KR100391908B1 - Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality - Google Patents

Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality Download PDF

Info

Publication number
KR100391908B1
KR100391908B1 KR10-1999-0053697A KR19990053697A KR100391908B1 KR 100391908 B1 KR100391908 B1 KR 100391908B1 KR 19990053697 A KR19990053697 A KR 19990053697A KR 100391908 B1 KR100391908 B1 KR 100391908B1
Authority
KR
South Korea
Prior art keywords
weight
less
nitrogen
low carbon
phosphorus
Prior art date
Application number
KR10-1999-0053697A
Other languages
Korean (ko)
Other versions
KR20010048854A (en
Inventor
이승계
이경목
유주열
김태호
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1999-0053697A priority Critical patent/KR100391908B1/en
Publication of KR20010048854A publication Critical patent/KR20010048854A/en
Application granted granted Critical
Publication of KR100391908B1 publication Critical patent/KR100391908B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

본 발명은 냉간상태에서 가공성이 우수한 심가공용 극저탄소강의 제조방법에 관한 것이며, 그 목적하는 바는 별도의 부가적인 설비를 필요치 않으면서 인과 질소의 제어를 가능하게 하여 냉간상태에서 가공성이 우수한 심가공용 극저탄소강을 얻을 수 있는 방법을 제공하고자 하는데 있다.The present invention relates to a method for producing ultra-low carbon steel for deep processing excellent in cold work, the object is to enable the control of phosphorus and nitrogen without the need for additional equipment for deep work in cold work It is to provide a way to obtain ultra low carbon steel.

상기 목적을 달성하기 위한 본 발명은 극저탄소강을 제조하는 방법에 있어서, 탄소 3.0-5.0중량%, 규소 0.05-1.0중량%, 망간 0.05-1.0중량%, 인 0.06-0.20중량%, 황 0.002-0.05중량%를 함유하는 용선을 이용하여, 전로에서 송상량을 2500-4000Nm3범위로 제어하고 소프트 블로우잉을 행하여, 인함량을 0.050%이하로 감소시키고, 전로 하부에서 Ar가스를 공급하여 질소를 15ppm이하로 제어하는 1차취련을 실시하고; 또한, 상기 1차취련후 용강을 탈탄로로 재장입하여 송산량을 10000-14000Nm3범위로 제어하고 하드 블로우잉을 행하여, 탈탄과 함께 인성분을 0.006%이하로 감소시키는 2차취련을 실시하는 것을 특징으로 하는 냉간상태에서 가공성이 우수한 심가공용 극저탄소강의 제조방법에 관한 것을 그 요지로 한다.The present invention for achieving the above object in the method for producing ultra-low carbon steel, carbon 3.0-5.0% by weight, silicon 0.05-1.0% by weight, manganese 0.05-1.0% by weight, phosphorus 0.06-0.20% by weight, sulfur 0.002- Using molten iron containing 0.05% by weight, the amount of iron in the converter was controlled in the range of 2500-4000 Nm 3 and soft blown to reduce the phosphorus content to 0.050% or less, and Ar gas was supplied from the lower part of the converter to supply nitrogen. Conducting primary scavenging controlling to 15 ppm or less; In addition, after the first blow, the molten steel is reloaded into the decarburization furnace to control the amount of acid in the range of 10000-14000 Nm 3 , followed by hard blowing to carry out the second blow to reduce the phosphorus content to 0.006% or less with decarburization. The present invention relates to a method for producing ultra-low carbon steel for deep processing, which is excellent in workability in a cold state.

Description

냉간상태에서 가공성이 우수한 심가공용 극저탄소강의 제조방법{Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality}Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality}

본 발명은 심가공용 극저탄소강의 제조방법에 관한 것으로, 보다 상세하게는 강중 함유원소인 탄소, 인, 황, 질소 등의 함량을 극소화하여 냉간상태에서 가공중에 균열(crack)이 발생하지 않아 냉간상태에서 우수한 가공성을 보이는 극저탄소강을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a deep-low carbon steel for deep processing, and more particularly, to minimize the content of carbon, phosphorus, sulfur, nitrogen, etc., elements in the steel, so that no cracks occur during processing in cold state, cold state It relates to a method for producing ultra-low carbon steel showing excellent workability at.

종래 제강공정에서 심가공용 극저탄소강 강재를 제조하기 위해서는 기본적으로 강중 존재하는 불순원소를 극소화시키는 것이 필요하기 때문에 전로공정에서는 인과 질소를 감소시키며 이차정련과정에서 진공처리를 통하여 탄소와 질소를 동시에 제어하는 프로세스(process)를 가지고 있었다.In order to manufacture ultra-low carbon steels for deep processing in the conventional steelmaking process, it is necessary to minimize the impurity elements existing in the steel. Therefore, in the converter process, phosphorus and nitrogen are reduced, and carbon and nitrogen are simultaneously controlled by vacuum treatment in the secondary refining process. I had a process to do it.

