JPH02197513A - Production of steel - Google Patents

Production of steel

Info

Publication number
JPH02197513A
JPH02197513A JP1819389A JP1819389A JPH02197513A JP H02197513 A JPH02197513 A JP H02197513A JP 1819389 A JP1819389 A JP 1819389A JP 1819389 A JP1819389 A JP 1819389A JP H02197513 A JPH02197513 A JP H02197513A
Authority
JP
Japan
Prior art keywords
furnace
hot metal
dephosphorization
slag
manganese ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1819389A
Other languages
Japanese (ja)
Other versions
JP2587286B2 (en
Inventor
Toru Matsuo
亨 松尾
Makoto Fukagawa
深川 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1018193A priority Critical patent/JP2587286B2/en
Publication of JPH02197513A publication Critical patent/JPH02197513A/en
Application granted granted Critical
Publication of JP2587286B2 publication Critical patent/JP2587286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To decrease the output of slag, etc., and to reduce the refining cost of low-P and high-Mn steel by using two converters consisting of a dephosphorization furnace and a decarburization furnace, adding the converter slag generated in the decarburization furnace, a refining agent and a carbonaceous material to molten iron and up-blowing gaseous oxygen. CONSTITUTION:Molten iron is refined by the two converters consisting of the dephosphorization furnace 1 and the decarburization furnace 2. The converter slag 4 generated in the decarburization furnace 2, a refining agent consisting essentially of Mn ore, and a carbonaceous material are added to the molten iron 3 injected into the dephosphorization furnace 1. Gaseous oxygen is then up-blown from a nozzle 5, and the molten iron is agitated to control the temp. of the molten iron after dephosphorization to 1200-1400 deg.C. Consequently, the molten iron is dephosphorized, and the Mn concn. in the molten iron is increased. A slag making agent and Mn ore are charged into the obtained dephosphorized molten iron, which is refined in the decarburization furnace 2. The molten iron is thus decarburized, and the Mn concn. in the refined molten steel is increased.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、全製鋼工程を通じて造滓剤(生石灰等)使
用量を最少に抑えつつ高能率脱燐(以降“脱P”と記す
)を行うと共に、マンガン鉱石(以下“鉄−マンガン鉱
石”をも含むものとする)の添加を行い、これを最大限
に溶融還元して転炉における終点[Mnl t7/s度
を上昇させることにより、品質の良好な鋼をコスト安く
溶製する方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention achieves highly efficient dephosphorization (hereinafter referred to as "deP") while minimizing the amount of slag-forming agents (quicklime, etc.) used throughout the entire steelmaking process. At the same time, manganese ore (hereinafter also referred to as "iron-manganese ore") is added, and this is melted and reduced to the maximum extent to increase the end point [Mnl t7/s degrees] in the converter, thereby improving the quality. This invention relates to a method for producing high-quality steel at low cost.

〈従来技術とその課題〉 近年、厚板鋼材の品質安定化と低コスト化要求が一段と
高まってきたことに呼応し、高Mnfiをできるだけ低
い価格で溶製するための方策が種々検討され実施される
ようになってきたが、その1つとして、製鋼工程での造
滓剤(生石灰、ドロマイト等)使用量を少なくすると共
に転炉終点[Mnl濃度を上昇させてマンガン合金(フ
ェロマンガン。
<Prior art and its issues> In response to the increasing demand for quality stabilization and cost reduction of thick steel plates in recent years, various measures have been studied and implemented to produce high Mnfi at the lowest possible price. One of these efforts is to reduce the amount of slag-forming agents (quicklime, dolomite, etc.) used in the steelmaking process, and to increase the Mnl concentration at the end point of the converter (manganese alloy (ferromanganese).

シリコマンガン等)使用量をも節減すべく、まず、例え
ばトーピード又は溶銑移送鍋内で生石灰系の脱P剤(主
として“生石灰−酸化鉄−ホタル石基”)をインジェク
ションすることで溶銑の予備膜P処理を行い、その後こ
れを転炉に注銑して少量の通常造滓剤(生石灰等)とマ
ンガン鉱石を添加し吹錬を行う方法が試みられ、好結果
を得ている。
In order to reduce the amount of silicomanganese, etc. used, first, a pre-film of hot metal is introduced by injecting a quicklime-based dephosphorizing agent (mainly "quicklime-iron oxide-fluorite base") in a torpedo or hot metal transfer pot. A method of performing P treatment, then pouring the iron into a converter, adding a small amount of ordinary slag-forming agent (quicklime, etc.) and manganese ore, and performing blowing has been tried, and good results have been obtained.

しかしながら、一方で、上記従来法には次のような問題
点も指摘された。即ち、 a)転炉吹錬時における脱P剤使用量を少なくできるも
のの、それでも溶銑脱P処理時(予備脱P処理時)と転
炉吹錬時の両方に生石灰系フラックスを使用するので、
結局は全製鋼工程を通じての造滓剤使用量がそれほど減
少しない。
However, on the other hand, the following problems were also pointed out in the above conventional method. That is, a) Although the amount of dephosphorization agent used during converter blowing can be reduced, quicklime-based flux is still used both during hot metal dephosphorization treatment (preliminary dephosphorization treatment) and converter blowing.
In the end, the amount of slag forming agent used throughout the entire steelmaking process does not decrease much.

b)脱P銑の転炉吹錬時に溶融還元できるマンガン鉱石
の量は、目標とする転炉終点温度によっても異なるが、
概ね15〜20kg/lが熱的に限界であり、そのため
到達し得る終点[Mn]濃度も精々0.5〜0.9%程
度であった。もっとも、この場合、熱源としてコークス
等の炭材を装入することで溶銑温度を高め、溶融還元す
るマンガン鉱石量を増やすことも考えられるが、この方
法ではコークスからの[S]のピックアップが問題とな
り、やはり転炉終点[Mn]fI1度の上昇には限界が
あった。
b) The amount of manganese ore that can be smelted and reduced during converter blowing for dephosphorized pig iron varies depending on the target converter end temperature.
The thermal limit is approximately 15 to 20 kg/l, and therefore the end point [Mn] concentration that can be reached is at most about 0.5 to 0.9%. However, in this case, it is possible to increase the temperature of the hot metal by charging carbonaceous material such as coke as a heat source and increase the amount of manganese ore to be smelted and reduced, but with this method, the pickup of [S] from the coke is a problem. Therefore, there was still a limit to the increase in the converter end point [Mn]fI by 1 degree.

