその化合物からなる導電膜を積層した
配線構造を有する半導体装置の製造方法に於いて、ボン
ディングパッド部の該導電膜をエツチング除去する工程
と、パシベーション膜を積層する工程と、前記除去領域
よりも狭い範囲でパシベーション膜を開孔する工程を具
備したことを特徴とする。
[Means for Solving the Problems] The method for manufacturing a semiconductor device of the present invention includes the following steps: The present invention is characterized by comprising the steps of etching away the conductive film in the bonding pad portion, stacking a passivation film, and opening a hole in the passivation film in an area narrower than the region to be removed.

[実 施 例1 以下本発明の実施例に於ける工程を、第1図に基づいて
詳細に説明する。
[Example 1] Hereinafter, steps in an example of the present invention will be explained in detail based on FIG.

サブミクロンルールの集積回路製造に於いて、トランジ
スタや抵抗等の半導体素子が形成された半導体基板11
上の第12第2のフィールド酸化膜13.14を介して
不純物層12からコンタクトホールが開孔されており、
配線用のAff合金15を約1.0um、連続して窒化
チタン膜I6を約0.05μmスパッタした後、フォト
レジストをマスクにして、前記積層ll*15.16を
CI2 x系ガスでドライエツチングして同時パターニ
ングした後、ボンディングパッド部18をポジフォトレ
ジスト19でパターニングした(第1図(a))、続い
てC□F8と02を混入した平行平板のドライエツチャ
ーを使用し0.5torr、250Wで等方性エツチン
グした。この時ポジフォトレジスト19はオーバー露光
し、更に窒化チタン11116はオーバーエツチングし
たので、窒化チタン膜16はパッドのガラスマスク寸法
より2.5μm程度大きく除去しである(第1図(b)
)、その後レジスト19を剥ぎ、パシベーション膜17
としてS iHaとNH,を減圧中でプラズマ気相成長
させたシリコン窒化膜を約1.0um積層し、続いてボ
ンディングパッド部18を開孔する為、前記シリコン窒
化膜を、NF、と02ガスを用いてドライエツチングし
た。この時フォト用のガラスマスクとレジストは、窒化
チタン膜16を除去した時と同じものを使用したが、ア
ンダー露光することによって、開孔寸法はガラスマスク
寸法より0.5um程度狭くなっている(第1図(C)
)、この結果耐湿性の低い窒化チタン膜は、シリコン窒
化膜で完全に覆われると共に、従来の様なシリコン窒化
膜の雪庇は形成されず、クラック、パーティクルの発生
は起こらなくなった。
In the production of integrated circuits under the submicron rule, a semiconductor substrate 11 on which semiconductor elements such as transistors and resistors are formed.
A contact hole is opened from the impurity layer 12 through the upper 12th second field oxide film 13.14,
After sputtering Aff alloy 15 for wiring to a thickness of about 1.0 um and successively sputtering a titanium nitride film I6 of about 0.05 μm, using a photoresist as a mask, the laminated layer 11*15.16 was dry etched with CI2 x-based gas. After simultaneous patterning, the bonding pad portion 18 was patterned with a positive photoresist 19 (FIG. 1(a)), and then a parallel plate dry etcher containing C□F8 and 02 was used to pattern the bonding pad at 0.5 torr. , and isotropically etched at 250W. At this time, the positive photoresist 19 was overexposed and the titanium nitride 11116 was overetched, so the titanium nitride film 16 was removed approximately 2.5 μm larger than the pad glass mask dimension (Fig. 1(b)).
), then the resist 19 is removed and the passivation film 17 is removed.
A silicon nitride film of approximately 1.0 um is deposited by plasma vapor deposition of SiHa and NH under reduced pressure.Next, in order to open the bonding pad portion 18, the silicon nitride film is deposited with NF and 02 gas. Dry etching was performed using At this time, the same glass mask and resist for photo were used as those used when removing the titanium nitride film 16, but due to underexposure, the aperture size was about 0.5 um narrower than the glass mask size ( Figure 1 (C)
), as a result, the titanium nitride film, which has low moisture resistance, was completely covered with the silicon nitride film, and unlike the conventional silicon nitride film, the cornice of the silicon nitride film was not formed, and cracks and particles no longer occurred.

この様にしてなる半導体装置の組み立て、実装工程の歩
留りは向上し、信頼性上の問題も改善された。
The yield of the assembly and mounting process of semiconductor devices made in this manner has been improved, and reliability problems have also been improved.