한편, 가공중 발생하는 균열(crack)은 대부분 주조중 발생한 편석대(segregation area), 혹은 비금속개재물(non-metallic inclusion)에서 발생하기 때문에 편석에 민감한 원소인 인과 탈산중 생성된 비금속개재물을 제거하는 것이 무엇보다 필요하다. 그러나, 종래의 기술에서는 전로공정만으로는 인을 제거하는데 한계가 있었으므로 예비처리 공정을 이용하여 인을 제거한 후 전로에서 조업을 하는 공정을 선택하고 있었다. 이러한 예비처리 공정을 이용하기 위해서는 별도의 설비가 요구되고 있다.On the other hand, since cracks generated during processing mostly occur in segregation areas or non-metallic inclusions generated during casting, phosphorus and non-metallic inclusions generated during deoxidation are removed. What is needed more than anything. However, in the prior art, there was a limit in removing phosphorus only by the converter process, and thus, a process of operating in the converter after removing phosphorus using a pretreatment process was selected. In order to use this pretreatment process, a separate facility is required.

종래의 극저린강 제조기술에서는 용선을 전로에 장입하기 전, 즉 용선예비처리(HMPS:Hot Metal Pretreatment Station) 단계에서 고체산소 및 기체산소를 용선에 취입하여 인을 제거한 후 전로에서 정련하는 공정을 통하여 생산하고 있었다. 상기 용선예비처리를 이용한 탈린조업은 용강중의 인 성분을 100ppm 수준 이하로 낮출 수 있는 아주 유용한 방법이다.In the conventional ultra-low steel manufacturing technology, the process of refining molten iron and gaseous oxygen into molten iron before removing the molten iron into the molten iron prior to charging the molten iron into the converter, i.e. Was producing through. Delineation operation using the molten iron preliminary treatment is a very useful method to lower the phosphorus component in the molten steel to 100ppm level or less.

그러나, 이같은 종래 방법은 용선예비처리 단계에서 온도하락이 심하여 전로정련중 승온의 부담을 가지게 되며, 용선예비처리 탈린을 위해서는 용선규소가 선행 제거되어야 하는 문제점이 있었다. 또한, 예비처리를 수행한 후 용선의 질소수준은 약 0.0030%수준으로 후공정에서의 제어만으로는 목표인 0.0020%이하를 안정적으로 얻기 어려운 문제가 있었다.However, such a conventional method has a severe temperature drop in the charter preliminary treatment step, and thus has a burden of temperature increase during converter refining. In addition, after performing the pretreatment, the nitrogen level of the molten iron is about 0.0030% level, and there was a problem that it is difficult to stably reach the target of 0.0020% or less only by controlling in the post-process.

이에, 본 발명자들은 상기 종래기술의 문제점을 해결하기 위해 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 별도의 부가적인 설비를 필요치 않으면서 인과 질소의 제어를 가능하게 하여 냉간상태에서 가공성이 우수한 심가공용 극저탄소강을 얻을 수 있는 방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors have repeatedly studied and experimented to solve the problems of the prior art, and based on the results, the present invention proposes a control of phosphorus and nitrogen without requiring additional equipment. It is possible to provide a method for obtaining ultra-low carbon steel for deep processing which is excellent in workability in a cold state.

도 1은 본 발명에 의한 전로작업공정을 간략히 보이는 공정도1 is a process diagram briefly showing a converter work process according to the present invention

도 2는 취련시간(blowing time)에 따른 P의 함량을 보이는 그래프Figure 2 is a graph showing the content of P according to the blowing time (blowing time)

도 3은 취련시간에 따른 N의 함량을 보이는 그래프3 is a graph showing the content of N according to the blowing time

도 4는 본 발명에 따른 1차취련시 송산량 및 랜스높이조절의 일예를 보이는 그래프Figure 4 is a graph showing an example of the amount of shedding and lance height adjustment during the first blow according to the present invention

도 5는 종래방법에 의한 취련시 송산량 및 랜스높이조절의 일예를 보이는 그래프Figure 5 is a graph showing an example of the amount of shedding and lance height adjustment when blowing by the conventional method

도 6은 본 발명에 따른 2차취련시 송산량 및 랜스높이조절의 일예를 보이는 그래프Figure 6 is a graph showing an example of the amount of shedding and lance height adjustment during the second blow according to the present invention