そこで、このような問題の解決を目指して、本発明者等
は先に「上下両吹き機能を有した2基の転炉形式の炉の
うちの一方を脱P炉、他方を脱炭(以降“脱C”と記す
)炉として使用すると共に、まず前記脱P炉内へ注銑し
た溶銑に前記脱C炉で発生した転炉滓及びマンガン鉱石
を主成分とする精錬剤を添加し、底吹きガス撹拌を行い
つつ酸素ガスを上吹きして溶銑温度を1400℃以下に
保ちなから溶銑mpと溶銑[Mn]濃度の上昇を図る精
錬を行い、次いで得られた脱P溶銑に通常造滓剤とマン
ガン鉱石とを投入して脱C炉で精錬し溶銑の脱Cと溶銑
の終点[Mn]濃度の上昇を図る製鋼方法」を提案した
(特願昭62−301262号)。
Therefore, with the aim of solving this problem, the inventors of the present invention first developed a system in which one of the two converter-type furnaces with both upper and lower blowing functions was used as a dephosphorizing furnace and the other as a decarburizing furnace (hereinafter referred to as First, a refining agent mainly composed of converter slag and manganese ore generated in the carbon removal furnace is added to the hot metal poured into the carbon removal furnace. Refining is carried out to increase the hot metal mp and the hot metal [Mn] concentration while keeping the hot metal temperature below 1400°C by blowing oxygen gas upward while stirring the blowing gas.Then, the resulting dephosphorized hot metal is usually slag-formed. He proposed a steelmaking method in which the hot metal is decarbonized and the end point [Mn] concentration of the hot metal is increased by smelting it in a decarbonizing furnace by adding manganese ore to the hot metal (Japanese Patent Application No. 62-301262).

この方法は、“上下両吹き機能を有した2基の転炉形式
の炉のうちの一方を脱P炉、他方を脱C炉として溶銑の
精錬を行う製鋼方法“によってもたらされる[使用造滓
剤量を極力抑えた低コスト操業でもって低P鋼を安定し
て製造することができ、高品質鋼を安定に提供できる上
で極めて有利である」との利点が生かされる上、[S]
のピックアップを伴う “コークス添加”と言う熱源確
保手段を要せずに脱C炉での終点[Mn]濃度を効果的
に上昇させることが可能であるなど、高Mn鋼の溶製方
法として極めて有利な手段であった。
This method is a steelmaking method in which hot metal is refined by using one of two converter-type furnaces with both upper and lower blowing functions as a de-P furnace and the other as a de-C furnace. It is possible to stably produce low-P steel with low-cost operation that minimizes the amount of additives, and is extremely advantageous in that it can stably provide high-quality steel.''[S]
It is extremely effective as a high-Mn steel melting method, as it is possible to effectively increase the end point [Mn] concentration in the decarbonizing furnace without requiring a heat source such as "coke addition" that involves pick-up of carbon. It was an advantageous means.

しかし、実操業を通じて更に続けられた本発明者等の更
なる検討により、本発明者等が先に特願昭62−301
262号として提案した前記方法にも次の如き改善すべ
き余地のあることが強く認識されることとなった。
However, as a result of further study by the present inventors through actual operation, the present inventors were able to apply for patent application No. 62-301.
It has been strongly recognized that the method proposed as No. 262 has room for improvement as described below.

即ち、本発明者等が先に提案した前記方法を適用した場
合でも、脱P炉での[MnltM度上昇は通常0.5〜
0.7%程度であり、脱C炉でこの[Mn]冨化脱P銑
にマンガン鉱石を添加しなから脱Cした場合の終点[M
n]濃度は1.0〜1.1%程度である。
That is, even when the method previously proposed by the present inventors is applied, the increase in [MnltM degree in the deP furnace is usually 0.5 to
It is about 0.7%, and the end point [M
n] The concentration is about 1.0 to 1.1%.

しかるに、製品に要求される[Mn]濃度は鋼種によっ
ては1.5〜1.6%とまだまだ高く、従って前記方法
では“マンガン合金を全く添加しない操業”又は“これ
に近い操業”ができず、その後の工程(転炉出鋼時又は
RH等の処理時)で更にマンガン合金鉄の添加を余儀無
くされ、その分の製造コスト上昇を免れられない。
However, the [Mn] concentration required for products is still high, at 1.5 to 1.6% depending on the steel type, and therefore, with the above method, "operation without adding any manganese alloy" or "operation close to this" cannot be performed. , it is necessary to further add manganese alloy iron in subsequent steps (during converter tapping or RH treatment, etc.), which inevitably increases production costs.

このようなことから、本発明の目的は、造滓剤の多量使
用や[、S] ピックアップ等をもたらすことなく、製
品[Mn]濃度が1.5%又はそれ以上の鋼をマンガン
合金を全く添加しない操業或いはこれに近い操業にて溶
製し得る手段を確立することに置かれた。
Therefore, the purpose of the present invention is to produce steel with a product [Mn] concentration of 1.5% or more without using any manganese alloy without using a large amount of slag forming agent or causing [,S] pick-up. The aim was to establish a means for melting in an operation without additives or in a similar manner.

く課題を解決するための手段) 本発明者等は、上記目的を達成すべく様々な観点に立っ
た新たな検討を行い、まず、[先に特願昭62−301
262号として提案した製鋼方法がその後の工程(転炉
出鋼時やRH等の処理時)で更にマンガン合金鉄の添加
が必要となる原因は、該方法では転炉滓とマンガン鉱石
を主成分とする精錬剤を添加して行う脱P炉精錬終了時
に“引き続く脱C炉精錬での熱源確保”のため溶銑[C
]濃度を約4.0%程度確保する必要があり、このため
添加可能なマンガン鉱石量にどうしても限界を生じる上
、続く脱C炉吹錬においても炭材等の熱源を投入するこ
とがないのでマンガン鉱石を十分に溶融還元するだけの
熱量確保が難しい点にある」ことを確認した上で、この
問題の解決を月相して更なる研究を続けた結果、次のよ
うな知見を得るに至った。
In order to achieve the above object, the present inventors conducted new studies from various viewpoints, and firstly,
The reason why the steelmaking method proposed as No. 262 requires the addition of manganese alloy iron in subsequent steps (during converter tapping, RH, etc.) is that the main components of the steelmaking method are converter slag and manganese ore. At the end of de-P furnace refining, which is performed by adding a refining agent, hot metal [C
] It is necessary to secure a concentration of about 4.0%, which inevitably puts a limit on the amount of manganese ore that can be added, and also requires no heat source such as carbon material to be input in the subsequent decarbonizing furnace blowing. After confirming that "it is difficult to secure enough heat to sufficiently melt and reduce manganese ore," we continued further research with the goal of solving this problem, and as a result, we obtained the following knowledge. It's arrived.

即ち、先に提案した“2基の転炉形式の炉を使用する製
網方法”にて脱C炉終点[Mn]t1度を十分に上昇さ
せるためには、吹錬の際にどうしても炭材等の熱源を導
入する必要がある。ところが、炭材として一般的に使用
される“コークス”には0.6%程度ものSが含まれて
いるので、脱C炉にこれを導入してマンガン鉱石の溶融
還元量を増加させようとすると炭材からのSのピックア
ップが起こり、溶鉄中[S]が上昇すると言う問題が生
じる。
In other words, in order to sufficiently raise the decarbonization furnace end point [Mn]t1 degree in the previously proposed "method of mesh making using two converter-type furnaces," it is necessary to use carbonaceous materials during blowing. It is necessary to introduce a heat source such as However, since coke, which is commonly used as a carbonaceous material, contains about 0.6% S, an attempt was made to increase the amount of smelting and reduction of manganese ore by introducing it into the decarbonization furnace. This causes the problem that S is picked up from the carbonaceous material and the [S] in the molten iron increases.