尚、窒化チタン膜のエツチングは、CF、、C,F、に
限らずCHF、やNF、もしくは0□、He等との混合
ガスを用いたドライエツチャーでも可能である。この他
の実施例として、へ2合金の2層配線構造や、パシベー
ション構造がシリコン窒化膜の下にPSG膜やNSC膜
をストレス緩和の為に積層しである半導体装置のボンデ
ィングパッド部にも本発明を適用したが、前記と同様な
改善が見られた。
Note that the etching of the titanium nitride film is not limited to CF, C, or F, but may also be performed using a dry etcher using CHF, NF, or a mixed gas with 0□, He, or the like. Other examples include a two-layer wiring structure made of H2 alloy, and a passivation structure in which a PSG film or NSC film is laminated under a silicon nitride film to relieve stress. When the invention was applied, the same improvement as described above was observed.

又、ヒロック、マイグレーション防止膜として窒化チタ
ン膜を用いたが、これはフォトリソ工程でのハレーショ
ン防止も兼ねている為で有り、これに限らずMo、W、
T i、Taの様な高融点金属やそのシリサイド等の導
電材でも応用できる。
In addition, a titanium nitride film was used as a hillock and migration prevention film, but this also serves to prevent halation in the photolithography process.
It can also be applied to conductive materials such as high melting point metals such as Ti and Ta and their silicides.

又A2合金配線としては、Al2−5iに限らずTi、
Cu、Pt等やこれらの混合物を含む2元、3元系の合
金でも良く、更に配線の下に、バリア金属を敷いた場合
にも適用できる。
In addition, A2 alloy wiring is not limited to Al2-5i, but also Ti,
A binary or ternary alloy containing Cu, Pt, etc. or a mixture thereof may be used, and a barrier metal may be placed under the wiring.

〔発明の効果〕〔Effect of the invention〕

以上の如く本発明によれば、AI2合金上に異種金属等
を積層した配線構造であって、ボンディングパッド部の
該異種金属をパシベーション膜の開孔寸法より広く除去
することにより、積層金属配線の特性を損なうこともな
く、組み立て、実装歩留り、信頼性を向上する効果があ
り、微細半導体装置の実用化と安定供給が可能となる。
As described above, according to the present invention, in the wiring structure in which dissimilar metals, etc. are laminated on the AI2 alloy, the dissimilar metal in the bonding pad portion is removed wider than the opening size of the passivation film, thereby forming the laminated metal wiring. It has the effect of improving assembly, mounting yield, and reliability without impairing characteristics, making it possible to commercialize and stably supply microscopic semiconductor devices.

11. 12、 l 3. 14゜ l 5. 16. 17゜ 18、 l 9 ・ 2 l ・ 22 ・ 23 ・ 24 ・ 25 ・ 26 ・ 27 ・ 28 ・ ・半導体基板 ・不純物層 ・第1のフィールド酸化膜 ・第2のフィールド酸化膜 ・Aj2合金膜 ・窒化チタン膜 ・パシベーション膜 ・ボンディングパッド部 ・ポジレジスト 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 上 柳 雅 誉(他1名)11. 12, l 3. 14° l 5. 16. 17° 18, l 9 ・ 2 l・ 22・ 23・ 24・ 25・ 26・ 27・ 28・ ・Semiconductor substrate ・Impurity layer ・First field oxide film ・Second field oxide film ・Aj2 alloy film ・Titanium nitride film ・Passivation film ・Bonding pad part ・Positive resist that's all Applicant: Seiko Epson Corporation Agent: Patent attorney Homare Kamiyanagi (1 other person)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は1本発明の一実施例による配線
形成工程を示す概略断面図である。 第2図は、従来の配線形成工程を示す概略断面図である
FIGS. 1A to 1C are schematic cross-sectional views showing a wiring forming process according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing a conventional wiring forming process.