상기 목적을 달성하기 위한 본 발명은 탄소가 0.0020중량%이하, 인이 0.008중량%이하, 황이 0.008중량%이하, 질소가 0.0020중량%이하로 제어된 극저탄소강을 제조하는 방법에 있어서, 탄소 3.0-5.0중량%, 규소 0.05-1.0중량%, 망간 0.05-1.0중량%, 인 0.06-0.20중량%, 황 0.002-0.05중량%를 함유하는 용선을 이용하여, 전로에서 송산량을 2500-4000Nm3범위로 제어하고 소프트 블로우잉(soft blowing)을 행하여, 인함량을 0.050%이하로 감소시키고, 전로 하부에서 Ar가스를 공급하여 질소를 15ppm이하로 제어하는 1차취련을 실시하고; 또한, 상기 1차취련후 용강을 탈탄로로 재장입하여 송산량을 10000-14000Nm3범위로 제어하고 하드 블로우잉(hard blowing)을 행하여, 탈탄과 함께 인성분을 0.006%이하로 감소시키는 2차취련을 실시하는 것을 특징으로 하는 냉간상태에서 가공성이 우수한 심가공용 극저탄소강의 제조방법에 관한 것이다.In order to achieve the above object, the present invention provides a method for producing ultra-low carbon steel in which carbon is controlled to 0.0020% by weight or less, phosphorus to 0.008% by weight, sulfur to 0.008% or less, and nitrogen to 0.0020% by weight or less. By using molten iron containing -5.0% by weight, 0.05-1.0% by weight of silicon, 0.05-1.0% by weight of manganese, 0.06-0.20% by weight of phosphorus and 0.002-0.05% by weight of sulfur, the amount of acid in the converter is in the range of 2500-4000Nm 3 And primary blowing to control the nitrogen to 15 ppm or less by reducing the phosphorus content to 0.050% or less, and supplying Ar gas from the lower part of the converter; In addition, after the first blow, the molten steel is reloaded into the decarburization furnace to control the amount of acid in the range of 10000-14000 Nm 3 and hard blowing to reduce the phosphorus content to 0.006% or less with decarburization. It relates to a method for producing ultra-low carbon steel for deep processing excellent in workability in the cold state characterized in that to carry out.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

전술한 바와 같이, 강중의 인성분은 응고과정에서 편석되어 압연후 소재를 가공하는 과정에서 균열의 원인이 된다. 즉, 심가공을 필요로하는 강재에서 강중 인 함량이 높은 경우 대부분 균열이 발생하게 될 가능성이 높게된다. 따라서, 강중 인 함량을 극소화 하는 것이 필요하지만 일반적인 조업기술로써는 이러한 강재에 요구되는 0.008%이하를 안정적으로 얻기 어렵다. 그러므로, 현재 많은 경우 용선예비처리 공정을 거쳐 제조하고 있으나 본 발명에서는 용선예비처리 없이 전로 정련을 통해 0.008%이하의 인함량을 얻을 수 있는 것이다.As described above, the phosphorus component in the steel is segregated during the solidification process, causing cracks in the process of processing the material after rolling. In other words, in steels requiring deep processing, if the phosphorus content in the steel is high, the cracking is most likely to occur. Therefore, it is necessary to minimize the phosphorus content in the steel, but it is difficult to obtain stably less than 0.008% required for such steels as a general operation technique. Therefore, in many cases, the present invention is manufactured through a charter preliminary treatment process, but in the present invention, a phosphorous content of 0.008% or less can be obtained through converter refining without charter preliminary treatment.

본 발명은 도 1에서와 같이, 1차적으로 전로에서 고체산소와 기체산소를 사용하여 인함량을 낮추게 되며 이를 출탕하여 다시금 또 하나의 전로에 장입하여 2차적인 처리를 함으로써 인함량을 낮추게 된다. 즉, 유휴설비인 전로를 인함량을 낮추는 탈린로로 전용하여 사용함으로써 본 발명에서 추구하는 수준을 얻을 수 있게하는것이다. 또한, 질소를 0.0020%이하로 안정적인 제어를 위해서는 최초 질소함량을 낮추어야 하며 일반적인 용선의 질소수준은 약 0.0030%수준이나 탈린로에서 인 함량을 낮춘 용선의 경우 탈린조업중 일부 발생하는 탈탄에 의해 질소수준도 감소하여 최초 질소는 약 0.0015%가 됨으로써 질소제어도 가능하게 된다.In the present invention, as shown in Fig. 1, the phosphorus content is primarily reduced by using solid oxygen and gaseous oxygen in the converter, and the phosphorus content is lowered by tapping it again and charging it in another converter to perform the secondary treatment. In other words, by using an electric converter, which is an idle facility, as a Tallin furnace for lowering phosphorus content, the level pursued in the present invention can be obtained. In addition, for stable control of nitrogen below 0.0020%, the initial nitrogen content should be lowered. In general, the nitrogen level of molten iron is about 0.0030%. In addition, the initial nitrogen is about 0.0015%, which allows for nitrogen control.

이 같은 본 발명을 크게 인 제어와 질소 제어로 구분하여 설명하면 다음과 같다.When the present invention is divided into phosphorus control and nitrogen control, it will be described as follows.