しかしながら、上下両吹き転炉を使用し十分な脱P剤(
転炉滓及びマンガン鉱石を主成分とする精錬剤)投入下
で溶銑を吹錬して事前脱Pする前記製鋼方法の場合には
、その脱P炉にてコークス等の炭材を熱源として導入す
ると、脱Pスラグの塩基度(CaO/SiO□)にさえ
注意すれば同時に脱Sも進行することとなり、炭材から
の[S]ピックアップの懸念無く脱Pとマンガン鉱石溶
融還元量の大幅上昇とが実現できて、結果的に脱C炉終
点[Mn] ta度の十分な向上を図ることが可能とな
る。
However, by using an upper and lower blowing converter, sufficient dephosphorization agent (
In the case of the above-mentioned steelmaking method, in which hot metal is blown and dephosphorized in advance (refining agent mainly composed of converter slag and manganese ore), carbonaceous materials such as coke are introduced as a heat source in the dephosphorization furnace. Then, as long as the basicity (CaO / SiO As a result, it becomes possible to sufficiently improve the C removal furnace end point [Mn] ta degree.

本発明は、上記知見に基づいてなされたものであり、 「第1図に示される如く、上下両吹き機能を有した2基
の転炉形式の炉のうち、一方を脱燐炉1、他方を脱炭炉
2として溶銑の精錬を行う製鋼方法において、前記脱燐
炉l内へ注入した溶銑3に前記脱炭炉2で発生した転炉
滓4及びマンガン鉱石を主成分とする精錬剤と共に炭材
を添加し、撹拌ガス吹込みノズル5による底吹きガス撹
拌を行いつつ、脱燐後溶銑温度が1200〜1400℃
になるようにランス6より酸素ガスを上吹きし溶銑脱P
と溶銑[Mn]濃度の上昇を行う工程と、得られた脱燐
溶銑に通常造滓剤とマンガン鉱石とを投入して脱炭炉2
で精錬し、溶銑の脱炭と溶鋼の精錬終点[Mn]濃度の
上昇を図る工程とによって、造滓剤使用量少なく低コス
トにて低P高Mn含有鋼を溶製し得るようにした点」 に特徴を有するものである。
The present invention has been made based on the above knowledge, and is based on the following: ``As shown in FIG. In a steelmaking method in which hot metal is refined using decarburization furnace 2, hot metal 3 is injected into the dephosphorization furnace 1 together with converter slag 4 generated in the decarburization furnace 2 and a refining agent mainly composed of manganese ore. While adding carbonaceous material and stirring the bottom blowing gas using the stirring gas blowing nozzle 5, the temperature of the hot metal after dephosphorization is 1200 to 1400°C.
Oxygen gas is blown upward from lance 6 so that the hot metal is dephosphorized.
and a step of increasing the hot metal [Mn] concentration, and adding a normal slag forming agent and manganese ore to the obtained dephosphorized hot metal to decarburize the decarburizer 2.
By decarburizing the hot metal and increasing the refining end point [Mn] concentration of the molten steel, it is possible to produce low-P, high-Mn-containing steel at a low cost with less slag-forming agent usage. ”.

つまり、本発明は、2基の上下両吹き機能を有した転炉
形式の炉の一方を脱P炉、他方を脱C炉に使用し製鋼を
行う方法において、その脱P処理時に炭材を添加してマ
ンガン鉱石を効率的に溶融還元し脱P銑の[Mn]濃度
を顕著に高めることにより、続く脱C炉での終点[Mn
]濃度向上を図る点を骨子としているが、従来、このよ
うな溶銑脱P時にコークス等の熱源を用いると言った考
え方が無かったのは次の理由による。
In other words, the present invention provides a method for manufacturing steel using two converter-type furnaces having both upper and lower blowing functions, one of which is used as a dephosphorization furnace and the other as a carbon removal furnace. By adding it to efficiently melt and reduce manganese ore and significantly increasing the [Mn] concentration in the dephosphorized pig iron, the final point [Mn] in the subsequent decarbonizing furnace is
] The main point is to improve the concentration, but the reason why there has been no concept of using a heat source such as coke during hot metal dephosphorization is as follows.

即ち、溶銑脱Pは、従来、トーピード又は移送鍋内で行
われており、従って設備的に大量の酸素を使用すること
ができなかった。そのため、コークスを添加しても短時
間にこれを燃焼することができず、処理時間のみがかか
ると言う問題がある上、処理時の抜熱が大きくて実質的
な熱付与は難しかった。また、例え02吹込みを行った
としても少量の0□しか使用できないこのような設備で
コークスを使用すると、処理方法によってはコークスが
酸素により燃焼する前に脱Pスラグがコークスにて還元
され過ぎてしまい、脱P率そのものが悪化するとの問題
があった。
That is, hot metal dephosphorization has conventionally been carried out in a torpedo or a transfer pot, and therefore it has not been possible to use a large amount of oxygen due to the equipment. Therefore, even if coke is added, it cannot be burned in a short period of time, and there is a problem in that only a long processing time is required.In addition, the heat removed during processing is large, making it difficult to provide substantial heat. In addition, if coke is used in such equipment where only a small amount of 0□ can be used even if 02 injection is performed, depending on the processing method, the dephosphorized slag may be reduced too much by the coke before the coke is combusted by oxygen. Therefore, there was a problem that the P removal rate itself deteriorated.

これに対して、本発明における如く脱P精錬容器として
上下両吹き転炉を用いる場合には、例えば2〜4 N 
rrr/I!l1n−tもの大量のOtが使用できるの
で、炭材を短時間で燃焼し加熱することが可能となり、
マンガン鉱石を添加した場合には効率的な溶融還元が行
われる。
On the other hand, when an upper and lower blowing converter is used as the deP refining vessel as in the present invention, for example, 2 to 4 N
rrr/I! Since a large amount of Ot (l1n-t) can be used, it is possible to burn and heat carbonaceous materials in a short time.
When manganese ore is added, efficient melt reduction is performed.

ところで、本発明における溶銑脱P処理では、脱C炉で
発生した転炉滓とマンガン鉱石を主成分とした精錬剤(
脱P剤)を用いるが、通常、更に媒溶剤としてホタル石
を加え、これにコークス等の炭材を投入して吹錬が行わ
れる。なお、脱P剤としているマンガン鉱石は、本来脱
Pに必要な酸化剤としての量は溶銑トン当りlO〜15
kg/lで良く、従ってこの量を超えるマンガン鉱石は
理論上[Mn]濃度上昇のみのために添加するものであ
るが、ここではこれをも含めて“精錬剤(脱P7fll
)”とした。
By the way, in the hot metal deP treatment in the present invention, a refining agent (mainly composed of converter slag generated in a carbon removal furnace and manganese ore) is used.
Usually, fluorite is added as a solvent, and a carbon material such as coke is added to the mixture for blowing. The amount of manganese ore used as a dephosphorizing agent as an oxidizing agent originally required for dephosphorization is 10 to 15 liters per ton of hot metal.
kg/l, and therefore manganese ore exceeding this amount is theoretically added only to increase the [Mn] concentration, but here we will include it as a “refining agent (de-P7flll)”.
)”.