Claims (1)

【特許請求の範囲】[Claims] Al合金薄膜上に高融点金属またはその化合物からなる
導電膜を積層した配線構造を有する半導体装置の製造方
法に於いて、ボンディングパッド部の該導電膜をエッチ
ング除去する工程と、パシベーション膜を積層する工程
と、前記除去領域よりも狭い範囲でパシベーション膜を
開孔する工程を具備したことを特徴とする半導体装置の
製造方法。
A method for manufacturing a semiconductor device having a wiring structure in which a conductive film made of a high-melting point metal or a compound thereof is laminated on an Al alloy thin film includes a step of etching away the conductive film at a bonding pad portion and laminating a passivation film. A method for manufacturing a semiconductor device, comprising: a step of opening a hole in a passivation film in an area narrower than the removed region.
JP2507289A 1989-02-03 1989-02-03 Manufacture of semiconductor device Pending JPH02205323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2507289A JPH02205323A (en) 1989-02-03 1989-02-03 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2507289A JPH02205323A (en) 1989-02-03 1989-02-03 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02205323A true JPH02205323A (en) 1990-08-15

Family

ID=12155723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2507289A Pending JPH02205323A (en) 1989-02-03 1989-02-03 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02205323A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230995A (en) * 1994-02-17 1995-08-29 Nec Corp Semiconductor device
JP2006303452A (en) * 2005-03-25 2006-11-02 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2007103593A (en) * 2005-10-03 2007-04-19 Seiko Instruments Inc Semiconductor device and its manufacturing method
JP2010251537A (en) * 2009-04-16 2010-11-04 Renesas Electronics Corp Semiconductor integrated circuit device, and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891651A (en) * 1981-11-26 1983-05-31 Seiko Epson Corp Semiconductor device
JPS63285939A (en) * 1987-05-18 1988-11-22 Nec Corp Semiconductor device
JPS6410648A (en) * 1987-06-22 1989-01-13 Standard Microsyst Smc Method of multilayer metallization for integrated circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891651A (en) * 1981-11-26 1983-05-31 Seiko Epson Corp Semiconductor device
JPS63285939A (en) * 1987-05-18 1988-11-22 Nec Corp Semiconductor device
JPS6410648A (en) * 1987-06-22 1989-01-13 Standard Microsyst Smc Method of multilayer metallization for integrated circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07230995A (en) * 1994-02-17 1995-08-29 Nec Corp Semiconductor device
JP2006303452A (en) * 2005-03-25 2006-11-02 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2007103593A (en) * 2005-10-03 2007-04-19 Seiko Instruments Inc Semiconductor device and its manufacturing method
JP2010251537A (en) * 2009-04-16 2010-11-04 Renesas Electronics Corp Semiconductor integrated circuit device, and method of manufacturing the same
US9048200B2 (en) 2009-04-16 2015-06-02 Renesas Electronics Corporation Semiconductor integrated circuit device and method of manufacturing same
CN104835795A (en) * 2009-04-16 2015-08-12 瑞萨电子株式会社 Semiconductor device
US9536821B2 (en) 2009-04-16 2017-01-03 Renesas Electronics Corporation Semiconductor integrated circuit device having protective split at peripheral area of bonding pad and method of manufacturing same

Similar Documents

Publication Publication Date Title
JPH02205323A (en) Manufacture of semiconductor device
JPH10326830A (en) Manufacture of semiconductor device
JP3941629B2 (en) Etching method of metal wiring
TW409276B (en) Method of manufacturing semiconductor device
JP2842405B2 (en) Method for manufacturing semiconductor device
JP3603296B2 (en) Method for manufacturing semiconductor device
JP2890419B2 (en) Manufacturing method of semiconductor integrated circuit
JP3519641B2 (en) Semiconductor device having gold wiring and method of manufacturing the same
JP3033171B2 (en) Method for manufacturing semiconductor device
JP2874216B2 (en) Semiconductor device and manufacturing method thereof
JP2644079B2 (en) Semiconductor integrated circuit
JP2991388B2 (en) Method for manufacturing semiconductor device
JPH05299418A (en) Manufacture of semiconductor device
JPH11238732A (en) Wiring structure and formation of bonding pad opening
JPS62165342A (en) Semiconductor device
JPH02140955A (en) Semiconductor device
JPH03190240A (en) Manufacture of semiconductor device
JPH04278543A (en) Semiconductor device and manufacture thereof
JP2000156367A (en) Dry etching method
JPS61141157A (en) Manufacture of semiconductor element
JP2785474B2 (en) Method of forming an opening in a metal projection forming substrate
JPH0467622A (en) Manufacture of semiconductor device
JP2000277522A (en) Semiconductor device and manufacture thereof
JPH0451050B2 (en)
JPH02304929A (en) Manufacture of semiconductor device