먼저, 인 제어에 대하여 살펴본다. 일반적인 조업을 통해 얻을 수 있는 인의 수준은 공정에 따라 다소 차이가 있으나 0.010%이하를 안정적으로 만족시킬 수 없다. 이러한 극한 수준을 만족하기 위해서는 전술한 바와 같이 대부분 용선예비처리 단계에서 인 함량을 낮추어 전로 정련을 수행하게 되는데 이때 얻을 수 있는 인 함량은 약 0.025%수준이다. 본 발명에서는 0.110%수준의 인 함량을 가진 용선을 전로형 예비처리 용기인 탈린로에 장입하여 1차탈린을 수행하며 이 용탕(melt)을 출탕하여 다시금 탈탄로에 장입하는 공정을 선택하였다. 이때, 인 함량은 1차탈린후 0.025%, 탈탄취련 완료후 0.006% 수준이었는데, 이는 탈린로 조업시의 인함량변화를 보이는 도 2를 보더라도 알 수 있다.First, the phosphorus control will be described. The level of phosphorus that can be obtained through general operation varies slightly depending on the process, but cannot be stably satisfied below 0.010%. In order to satisfy these extreme levels, as described above, in most molten iron preliminary treatment steps, the phosphorus content is reduced and converter refining is performed. At this time, the phosphorus content is about 0.025%. In the present invention, the molten iron having a phosphorus content of 0.110% level was charged into a delineation furnace, which is a converter type pretreatment container, to perform primary talin, and the process of tapping the melt was loaded again into the decarburization furnace. At this time, the phosphorus content was 0.025% after the first Tallinn, 0.006% after the decarburization was completed, which can be seen even in Figure 2 showing the phosphorus content change during the operation of Tallinn.

또한, 일반전로 조업시 용강으로부터 분리된 슬래그(slag)중 P2O5농도는 2% 수준을 보이고 있으므로, 이차정련중 복린이 발생하여 안정적인 품질확보가 사실상 불가능하였으나, 탈린용선을 이용한 취련시 슬래그중 P2O5농도는 1%수준으로 복린량이 저감되었다.In addition, since the concentration of P 2 O 5 in slag separated from molten steel during the operation of the general converter showed 2% level, it was virtually impossible to secure stable quality due to the occurrence of double rinse during secondary refining, P 2 O 5 concentration in the slag was reduced amount bokrin to 1%.

다음으로, 질소 제어에 대하여 살펴본다. 용탕속에 존재하는 질소는 가스 상태가 아니라 원자(atom) 상태로 존재하며 이러한 질소 함량의 메카니즘(mechanism)은 하기식 (1)과 같은 시버트법칙(Sivet's Law)에 의해 알려져 있다.Next, the nitrogen control will be described. Nitrogen present in the molten metal is present in the atom state, not in the gaseous state, and the mechanism of the nitrogen content is known by Sivet's Law as shown in Equation (1) below.

wt%[N] = kN(PN2)1/2wt% [N] = kN (PN2) 1/2

즉, 용탕중의 질소수준은 분위기 기체중 질소 분압(partial pressure)에 비례하는 관계를 가지며 질소수준을 낮추기 위해서는 분위기 기체중 질소분압을 낮추는 것이 요구된다.That is, the nitrogen level in the molten metal has a relationship proportional to the partial pressure of nitrogen in the atmosphere gas, and to lower the nitrogen level, it is required to lower the nitrogen partial pressure in the atmosphere gas.

일반적으로 취련초기에는 용선중의 탄소가 공급되는 산소와 반응하여 CO 가스가 되기 때문에 로내 분위기중 질소분압은 상대적으로 낮아지게 되며 또한 발생한 CO 가스가 로외로 방출되면서 강중의 [N]를 흡수하여 방출되므로 취련초기 질소는 감소하게 된다. 그러나, 취련 말기 탈탄반응이 감소하면서 발생되는 가스량이 작아지므로 로내 분위기 기체중 CO가스분압은 낮아지며 전체적인 가스 압력이 낮아지므로 외부로부터 공기(air)가 유입될 가능성이 커지게 된다. 따라서, 대기중 79%를 점유하는 질소는 쉽게 용강중으로 픽업(pickup)될 수 있으며 질소의 픽업을 방지하는 것은 사실상 불가능하다. 다만, 취련말기 질소 픽업을 저감하기 위해서 본 발명에서는 취련중기 이후, 보다 자세하게는 용철중 탄소농도가 0.30%이상 0.70%이하가 되는 시점에서 탄소농도와 온도를 측정한 후 로내 가스 발생량을 증대시켜 분위기압력을 상승시키는데, 이를 위해 가스 발생에 유리한 부원료를 투입하여 외부공기의 유입을 최소화 하였으나 픽업량은 약 5ppm 수준이었다. 따라서 용선중 질소수준을 낮추어 취련중기 질소함량을 최소화 하는 것이 극저질소강에 있어서 중요한 부분이 되었다.In general, in the early stage of blowing, the carbon in the molten iron reacts with oxygen supplied to form a CO gas, so the partial pressure of nitrogen in the furnace atmosphere is relatively low, and the generated CO gas is released to the outside of the furnace to absorb and release [N] in the steel. Therefore, the initial nitrogen of the blowing is reduced. However, since the amount of gas generated as the decarburization reaction decreases at the end of the blowdown becomes smaller, the partial pressure of CO gas in the furnace atmosphere gas is lowered and the overall gas pressure is lowered, thereby increasing the possibility of introducing air from the outside. Thus, nitrogen, which occupies 79% of the atmosphere, can easily be picked up in molten steel and it is virtually impossible to prevent the pickup of nitrogen. However, in order to reduce nitrogen pick-up at the end of the blowdown, the present invention measures carbon concentration and temperature at a time when the carbon concentration in molten iron is 0.30% or more and 0.70% or less after the blowdown period. In order to increase the pressure, in order to minimize the inflow of external air by inputting a subsidiary material advantageous for gas generation, the pickup amount was about 5ppm. Therefore, minimizing the nitrogen content in the molten metal by lowering the nitrogen level in the molten iron has become an important part of the ultra-low nitrogen steel.