本発明における溶銑膜P処理工程は、基本的には、脱P
炉に収容した溶銑に上記脱P剤とコークスを添加し、コ
ークスの燃焼に必要な02量と脱Pに必要なOt量(5
〜10 N rrr/win−t)とを加えた量を基本
とする02ガスを上吹きし、脱P処理後の溶銑温度が1
200〜1400℃になるように調節すれば良いわけで
あるが、具体的には例えば次のような手段の1つが採ら
れる。
The hot metal film P treatment process in the present invention basically involves removing P.
The above dephosphorization agent and coke are added to the hot metal stored in the furnace, and the amount of 02 required for combustion of coke and the amount of Ot required for dephosphorization (5
~10N rrr/win-t) is blown upward, and the temperature of the hot metal after deP treatment is 1.
It is sufficient to adjust the temperature to 200 to 1400°C, and specifically, for example, one of the following methods may be used.

i)溶銑に転炉滓とホタル石を添加すると共にコークス
をも添加し、通常の転炉吹錬レベルである2〜4 N 
rrr/n+1n−tの酸素を上吹きしてコークスの燃
焼による加熱昇温を行った後、マンガン鉱石の添加を行
い(続いて上吹き酸素量を0.5〜lNn?/m1n−
を程度に低下させて昇温期に既にできているスラグと共
に脱Pと更なる[Mnlアップを図る。
i) Converter slag and fluorspar are added to the hot metal, and coke is also added to produce 2 to 4 N, which is the normal converter blowing level.
rrr/n+1n-t of oxygen was blown upward to raise the temperature by burning coke, and then manganese ore was added (then the amount of top-blown oxygen was 0.5 to lNn?/m1n-
The aim is to reduce P to a certain level and remove P along with the slag that has already formed during the temperature rising period and further increase [Mnl].

ii)溶銑に転炉滓とホタル石及び[Mnlアップのみ
のために用いるマンガン鉱石を添加し、2〜4 N r
rr/5in−tの酸素を上吹きしてコークスの燃焼に
よる加熱とマンガン鉱石の溶融還元を行った後、上吹き
送酸量を0.5〜I N rrr/m1n−を程度に低
下させ、残部のマンガン鉱石10〜15kg/lを添加
して脱Pと更なる[Mnlアップを実施する。
ii) Add converter slag, fluorite, and manganese ore used only for increasing Mnl to hot metal, and add 2 to 4 N r
After heating by burning coke and melting and reducing manganese ore by top-blowing oxygen at rr/5 in-t, the amount of top-blowing oxygen is reduced to 0.5 to I N rrr/m1n-, The remaining manganese ore (10 to 15 kg/l) is added to remove P and further increase Mnl.

ここで、用いる転炉滓は脱C炉で発生したものであるが
、その添加量は処理後のスラグ塩基度を2.5以上、好
ましくは3以上にするのに必要な量とするのが基本であ
る。勿論、CaO源としては該転炉滓のみならず、更に
生石灰を加えても良い。これらの具体的な量は用いる溶
銑の[Si]濃度、及びマンガン鉱石やコークスの脈石
等の如きSiO□源を考慮して決定すれば良いが、通常
、転炉滓は25〜35kg/を程度必要である。
The converter slag used here is generated in the decarbonization furnace, and the amount added is the amount necessary to make the slag basicity after treatment 2.5 or more, preferably 3 or more. It's basic. Of course, as a CaO source, not only the converter slag but also quicklime may be added. The specific amount of these can be determined by considering the [Si] concentration of the hot metal used and the SiO□ source such as manganese ore or coke gangue, but usually the converter slag is 25 to 35 kg/ degree is necessary.

なお、スラグの塩基度を2.5以上、できれば3以上と
するのが良い理由は、脱P炉でのMn、  P、  S
の分配比とスラグ塩基度との関係を示した第2図からも
明らかな如く、効果的なマンガン鉱石の溶融還元を行う
ために(MnO)/ [Mnl比を小さくすると共に(
P)/ [P]比及び(S)/[S]比を高くし、脱P
スラグによる脱S能をアップしてコークス等からの[S
] ピックアップを防ぐことにある。例えば、CaO/
5iOt=3の場合にはマンガン鉱石の還元歩留は60
%程度であり、脱S率は70%になる。従って、用いる
溶銑によっても異なるが、処理前[S]濃度が0.01
%程度の場合にはコークスからの[S] ピックアップ
は全く無く、むしろ処理後の[3]は0.006〜0.
008%となって若干膜Sが進行する程である。
The reason why it is better to set the basicity of the slag to 2.5 or higher, preferably 3 or higher is because Mn, P, and S
As is clear from Figure 2, which shows the relationship between the distribution ratio of and the basicity of slag, in order to effectively melt and reduce manganese ore, it is necessary to reduce the (MnO)/[Mnl ratio and (
P)/[P] ratio and (S)/[S] ratio are increased to remove P.
Improves the ability to remove S from slag and removes [S] from coke, etc.
] The purpose is to prevent pickup. For example, CaO/
When 5iOt=3, the reduction yield of manganese ore is 60
%, and the S removal rate is about 70%. Therefore, although it varies depending on the hot metal used, the [S] concentration before treatment is 0.01
%, there is no [S] pickup from coke at all, and rather [3] after treatment is 0.006 to 0.
008%, to the extent that the film S has progressed slightly.

このように、脱Pスラグの塩基度を2.5%以上にする
ことは有用なことであるが、その意味では溶銑の[s+
]?Jf1度は低い方が好ましく、できれば0.30%
以下にまで予備脱珪した溶銑を用いることが望ましい。
In this way, it is useful to increase the basicity of the dephosphorized slag to 2.5% or more, but in that sense, the basicity of the hot metal [s+
]? The lower the Jf1 degree, the better, preferably 0.30%.
It is desirable to use hot metal that has been preliminarily desiliconized to the following level.

また、用いるコークス等の炭材やマンガン鉱石の脈石も
少ない方が良い。なぜなら、スラグ中の(Stoz)が
高くなると塩基度調整のための転炉滓(及び生石灰)の
使用量が増加するだけでなく、スラグ量が増加してマン
ガン鉱石の還元歩留が低下するからである。
Further, it is better to use fewer carbonaceous materials such as coke and gangue of manganese ore. This is because when the (Stoz) in slag increases, not only does the amount of converter slag (and quicklime) used for basicity adjustment increase, but also the amount of slag increases and the reduction yield of manganese ore decreases. It is.

添加すべきマンガン鉱石の量は、脱C炉からリターンさ
れる転炉滓中の(Mn O)と併せて考え決定されるが
、例えば転炉滓の使用量:25〜30kg/lの場合で
、脱P処理後[Mnlを0.8〜0.9%程度まで上昇
させるときには15〜25kg/lのマンガン鉱石が必
要である。なお、脱C炉終点[Mnl #1.5%を想
定した場合には転炉滓中に(MnO)が30〜50%と
多量に含まれており、一方、脱P処理後スラグの(Mn
 O)は10〜15%と低くなるので、本発明の方法は
本来的にMnと言う有価金属を取り込むのには有利な方
法であると考えられる。
The amount of manganese ore to be added is determined by considering (MnO) in the converter slag returned from the decarbonization furnace. For example, when the amount of converter slag used is 25 to 30 kg/l, , After P removal treatment, 15 to 25 kg/l of manganese ore is required to increase Mnl to about 0.8 to 0.9%. In addition, assuming that the end point of the decarbonization furnace [Mnl #1.5%, the converter slag contains a large amount of (MnO) of 30 to 50%;
Since O) is as low as 10 to 15%, the method of the present invention is considered to be an inherently advantageous method for incorporating the valuable metal Mn.

ホタル石の使用量はスラグの滓化状態により添加量が決
定され2〜15kg/を使用されるが、最も一般的には
5〜8kg八程度のへ用量となる。
The amount of fluorite to be added is determined depending on the slag state of the slag, and is usually 2 to 15 kg, but most commonly it is about 5 to 8 kg.

これら精錬剤(脱P剤)のうち、転炉滓は一旦滓化した
ものであるため滓化が極めて容易であり、そのため粒径
はlOO■lφ程度、或いはそれ以上であっても良い(
勿論、溶融したままのものであっても差し支えない)。
Among these refining agents (dephosphorization agents), converter slag is extremely easy to turn into slag because it has been turned into slag once, and therefore the particle size may be around 1OO■lφ or even larger (
Of course, it may be molten.)

また、マンガン鉱石やホタル石の粒度は通常使用する程
度のもので十分である。
In addition, the particle size of manganese ore and fluorite that is normally used is sufficient.

更に、上記精錬剤(脱P剤)としては、転炉滓。Further, as the refining agent (dephosphorization agent), converter slag is used.

マンガン鉱石、ホタル石及び生石灰以外に、石灰石、ソ
ーダ灰及び酸化鉄を加えても良い。この中で、ソーダ灰
は3〜10kg/lを脱P処理後に炉底撹拌ガスと共に
脱P銑中ヘインジェクションするのが良く、これによっ
て脱Sがより促進されるので極低硫鋼を溶製する手段と
して効果的である。
In addition to manganese ore, fluorspar, and quicklime, limestone, soda ash, and iron oxide may be added. Among these, it is best to inject 3 to 10 kg/l of soda ash into the deP pig iron together with the bottom stirring gas after the deP treatment, as this will further promote deS and produce ultra-low sulfur steel. It is an effective means of

脱P処理温度は、加熱昇温朋は1400℃以上になって
も問題ないが、その後の脱P期後の温度は1400℃以
下とすべきである。なぜなら、この時期の溶銑温度が1
400℃を超えると脱Cが活発になってスラグが還元さ
れすぎ、酸化力が低下して脱Pが悪化するためである。
Regarding the temperature of the P removal treatment, there is no problem even if the heating temperature rises to 1400°C or higher, but the temperature after the subsequent P removal period should be 1400°C or lower. This is because the temperature of hot metal at this time is 1
This is because when the temperature exceeds 400°C, decarbonization becomes active and the slag is reduced too much, resulting in a decrease in oxidizing power and deterioration of dephosphorization.

しかしながら、スラグ中の粒鉄ロスを少なくしたり、脱
P処理に続く脱C炉でのマンガン鉱石溶融還元可能量を
多くするためには上記温度は1200℃以上とするのが
良く、該温度はできれば1320〜1400℃に調整す
るのが好ましい。なお、このように比較的高い脱P処理
温度でも効果的な脱Pを進行させるためにも、脱Pスラ
グの塩基度は2.5以上に調整するのが好ましい(前記
第2図参照)。
However, in order to reduce the loss of granular iron in the slag and increase the amount of manganese ore that can be smelted and reduced in the carbon removal furnace following the P removal treatment, the above temperature is preferably 1200°C or higher; It is preferable to adjust the temperature to 1320 to 1400°C if possible. In order to proceed with effective dephosphorization even at such a relatively high dephosphorization treatment temperature, it is preferable to adjust the basicity of the dephosphorization slag to 2.5 or more (see FIG. 2 above).

コークス等の炭材使用量は、用いる溶銑の温度。The amount of carbon materials used, such as coke, depends on the temperature of the hot metal used.

熔融還元するマンガン鉱石量、脱P後溶銑温度。Amount of manganese ore to be melted and reduced, hot metal temperature after dephosphorization.

及び脱P炉の温もり具合によっても異なるが、通常は1
0〜15kg/を程度である。なお、炭材(コークス)
の粒度は通常使用する程度のもので良いが、好ましくは
飛散しない範囲で小さい方が良い。
It also depends on the temperature of the deP furnace, but usually 1
Approximately 0 to 15 kg/. In addition, carbonaceous material (coke)
The particle size may be within the range normally used, but it is preferably as small as possible without scattering.

上吹酸素はソフトブローが好ましい。特に、加熱昇温時
は通常2〜4 N t+?/win−tと多量に上吹き
するが、この上吹き酸素によって溶銑[C]を低下させ
ずにコークスを燃焼させ、更には生成したCOガスをC
OZまで二次燃焼させて効率的に昇温するため、溶鉄の
深さLoと02ジエツトによる凹み深さLの比(L/L
o)を0.1以下としたソフトブローが好ましい。
The top-blown oxygen is preferably soft-blown. In particular, when heating and raising the temperature, it is usually 2 to 4 N t+? /win-t, but this top-blown oxygen burns coke without reducing the molten metal [C], and furthermore, the generated CO gas is
In order to efficiently raise the temperature by secondary combustion to OZ, the ratio of the depth Lo of the molten iron to the depth L of the depression caused by the 02 jet (L/L
Soft blowing with o) of 0.1 or less is preferred.

加熱昇温期と脱P期の時間は、条件によっても異なるが
、通常前者が5分程度、後者が8〜15分程度である。
Although the times of the heating temperature rising period and the P dephosphorization period vary depending on the conditions, the former is usually about 5 minutes, and the latter is about 8 to 15 minutes.

なお、この脱P期の時間には上吹き酸素停止後の炉底ガ
ス撹拌のみのリンス時間が含まれる。
Note that the time for this deP period includes the rinsing time during which only the bottom gas is stirred after the top blowing oxygen is stopped.