용선중 질소함량은 일반적으로 20~30ppm 수준이다. 전로 취련중 탈질속도는 거의 일정하기 때문에 취련중기 질소는 약 10~15ppm까지 감소하게 되지만 전술한 바와 같이 취련말기 질소 픽업에 의해 취련완료시점 용강 질소는 15~20ppm 수준이 된다. 또한, 출강중 대기와 노출되어 흡질되는 양을 감안할 경우 최종 제품의 질소는 약 25ppm 수준이 됨으로써 극저질소강 제어가 불가능하다.Nitrogen content in molten iron is generally 20-30 ppm. Since the denitrification rate during converter conversion is almost constant, the nitrogen during the drilling is reduced to about 10 to 15 ppm, but as described above, the molten steel nitrogen is 15 to 20 ppm at the completion of the drilling by the end of the nitrogen pickup. In addition, considering the amount of absorbed by the atmosphere during the tapping, the nitrogen of the final product is about 25ppm level, it is impossible to control the ultra low nitrogen steel.

본 발명에 있어, 질소제어를 위해서는 전로탈린 조업시 전로 하부에서 공급되는 교반용 가스를 Ar으로 사용하고 0.5%수준의 탄소를 산화시켜 CO가스를 발생시켰다. 따라서, Ar 가스가 부상하면서 용선중의 질소를 일부 제거하게 되며 더불어 발생된 CO 가스도 질소를 제거하였다. 이 결과 탈탄로 장입시 질소수준은 15ppm 까지 감소하였으며 취련중기 질소수준은 7~10ppm, 그리고 취련완료시점 질소는 13~15ppm으로 안정적인 제어가 가능하였는데, 이는 종래방법과 본 발명에 의한 질소의 변화량을 보이는 도 3을 보더라도 알 수 있다.In the present invention, in order to control the nitrogen, agitation gas supplied from the lower part of the converter during the operation of the converter was used as Ar, and carbon dioxide was generated by oxidizing 0.5% of carbon. Therefore, as Ar gas floats, some of the nitrogen in the molten iron is removed, and the generated CO gas also removes nitrogen. As a result, when the decarburization furnace was charged, the nitrogen level was reduced to 15 ppm, and the nitrogen level during the blowing was 7 to 10 ppm, and the nitrogen at the completion of the blowing was stable to 13 to 15 ppm. It can also be seen by looking at Figure 3 shown.

다음에서는 본 발명에 적용된 전로 조업기술에 대해 보다 상세하게 설명한다. 본 발명에 적용된 전로조업기술은 1차취련조업(탈린조업)과 2차취련조업(탈탄조업)으로 크게 두가지로 나눌 수 있다.The following describes in more detail the converter operation technology applied to the present invention. The converter operation technology applied to the present invention can be divided into two types: primary blowing operation (tallin operation) and secondary blowing operation (decarburization operation).

먼저, 1차취련조업은 적정한 량의 슬래그를 이용하여 규소와 인을 선택적으로 반응시키며 탄소의 산화를 최대한 억제하기 위해 예를 들어 도 4와같은 방법으로 조업을 수행하고 있으며, 이는 도 5와 같은 기존 조업기준 대비 소프트 블로잉이라 할 수 있다. 이러한 소프트 블로우를 해야하는 이유는 산소랜스를 통해 공급되는 기체산소가 용철중으로 공급되는 경우, 다시 말해 용철 표면에 캐비티(cavity)가 형성되는 경우에는 탈린과 함께 탈탄이 진행되기 때문에 탈린조업후 용철을 출탕할때 슬래그가 부풀어 올라 작업성이 현저히 악화되기 때문이며, 또한 탄소가 산화되는 경우 온도 상승에 의해 탈린에 불리한 조건이 조성되기 때문이다.First, the primary blowing operation is to selectively react silicon and phosphorus using an appropriate amount of slag and to perform the operation in the manner as shown in FIG. 4, for example, to suppress the oxidation of carbon as much as possible, which is the same as that of FIG. 5. It can be called soft blowing compared to existing operating standards. The reason for such soft blow is that when gaseous oxygen supplied through oxygen lance is supplied to molten iron, that is, when a cavity is formed on the surface of molten iron, decarburization is performed together with Tallinn, so that molten iron is removed after desalination operation. This is because the slag swells when it deteriorates and the workability is significantly deteriorated. Also, when carbon is oxidized, an adverse condition for Tallinn is formed by the temperature rise.

결론적으로, 상기 1차취련은 송상량을 2500-4000Nm3범위로 제어하는 것이 바람직하며, 보다 우수한 효과를 얻기 위해서는 탕면에서 용강의 캐비티(cavity) 비율(L/L0)이 0.05이하인 소프트 블로우잉(soft blowing)을 행하는 것이 좋다. 또한, 1차취련시에는 질소를 15ppm이하로 제어하기 위해 전로 하부에서 Ar가스를 공급하는 것이 바람직하다.In conclusion, it is preferable to control the amount of frosting in the range of 2500-4000Nm 3 for the primary scavenging, and in order to obtain a better effect, the soft blowing of the cavity ratio (L / L 0 ) of the molten steel in the hot water surface is 0.05 or less. (soft blowing) is good. In addition, it is preferable to supply Ar gas from the lower part of the converter in order to control nitrogen to 15 ppm or less during the first blow.

다음으로, 2차취련조업은 예를들면 도 6과 같은 형태의 조업을 수행하는 것이 바람직하다. 이는 도 5에 나타난 종래 기준과 다소 차이가 있으며 이러한 차이는 용선의 성분 차이 때문이다. 즉, 일반용선 대비하여 탈린용선의 경우 용선중에 포함된 규소의 함량이 크게 다르기 때문에 탈린용선은 통상적으로 조업초기 전로내 슬래그형성이 어려워 용철이 전로 밖으로 분출되는 이른바 스피팅(spitting) 현상이 발생하기 때문이다.Next, the secondary blowing operation is preferably performed for example, the type of operation shown in FIG. This is somewhat different from the conventional standard shown in FIG. 5 and this difference is due to the difference in components of the molten iron. In other words, since the content of silicon contained in the molten iron is greatly different from that of general molten iron, the molten iron is generally difficult to form slag in the initial converter, so that a so-called spitting phenomenon occurs in which molten iron is ejected out of the converter. Because.

결론적으로, 상기 1차취련후 용강을 탈탄로로 재장입하여 송산량을 10000-14000Nm3범위로 제어하는 것이 바람직하고, 보다 우수한 효과를 얻기 위해서는 탕면에서 용강의 캐비티 비율(L/L0)이 0.5-0.7인 하드 블로우잉(hard blowing)을 행하는 것이 좋다.In conclusion, it is preferable to reload the molten steel into the decarburization furnace after the first blow to control the amount of acid in the range of 10000-14000 Nm 3 , and to obtain a better effect, the cavity ratio of the molten steel (L / L 0 ) is 0.5 at the hot water surface. Hard blowing of -0.7 is recommended.

또한, 상기 2차취련의 중기이후에는 CO발생이 줄어들어 전로내의 압력이 떨어져 공기중의 N성분이 혼입되는 문제가 있어 이를 방지하기 위해, 중기이후에 철광석, 소결광 등의 고체산소를 지속적으로 투입하여 탈탄로내의 압력을 일정수준이상으로 유지함으로서 질소 상승을 방지하는 것이 바람직하다.In addition, since the CO generation is reduced after the middle stage of the secondary blow, there is a problem that the N component in the air is mixed because the pressure in the converter is lowered, to prevent this, by continuously injecting solid oxygen such as iron ore, sintered ore after the middle stage It is desirable to prevent the rise of nitrogen by maintaining the pressure in the decarburization furnace above a certain level.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

탄소 4.0중량%, 규소 0.07중량%, 망간 0.5중량%, 인 0.11중량%, 황 0.01중량%를 함유하는 용선을 300톤 전로에 투입하였다.A molten iron containing 4.0% by weight of carbon, 0.07% by weight of silicon, 0.5% by weight of manganese, 0.11% by weight of phosphorus and 0.01% by weight of sulfur was charged into a 300-ton converter.

투입후, 도 4와 같은 방법에 의하고 Ar가스를 주입하면서 1차취련을 행한후, 다른 전로로 출강한 다음, 도 6과 같은 방법에 의해 2차취련을 행하였으며 2차 취련 중기이후부터는 철광석을 투입하여 전로내의 압력을 일정하게 유지하였다. 이같은조업시의 부원료투입은 종래방법과 동일하게 행하였다. 이와 같은 방법으로 4회 조업을 행하고 얻어진 강재의 성분을 분석하여 탄소, 인, 황 및 질소이 함량을 하기 표1에 나타내었다.After the injection, the primary drilling was carried out by injecting Ar gas by the method as shown in FIG. 4, and then the tapping was carried out to another converter, and the secondary drilling was performed by the method as shown in FIG. 6. The pressure in the converter was kept constant. Subsidiary material injection in such an operation was performed similarly to the conventional method. Four operations were conducted in this manner, and the components of the obtained steel were analyzed, and the contents of carbon, phosphorus, sulfur and nitrogen are shown in Table 1 below.

또한, 동일한 성분의 용선을 전로에 투입한 후, 도 5와 같은 방법에 의해 취련하였으며, 이외의 조건은 통상조건으로 행하였다. 이와 같은 방법으로 4회 조업을 행하고 얻어진 강재의 성분을 분석하여 탄소, 인, 황 및 질소이 함량을 하기 표1에 나타내었다.In addition, after pouring molten iron of the same component into the converter, it was blown by the method similar to FIG. 5, and other conditions were performed on normal conditions. Four operations were conducted in this manner, and the components of the obtained steel were analyzed, and the contents of carbon, phosphorus, sulfur and nitrogen are shown in Table 1 below.

탄소(ppm)Carbon (ppm) 인(ppm)Phosphorus (ppm) 황(ppm)Sulfur (ppm) 질소(ppm)Nitrogen (ppm) 종래예Conventional example 1차Primary 2222 100100 5050 2222 2차Secondary 2121 9090 5050 2323 3차3rd 2424 120120 4040 2020 4차4th 2020 120120 4040 2222 발명예Inventive Example 1차Primary 2020 6060 5050 1818 2차Secondary 1919 5050 4040 1414 3차3rd 2020 6060 4040 1616 4차4th 1717 6060 4040 1818

상기 표1에서 알 수 있는 바와 같이, 본 발명의 조건을 만족하는 발명예의 경우는 종래예에 비하여 동등수준의 탄소 및 황 함량을 보이면서도 인과 질소에 있어 매우 우수한 제거효과를 보였다.As can be seen in Table 1, the invention examples satisfying the conditions of the present invention showed a very good removal effect on the phosphorus and nitrogen while showing the same level of carbon and sulfur content than the conventional example.

상술한 바와 같은 본 발명에 의하면, 극저탄소강의 제조시 별도의 부가적인 설비를 필요치 않으면서도 인과 질소를 극소화시킨 탄소강을 얻을 수 있고, 이를 심가공용으로 적용하는 경우 냉간상태에서 우수한 가공성을 보이는 효과가 제공된다.According to the present invention as described above, it is possible to obtain carbon steel minimized phosphorus and nitrogen without the need for additional equipment in the production of ultra-low carbon steel, and when applied to deep processing, the effect of showing excellent workability in cold state Is provided.

Claims (3)

탄소가 0.0020중량%이하, 인이 0.008중량%이하, 황이 0.008중량%이하, 질소가 0.0020중량%이하로 제어된 극저탄소강을 제조하는 방법에 있어서,In the method for producing ultra-low carbon steel, controlled to less than 0.0020% by weight, less than 0.008% by weight of phosphorus, less than 0.008% by weight of sulfur, and less than 0.0020% by weight of nitrogen, 탄소 3.0-5.0중량%, 규소 0.05-1.0중량%, 망간 0.05-1.0중량%, 인 0.06-0.20중량%, 황 0.002-0.05중량%를 함유하는 용선을 이용하여, 전로에서 송산량을 2500-4000Nm3범위로 제어하고 소프트 블로우잉(soft blowing)을 행하여, 인함량을 0.050%이하로 감소시키고, 전로 하부에서 Ar가스를 공급하여 질소를 15ppm이하로 제어하는 1차취련을 실시하고; 또한, 상기 1차취련후 용강을 탈탄로로 재장입하여 송산량을 10000-14000Nm3범위로 제어하고 하드 블로우잉(hard blowing)을 행하여, 탈탄과 함께 인성분을 0.006%이하로 감소시키는 2차취련을 실시하는 것을 특징으로 하는 냉간상태에서 가공성이 우수한 심가공용 극저탄소강의 제조방법Using a molten iron containing 3.0-5.0% by weight of carbon, 0.05-1.0% by weight of silicon, 0.05-1.0% by weight of manganese, 0.06-0.20% by weight of phosphorus and 0.002-0.05% by weight of sulfur, the amount of acid in the converter is 2500-4000 Nm. Controlling to three ranges and performing soft blowing to reduce the phosphorus content to 0.050% or less, and to carry out primary scavenging to control nitrogen to 15 ppm or less by supplying Ar gas from the lower part of the converter; In addition, after the first blow, the molten steel is reloaded into the decarburization furnace to control the amount of acid in the range of 10000-14000 Nm 3 and hard blowing to reduce the phosphorus content to 0.006% or less with decarburization. Method for producing ultra-low carbon steel for deep processing excellent in workability in the cold state characterized in that for carrying out 제 1 항에 있어서,The method of claim 1, 상기 1차취련은 탕면에서 용강의 캐비티(cavity) 비율(L/L0)이 0.05이하이고, 상기 2차취련은 탕면에서 용강의 캐비티 비율(L/L0)이 0.5-0.7인 것을 특징으로 하는 냉간상태에서 가공성이 우수한 심가공용 극저탄소강의 제조방법The primary blow is a cavity (cavity) of molten steel ratio (L / L 0) of 0.05 or less at the bath surface, the secondary blow is characterized in that the cavity ratio of the molten steel (L / L 0) in the bath surface 0.5-0.7 Manufacturing method of ultra low carbon steel for deep processing with excellent workability in cold state 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 2차취련의 중기이후에 고체산소를 지속적으로 투입하여 탈탄로내의 압력을 일정수준이상으로 유지하는 것을 특징으로 하는 냉간상태에서 가공성이 우수한 심가공용 극저탄소강의 제조방법Method of producing ultra-low carbon steel for deep processing excellent in workability in the cold state, characterized in that by continuously adding solid oxygen after the secondary stage of the secondary smelting to maintain the pressure in the decarburization furnace to a certain level or more.
KR10-1999-0053697A 1999-11-30 1999-11-30 Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality KR100391908B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0053697A KR100391908B1 (en) 1999-11-30 1999-11-30 Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0053697A KR100391908B1 (en) 1999-11-30 1999-11-30 Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality

Publications (2)

Publication Number Publication Date
KR20010048854A KR20010048854A (en) 2001-06-15
KR100391908B1 true KR100391908B1 (en) 2003-07-16

Family

ID=19622589

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0053697A KR100391908B1 (en) 1999-11-30 1999-11-30 Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality

Country Status (1)

Country Link
KR (1) KR100391908B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045967B1 (en) * 2007-12-31 2011-07-04 주식회사 포스코 Method of manufacturing manganese-containing steel
CN102978330B (en) * 2012-11-27 2014-07-09 南京钢铁股份有限公司 Method for controlling tapping nitrogen content of converter
CN115652029B (en) * 2022-10-25 2024-01-23 山东钢铁集团日照有限公司 Control method for sulfur content of deep drawing steel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197513A (en) * 1989-01-27 1990-08-06 Sumitomo Metal Ind Ltd Production of steel
JPH05311228A (en) * 1992-05-07 1993-11-22 Nippon Steel Corp Method for melting ultralow carbon steel
JPH09170010A (en) * 1995-12-20 1997-06-30 Nippon Steel Corp Method for smelting extra-low carbon steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197513A (en) * 1989-01-27 1990-08-06 Sumitomo Metal Ind Ltd Production of steel
JPH05311228A (en) * 1992-05-07 1993-11-22 Nippon Steel Corp Method for melting ultralow carbon steel
JPH09170010A (en) * 1995-12-20 1997-06-30 Nippon Steel Corp Method for smelting extra-low carbon steel

Also Published As

Publication number Publication date
KR20010048854A (en) 2001-06-15

Similar Documents

Publication Publication Date Title
CN110205436B (en) Smelting method for producing IF steel in full-flow low-oxygen level
KR102315999B1 (en) A method for refining a high manganese steel and amanufacturing of a high manganese steel
JP2011208170A (en) Method of producing manganese-containing low carbon steel
KR101045967B1 (en) Method of manufacturing manganese-containing steel
JP3428628B2 (en) Stainless steel desulfurization refining method
KR100391908B1 (en) Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality
JP3915386B2 (en) Manufacturing method of clean steel
US4944799A (en) Method of producing stainless molten steel by smelting reduction
JP4687103B2 (en) Melting method of low carbon aluminum killed steel
JP4844552B2 (en) Melting method of low carbon high manganese steel
KR970004990B1 (en) Decarburizing method of stainless steel
KR100476808B1 (en) A method of operating converter without slopping
JP3002593B2 (en) Melting method of ultra low carbon steel
JP4085898B2 (en) Melting method of low carbon high manganese steel
KR101930746B1 (en) Method for refining hot metal
KR100885117B1 (en) A method for manufacturing of low carbon steel having high cleaness and low phosphorous
KR100191010B1 (en) Oxygen refining method of low carbon steel
JP7468567B2 (en) Method for denitrification of molten steel
KR100910471B1 (en) Method for Improving Cleanliness and Desulfurization Efficiency of Molten Steel
US4065297A (en) Process for dephosphorizing molten pig iron
KR100434735B1 (en) Method for manufacturing ultra-low C steel having phosphorous
JP4035904B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JPH0941028A (en) Production of high purity ultra-low carbon steel
KR19990048928A (en) Desulfurization Method of Cryogenic Cryogenic Carbon
KR100910496B1 (en) Method for Manufacturing Extra-Low Carbon Steel

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140704

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150625

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170704

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180704

Year of fee payment: 16