ところで、本発明に係る製鋼方法では溶銑の脱Pとマン
ガン鉱石の溶融還元のほか、スクラップ溶解を同時に実
施することもできる。この場合、スクラップは加熱昇温
期に主として溶解され、このために必要なコークス量は
更にスクラップ比1%当り1〜3kg/を増しとするの
が一応の目安である。
By the way, in the steel making method according to the present invention, in addition to dephosphorization of hot metal and smelting reduction of manganese ore, scrap melting can also be carried out simultaneously. In this case, the scrap is mainly melted during the heating and temperature rising period, and a tentative guideline is that the amount of coke required for this purpose should be increased by 1 to 3 kg per 1% of the scrap ratio.

脱P炉の炉底から吹き込む撹拌ガスとしては、Ar、C
O+  COz、Nz+ 021空気等の何れであって
も良い。そして、脱P炉の炉底ガス撹拌の程度は通常の
上下両吹き複合吹錬におけるのと同程度(0,03〜0
.3 N n?/m1n−t)で良いが、脱P速度の向
上を狙ってこれよりも多くして良いことは言うまでもな
い。
The stirring gas injected from the bottom of the deP furnace includes Ar, C,
It may be O+ COz, Nz+ 021 air, etc. The degree of bottom gas agitation in the deP furnace is the same as that in normal upper and lower double blowing combined blowing (0.03 to 0.0
.. 3 N n? /m1n-t), but it goes without saying that it may be greater than this in order to improve the P removal rate.

このようにして、脱P炉で[Mn]を上昇させた脱P銑
を脱C炉で吹錬する場合、添加可能マンガン鉱石量は、
脱P銑温度、脱C炉終点温度、炉の温もり具合によって
も異なるが、1既ね15〜30kg/を程度である。な
お、添加マンガン鉱石量を増加させるために[S]のピ
ックアップが問題に成らない範囲でコークス等の炭材を
熱源として添加しても良いことは勿論である。そして、
脱C炉吹錬では生石灰やドロマイトを中心とする通常造
滓剤がマンガン鉱石と共に使用される。
In this way, when dephosphorized pig iron with increased [Mn] in a dephosphorizing furnace is blown in a decarbonizing furnace, the amount of manganese ore that can be added is:
Although it varies depending on the deP pig iron temperature, the end point temperature of the deC furnace, and the degree of warmth of the furnace, it is usually around 15 to 30 kg/hour. It goes without saying that in order to increase the amount of manganese ore added, a carbonaceous material such as coke may be added as a heat source to the extent that pick-up of [S] does not pose a problem. and,
In carbon-free furnace blowing, slag-forming agents, mainly quicklime and dolomite, are used together with manganese ore.

次に、本発明を実施例により比較例と対比してより具体
的に説明する。
Next, the present invention will be explained in more detail using Examples and in comparison with Comparative Examples.

〈実施例〉 比較例 1 トーピード内で脱S・脱りt処理した第1表の上段に示
される如き成分の溶銑250tを脱P炉として使用する
上下両吹き複合吹錬炉に注銑し、これに同様形式の脱C
炉で発生した転炉滓を冷却・凝固して30龍以下の粒径
に破砕したもの25kg/lと、同様の粒径を持つマン
ガン鉱石12kg/l。
<Example> Comparative Example 1 250 tons of hot metal having the composition as shown in the upper row of Table 1, which had been subjected to de-S and de-t treatment in a torpedo, was poured into an upper and lower double blowing combined blowing furnace used as a de-P furnace, Similar to this, the de-C
25 kg/l of converter slag generated in the furnace is cooled and solidified and crushed to a particle size of 30 dragons or less, and 12 kg/l of manganese ore with a similar particle size.

ホタル石8kgへ並びに生石灰4kg/lを混合状態で
添加して12分間の脱P処理を行った。なお、この際に
用いた転炉滓組成と、これを主成分とする脱Pスラグの
塩基度(Cab/5te2)を第2表に示す。
8 kg of fluorspar and 4 kg/l of quicklime were added in a mixed state and dephosphorized for 12 minutes. Table 2 shows the composition of the converter slag used in this case and the basicity (Cab/5te2) of the dephosphorized slag containing this as the main component.

なお、使用した脱P炉並びに脱C炉は、何れも炉底より
ガス吹込み撹拌が可能な250を上下両吹き複合吹錬転
炉であり、第3表に示したような操業条件が採用された
The de-P furnace and de-C furnace used were both 250 top and bottom blowing combined blowing converters capable of injecting and stirring gas from the bottom of the furnace, and the operating conditions shown in Table 3 were adopted. It was done.

このようにして得られた脱燐銑(成分組成は第1表の中
段に示す)を、−旦鍋中に出銑してから脱C炉に注銑し
、更に生石灰8kg/l、  ドロマイト5kg/l、
ホタル石1kg/を及びマンガン鉱石20kg/lを添
加してから主吹錬を実施した。
The dephosphorized pig iron thus obtained (the composition is shown in the middle row of Table 1) was tapped into a hotpot and then poured into a decarbonizing furnace, and further 8 kg/l of quicklime and 5 kg of dolomite were poured into the decarbonizing furnace. /l,
Main blowing was carried out after adding 1 kg/l of fluorspar and 20 kg/l of manganese ore.

このとき発生した転炉滓は25kg八であり、これをマ
ンガン鉱石及びホタル石と共に次のチャージの脱P剤原
料として脱P炉に添加し脱Pを行うと言う一連の操作を
繰り返した。
The converter slag generated at this time weighed 25 kg, and a series of operations were repeated in which it was added to the dephosphorization furnace as a raw material for the dephosphorization agent for the next charge along with manganese ore and fluorite to perform dephosphorization.

この結果、全製鋼工程での使用生石灰及びドロマイト量
が合計で17kg/Lと言う少ない値で、第1表の下段
に示すような鋼中[P]が0.012%。
As a result, the total amount of quicklime and dolomite used in the entire steelmaking process was as low as 17 kg/L, and [P] in the steel was 0.012% as shown in the lower row of Table 1.

[Mn]が1.04%と言う溶鋼が得られた。Molten steel with a [Mn] content of 1.04% was obtained.

実施例 1 脱P炉(上下両吹き複合転炉)内に注銑した第4表の上
段に示される如き成分の脱S・脱Si溶銑250tに、
脱C炉で発生した転炉滓35kg/lとホタル石8kg
/lのほか、粒径3(In以下のコークス10kg/l
を添加し、上吹き酸素3 N rd7min−tで4分
間加熱昇温した後、マンガン鉱石20kg/lを添加し
て上吹き酸素0.7N rrr/lll1n−tで12
分間脱P処理を実施した。なお、この際に用いた転炉滓
の組成と、これを主成分とする脱Pスラグの塩基度(C
a O/St Oz)を第5表に示す。
Example 1 250 tons of de-S and de-Si hot metal having the components shown in the upper row of Table 4 were poured into a de-P furnace (composite converter with upper and lower blowing).
35 kg/l of converter slag and 8 kg of fluorite generated in the decarbonization furnace
/l, coke with particle size 3 (In or less) 10kg/l
was added and heated for 4 minutes with top-blown oxygen of 3 N rd7 min-t, then 20 kg/l of manganese ore was added and heated with top-blown oxygen of 0.7 N rrr/llll1 n-t for 12 minutes.
A minute-long deP treatment was performed. The composition of the converter slag used at this time and the basicity (C
a O/St Oz) is shown in Table 5.

次いで、このようにして得られた脱P銑(成分組成は第
4表の中段に示す)は若干温度も高くすることができた
ので、これを脱C炉に注銑し、更に生石灰13kg/l
、  ドロマイト5kg/l、ホタル石3kg/を及び
マンガン鉱石30kgへを添加してから主吹錬を実施し
た。
Next, since the temperature of the dephosphorized pig iron obtained in this way (the composition is shown in the middle row of Table 4) could be raised slightly, it was poured into a decarbonized iron furnace, and 13 kg of quicklime/quicklime was added. l
, 5 kg/l of dolomite, 3 kg/l of fluorite and 30 kg of manganese ore were added before main blowing.

このとき発生した転炉滓は35kg/lであり、これを
ホタル石、マンガン鉱石と共に次のチャージの脱P剤原
料として脱P炉に添加し脱Pを行うと言う一連の操作を
繰り返した。
The converter slag generated at this time was 35 kg/l, and a series of operations were repeated in which it was added to the dephosphorization furnace as a raw material for the dephosphorization agent for the next charge together with fluorite and manganese ore to perform dephosphorization.

その結果、第4表の下段に示すような溶鋼が得られ、脱
C炉での終点[Mn]が1.51%まで上昇したことが
明らかとなった。勿論、全製鋼工程で使用した生石灰及
びドロマイ)fJが少なくて済んだことは比較例の場合
と同様であった。
As a result, it was revealed that molten steel as shown in the lower row of Table 4 was obtained, and the end point [Mn] in the carbon removal furnace increased to 1.51%. Of course, as in the case of the comparative example, less quicklime and dolomite (fJ) were used in the entire steelmaking process.

このように、脱P炉でコークスを用いて加熱した結果、
マンガン鉱石の溶融還元量が増加し、前記比較例の場合
に比して[Mn]濃度を0.47%高くすることができ
た。なお、コークスを用いたにもかかわらず[S]上昇
は認められなかった。
As a result of heating using coke in a deP furnace,
The amount of manganese ore smelted and reduced was increased, and the [Mn] concentration could be increased by 0.47% compared to the comparative example. Note that no increase in [S] was observed despite the use of coke.

実施例 2 脱P炉(上下両吹き複合転炉)内に注銑した第6表の上
段に示される如き成分の脱S・脱Si溶銑250tに、
@C炉で発生した転炉滓25kg/l、ホタル石8kg
/を及びマンガン鉱石10kg/lのほか、粒径30鶴
以下のコークス15kg/lを添加し、上吹き酸素3 
N rrf/n+1n−tで5分間加熱してマンガン鉱
石還元を行った後、更にマンガン鉱石10kg/l。
Example 2 250 tons of de-S and de-Si hot metal having the components shown in the upper row of Table 6 were poured into a de-P furnace (a combined upper and lower blowing converter).
@Converter slag generated in C furnace 25kg/l, fluorite 8kg
In addition to 10 kg/l of manganese ore, 15 kg/l of coke with a particle size of 30 Tsuru or less was added, and 3 liters of top-blown oxygen was added.
After reducing the manganese ore by heating at N rrf/n+1n-t for 5 minutes, 10 kg/l of manganese ore was added.

生石灰9kg/を及びホタル石1kg/lを添加して上
吹き酸素0.7N rrr/n+1n−tで14分間脱
P処理を実施した。なお、この際に用いた転炉滓組成と
、これを主成分とする脱Pスラグの塩基度(Ca O/
SI Oz>を第7表に示す。
9 kg/l of quicklime and 1 kg/l of fluorspar were added, and dephosphorization treatment was carried out for 14 minutes with top-blown oxygen of 0.7 N rrr/n+1n-t. The composition of the converter slag used at this time and the basicity (CaO/
SI Oz> is shown in Table 7.

次いで、このとき得られた脱P銑(第6表中段)を脱C
炉に注銑し、更に生石灰8kg/l、  ドロマイト4
kg/l、ホタル石3 kg/を及びマンガン鉱石30
kg/lを添加し主吹錬を実施した。
Next, the dephosphorized pig iron obtained at this time (middle row of Table 6) was decarbonized.
Pour into the furnace, add quicklime 8kg/l, and dolomite 4
kg/l, fluorite 3 kg/l and manganese ore 30 kg/l
kg/l was added and main blowing was carried out.

このとき発生した転炉滓は25kg/lであり、これを
ホタル石、マンガン鉱石、生石灰と共に次のチャージの
脱P剤原料として脱P炉に添加し脱Pを行うと言う一連
の操作を繰り返した。
The converter slag generated at this time was 25 kg/l, and this was added to the deP furnace as a raw material for the deP agent for the next charge along with fluorite, manganese ore, and quicklime, and a series of operations were repeated to perform deP. Ta.

その結果、第6表の下段に示すような溶鋼が得られ、コ
ークスからの[S] ピックアップなしに脱C炉での終
点[Mn]が1.58%まで上昇したことが明らかとな
った。
As a result, molten steel as shown in the lower row of Table 6 was obtained, and it was revealed that the end point [Mn] in the carbon removal furnace rose to 1.58% without picking up [S] from coke.

これは、前記比較例の場合と比べて0.54%高い[M
n]上昇が確保されたことを意味するものである。
This is 0.54% higher than that of the comparative example [M
n] means that the increase has been secured.

実施例 3 脱P炉(上下両吹き複合転炉)内にスクラップ17tを
装入した後第8表の上段に示される如き成分の脱S・脱
St溶銑250tを注銑し、これに脱C炉で発生した転
炉滓25kg/l、ホタル石8kg/を及びマンガン鉱
石10kgへのほか、粒径30tm以下のコークス26
kg/lを添加し、上吹き酸素3Nn?7m1n−tで
9分間加熱してスクラップの溶解並びにマンガン鉱石還
元を行った以外は、実施例2の場合と同様に脱P精錬及
び主吹錬を実施した。なお、この際に用いた転炉滓組成
と、これを主成分とする脱Pスラグの塩基度(Ca O
/St Oz)を第9表に示す。
Example 3 After 17 tons of scrap was charged into a deP furnace (upper and lower double blowing combined converter), 250 tons of de-S and de-St hot metal having the composition shown in the upper row of Table 8 was poured, and this was de-carbonized. 25 kg/l of converter slag generated in the furnace, 8 kg/l of fluorite, and 10 kg of manganese ore, as well as 26 kg of coke with a particle size of 30 tm or less
kg/l and top-blown oxygen 3Nn? DeP refining and main blowing were carried out in the same manner as in Example 2, except that the scrap was melted and the manganese ore reduced by heating at 7 m1 nt for 9 minutes. The composition of the converter slag used at this time and the basicity (CaO
/StOz) are shown in Table 9.

その結果、スクラップの6.8%が溶解されると共に、
第8表の下段に示すような溶鋼が得られ、コークスから
の[S] ピンクアップなしに脱C炉終点[Mn]が1
.53%まで上昇したことが確認された。
As a result, 6.8% of the scrap was melted and
Molten steel as shown in the lower row of Table 8 is obtained, and the decarbonization furnace end point [Mn] is 1 without [S] pink-up from coke.
.. It was confirmed that the rate had increased to 53%.

比較例 2 脱P炉でコークスの添加を行わなかった以外は実施例1
と同様条件で、第10表の上段に示した成分組成を有す
る脱S・脱Si溶銑の脱P精錬及び主吹錬を実施した。
Comparative Example 2 Example 1 except that no coke was added in the deP furnace
Under the same conditions as above, de-P refining and main blowing of de-S and de-Si hot metal having the component compositions shown in the upper row of Table 10 were carried out.

なお、この際に用いた転炉滓の組成と、これを主成分と
する脱Pスラグの塩基度(Ca O/St Oz)を第
11表に示す。
Table 11 shows the composition of the converter slag used in this case and the basicity (Ca O/St Oz) of the dephosphorized slag containing this as the main component.

その結果、第10表の中段に示すように脱P処理後の溶
銑中[C]が低下し、次の脱C炉での吹錬でマンガン鉱
石が10kg/lLか入らなかった。
As a result, as shown in the middle row of Table 10, the [C] in the hot metal after the deP treatment decreased, and less than 10 kg/l of manganese ore was introduced in the next blowing in the deP furnace.

く効果の総括〉 以上に説明した如く、本発明によれば、製鋼工程全体を
通じて必要な造滓剤量少なく、しかもコークスからの[
S] ピックアップの懸念なしに低P・高Mnfiをコ
スト安く溶製することができるなど、産業上極めて有用
な効果がもたらされる。
Summary of Effects> As explained above, according to the present invention, the amount of slag forming agent required throughout the entire steelmaking process is reduced, and furthermore, [
S] It brings about extremely useful effects industrially, such as being able to melt low P and high Mnfi at low cost without worrying about pickup.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明プロセスの概念図である。 第2図は、脱P炉におけるMn、  P、 Sの分配比
とスラグ塩基度との関係を示したグラフである。 図面において、 l・・・脱燐炉、    2・・・脱炭炉。 3・・・溶銑、     4・・・転炉滓。 4′・・・転炉滓を主成分とする脱燐スラグ。 5・・・撹拌ガス吹き込みノズル。 6・・・ランス。
FIG. 1 is a conceptual diagram of the process of the present invention. FIG. 2 is a graph showing the relationship between the distribution ratio of Mn, P, and S and the slag basicity in the deP furnace. In the drawings, 1... Dephosphorization furnace, 2... Decarburization furnace. 3... Hot metal, 4... Converter slag. 4'...Dephosphorization slag whose main component is converter slag. 5... Stirring gas blowing nozzle. 6... Lance.

Claims (1)

【特許請求の範囲】[Claims] 上下両吹き機能を有した2基の転炉形式の炉のうち、一
方を脱燐炉、他方を脱炭炉として溶銑の精錬を行う製鋼
方法において、前記脱燐炉内へ注入した溶銑に前記脱炭
炉で発生した転炉滓及びマンガン鉱石を主成分とする精
錬剤と共に炭材を添加し、底吹きガス撹拌を行いつつ脱
燐後溶銑温度が1200〜1400℃になるように酸素
ガスを上吹きし、溶銑脱燐と溶銑[Mn]濃度の上昇を
行う工程と、得られた脱燐溶銑に通常造滓剤とマンガン
鉱石とを投入して脱炭炉で精錬し、溶銑の脱炭と溶鋼の
精錬終点[Mn]濃度の上昇を図る工程とを含むことを
特徴とする製鋼方法。
In a steelmaking method in which hot metal is refined by using one of two converter type furnaces having upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace, the hot metal injected into the dephosphorization furnace is Carbon material is added together with the converter slag generated in the decarburization furnace and a refining agent mainly composed of manganese ore, and oxygen gas is added to the hot metal so that the temperature of the hot metal after dephosphorization is 1200 to 1400℃ while stirring the bottom blowing gas. A process of top blowing, dephosphorizing the hot metal and increasing the concentration of hot metal [Mn], and adding a normal slag forming agent and manganese ore to the resulting dephosphorized hot metal, refining it in a decarburizing furnace, and decarburizing the hot metal. and a step of increasing the refining end point [Mn] concentration of molten steel.
JP1018193A 1989-01-27 1989-01-27 Steelmaking method Expired - Fee Related JP2587286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1018193A JP2587286B2 (en) 1989-01-27 1989-01-27 Steelmaking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1018193A JP2587286B2 (en) 1989-01-27 1989-01-27 Steelmaking method

Publications (2)

Publication Number Publication Date
JPH02197513A true JPH02197513A (en) 1990-08-06
JP2587286B2 JP2587286B2 (en) 1997-03-05

Family

ID=11964790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1018193A Expired - Fee Related JP2587286B2 (en) 1989-01-27 1989-01-27 Steelmaking method

Country Status (1)

Country Link
JP (1) JP2587286B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586412A (en) * 1991-04-20 1993-04-06 Sumitomo Metal Ind Ltd Steelmaking method
KR100391908B1 (en) * 1999-11-30 2003-07-16 주식회사 포스코 Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937323A (en) * 1982-08-26 1984-02-29 Natl Aerospace Lab Magnetic bearing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937323A (en) * 1982-08-26 1984-02-29 Natl Aerospace Lab Magnetic bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586412A (en) * 1991-04-20 1993-04-06 Sumitomo Metal Ind Ltd Steelmaking method
KR100391908B1 (en) * 1999-11-30 2003-07-16 주식회사 포스코 Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality

Also Published As

Publication number Publication date
JP2587286B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
JP3239197B2 (en) Converter steelmaking method
JPS63195209A (en) Steel making method
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
JPH02197513A (en) Production of steel
JP3194212B2 (en) Converter steelmaking method
JPS6247417A (en) Melt refining method for scrap
JPH03111511A (en) Method for producing low manganese steel
JPH01147011A (en) Steelmaking method
JPS6393813A (en) Steel making method
JPS63195211A (en) Production of low phosphorus and low carbon steel with little mn loss
JPH01312020A (en) Method for dephosphorizing molten iron by heating
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JP2755027B2 (en) Steelmaking method
JPH01147012A (en) Steelmaking method
JPS62290815A (en) Steel making method
JPH0892627A (en) Production of stainless steel
JPH01215917A (en) Method for melting stainless steel
JPH03122210A (en) Two step counterflow refined steelmaking method using duplex converters
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JPH0841519A (en) Steelmaking method
JPH03153811A (en) Steelmaking method accompanied with smelting reduction of manganese ore
JPH032312A (en) Production of low-phosphorus pig iron
JPH0437134B2 (en)
JPH01246309A (en) Method for melting high alloy steel
JPH04257691A (en) Manufacture of high manganese steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees