JPH03153811A - Steelmaking method accompanied with smelting reduction of manganese ore - Google Patents
Steelmaking method accompanied with smelting reduction of manganese oreInfo
- Publication number
- JPH03153811A JPH03153811A JP29074089A JP29074089A JPH03153811A JP H03153811 A JPH03153811 A JP H03153811A JP 29074089 A JP29074089 A JP 29074089A JP 29074089 A JP29074089 A JP 29074089A JP H03153811 A JPH03153811 A JP H03153811A
- Authority
- JP
- Japan
- Prior art keywords
- hot metal
- blowing
- furnace
- slag
- manganese ore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052748 manganese Inorganic materials 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000011572 manganese Substances 0.000 title claims description 91
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 title claims description 68
- 238000009628 steelmaking Methods 0.000 title claims description 16
- 230000009467 reduction Effects 0.000 title claims description 15
- 238000003723 Smelting Methods 0.000 title claims description 7
- 239000002893 slag Substances 0.000 claims abstract description 47
- 238000007664 blowing Methods 0.000 claims abstract description 46
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 32
- 239000007789 gas Substances 0.000 claims abstract description 27
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- 238000007670 refining Methods 0.000 claims abstract description 14
- 238000003756 stirring Methods 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims description 61
- 239000002184 metal Substances 0.000 claims description 61
- 238000005261 decarburization Methods 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 4
- 229910001882 dioxygen Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 abstract description 9
- 239000010959 steel Substances 0.000 abstract description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052681 coesite Inorganic materials 0.000 abstract description 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 4
- 239000000377 silicon dioxide Substances 0.000 abstract description 4
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 4
- 229910052682 stishovite Inorganic materials 0.000 abstract description 4
- 229910052905 tridymite Inorganic materials 0.000 abstract description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 30
- 239000000292 calcium oxide Substances 0.000 description 15
- 235000012255 calcium oxide Nutrition 0.000 description 15
- 238000002844 melting Methods 0.000 description 15
- 230000008018 melting Effects 0.000 description 15
- 238000006477 desulfuration reaction Methods 0.000 description 7
- 230000023556 desulfurization Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 239000003575 carbonaceous material Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000010436 fluorite Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910001021 Ferroalloy Inorganic materials 0.000 description 2
- 229910000616 Ferromanganese Inorganic materials 0.000 description 2
- 229910000805 Pig iron Inorganic materials 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 229910000617 Mangalloy Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、全製鋼工程を通じて造滓剤(生石灰等)使用
量を最少にしつつ、高能率脱燐を行うとともに、マンガ
ン鉱石(鉄−マンガン鉱石も含む)を使用し、これを最
大限に溶融還元して転炉における終点(Mn )を上昇
させることにより、品質の良好な鋼を低コストで溶製す
ることができる、マンガン鉱石の溶融還元を伴う製鋼方
法に関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention performs highly efficient dephosphorization while minimizing the amount of slag forming agents (quicklime, etc.) used throughout the entire steelmaking process. Melting of manganese ore (including manganese ore), which can be melted and reduced to the maximum extent to raise the end point (Mn) in the converter, making it possible to produce high-quality steel at low cost. This relates to a steel manufacturing method that involves reduction.
(従来の技術)
従来、全製鋼工程の造滓剤(生石灰、ドロマイト等)を
少な(すること、およびマンガン鉱石を使用し、転炉終
点(Mid)を上昇せしめ、マンガン合金(フェロマン
ガン、シリマン等)の使用1を節減することのため、例
えばトーピードあるいは、溶銑移送鍋内で、生石灰系の
脱#%副(主として生石灰−酸化鉄−ホタル石基)をイ
ンジェクションし、溶銑の脱燐を実施した後、該脱燐銑
を転炉に注銑し、少量の生石灰等の通常造滓剤を添加す
ると共に、マンガン鉱石(以下鉄−マンガン鉱石を含む
)を添加し、転炉終点(Mn )を上昇させる方法が一
般的であった。(Prior art) Conventionally, the use of slag forming agents (quicklime, dolomite, etc.) in the entire steelmaking process was reduced, and manganese ore was used to raise the converter end point (Mid). etc.), for example, inject a quicklime-based de-#% additive (mainly quicklime - iron oxide - fluorite base) into a torpedo or hot metal transfer pot to dephosphorize the hot metal. After that, the dephosphorized pig iron is poured into a converter, a small amount of normal slag-forming agent such as quicklime is added, and manganese ore (hereinafter referred to as iron-manganese ore) is added to reach the converter end point (Mn). A common method was to increase the
(発明が解決しようとする課題)
ところが、このような従来法では
(1)溶銑脱燐と転炉吹錬との両方に生石灰系フラック
スを使用するので、全製鋼での造滓剤使用量があまり減
少しない、および
(2)脱燐銑の転炉吹錬時に溶融還元できるマンガン鉱
石の量は、目標とする転炉終点温度によっても異なるが
、おおむね15〜20kg八が熱的に限界であり、転炉
終点〔Mn〕は高々0.5〜0.9重量%程度であった
。もちろん、この場合、コークス等の炭材を熱源として
用いる方法もあるが、炭材からのSの混入があり、限界
があった、という問題があった。(Problem to be solved by the invention) However, in such conventional methods, (1) quicklime-based flux is used for both hot metal dephosphorization and converter blowing, so the amount of slag forming agent used in the entire steelmaking process is (2) The amount of manganese ore that can be melted and reduced during converter blowing for dephosphorizing pig iron varies depending on the target converter end temperature, but the thermal limit is approximately 15 to 20 kg. , the converter end point [Mn] was about 0.5 to 0.9% by weight at most. Of course, in this case, there is a method of using carbonaceous materials such as coke as a heat source, but there is a problem in that S is mixed in from the carbonaceous materials and there is a limit.
そこで、上記(りの問題点を解決するための提案として
、特開昭62−290815号公報および特開昭639
3813号公報等があり、その後上記(2)の問題点を
改善するために特開平1−142009号公報が提案さ
れた。この特開平1−142009号公報により提案さ
れた発明は次のごとくである。Therefore, as a proposal to solve the above problems, Japanese Patent Laid-Open No. 62-290815 and Japanese Patent Laid-Open No. 639
3813, etc., and later, Japanese Patent Application Laid-Open No. 1-142009 was proposed in order to improve the problem (2) above. The invention proposed in Japanese Patent Application Laid-Open No. 1-142009 is as follows.
「(1)上下両吹き機能を有した2基の転炉形式の炉の
うちの一方を脱燐炉、他方を脱炭炉として溶銑の精錬を
行う製鋼方法において、前記脱燐炉内へ注入した溶銑に
前記脱炭炉で発止した転炉滓およびマンガン鉱石を主成
分とする精錬剤を添加し、底吹きガス撹拌を行いつつ酸
素ガスを上吹きして溶銑温度を1400℃以下に保ちな
がら溶銑脱燐と溶銑(Mn )の上昇を行う工程と、得
られた脱燐溶銑に通常造滓剤とマンガン鉱石とを投入し
て脱炭炉で精錬し、溶銑の脱炭と溶銑の精錬終点〔Mn
〕の上昇を図る工程とを含むことを特徴とする製鋼方法
。(1) In a steelmaking method in which hot metal is refined by using one of two converter-type furnaces with upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace, injection into the dephosphorization furnace is performed. Converter slag generated in the decarburization furnace and a refining agent mainly composed of manganese ore are added to the hot metal, and the temperature of the hot metal is kept below 1400 ° C by blowing oxygen gas upward while stirring the bottom blowing gas. The process involves dephosphorizing the hot metal and raising the hot metal (Mn), and adding a normal slag forming agent and manganese ore to the obtained dephosphorized hot metal and refining it in a decarburization furnace, decarburizing the hot metal and refining the hot metal. End point [Mn
] A steelmaking method characterized by comprising the step of increasing
(2)被処理溶銑が、St含有量0.30重量%以下に
まで予備脱珪処理されたものである、特許請求の範囲第
1項に記載のマンガン鉱石の溶融還元を伴う製鋼方法、
」。(2) A steelmaking method involving smelting reduction of manganese ore according to claim 1, wherein the hot metal to be treated has been subjected to preliminary desiliconization treatment to reduce the St content to 0.30% by weight or less;
”.
この特開平1−142009号公報により提案された発
明は、脱燐炉で転炉滓とマンガン鉱石を主成分とする精
錬剤を添加する方法であるが、実繰業上における造滓剤
添加のタイミングあるいは送酸速度については一切記載
されていなかった。従って、例えばマンガン鉱石の溶融
還元量について、スラグ塩基度が2.5以上である条件
下において、例えば投入量が10kg/lである場合の
〔Mn〕増加量は、0.3〜0.4重量%程度とばらつ
きが多く、極めて良好な還元量とはいい難い。The invention proposed in JP-A-1-142009 is a method of adding a refining agent mainly composed of converter slag and manganese ore in a dephosphorization furnace. There was no mention of timing or rate of acid delivery. Therefore, for example, regarding the amount of smelting reduction of manganese ore, the increase in [Mn] when the input amount is 10 kg/l under conditions where the slag basicity is 2.5 or more is 0.3 to 0.4 It is difficult to say that the amount of reduction is extremely good as there are many variations, such as about % by weight.
また、これ以上の投入量(例えば20kg/を以上)に
おけるデータは少なく、その場合の還元量が極端に低下
するという点で問題があった。Further, there is little data on input amounts larger than this (for example, 20 kg/or more), and there is a problem in that the amount of reduction in such cases is extremely reduced.
従って、熱源のない状態では、脱燐炉精錬後の〔Mn〕
として高々0.7重量%弱であり、脱炭炉終点での〔M
n〕においても1.1重量%程度にとどまっていた。す
なわち、要求される〔Mn〕が1.2重量%以上の鋼種
については脱炭炉からの出鋼時に合金鉄の添加を必要と
し、この特開平1−142009号公報により提案され
た製鋼方法のメリットを完、全に享受しているとは言い
難かった。Therefore, in the absence of a heat source, [Mn] after dephosphorization furnace refining
It is a little less than 0.7% by weight at most, and [M
n] remained at about 1.1% by weight. In other words, for steel types with a required [Mn] of 1.2% by weight or more, it is necessary to add ferroalloy at the time of tapping from the decarburization furnace, and the steel manufacturing method proposed in JP-A-1-142009 requires the addition of ferroalloy. It was difficult to say that they were fully enjoying the benefits.
本発明は、特開平1−142009号公報により提案さ
れた発明の改良であり、具体的には製品〔Mn〕が1.
2重量%あるいはそれ以上の鋼をマンガン合金鉄の添加
なしあるいはそれに近い操業条件下で得るために、脱燐
炉後の〔Mn〕を、ことさらのコストアップなしに、換
言すれば操業条件の改善のみで0.8重量%以上、例え
ば0.8〜0.9重量%程度にまで上昇させることが可
能な、マンガン鉱石の溶融還元を伴う製鋼方法を提供す
ることを目的とする。The present invention is an improvement of the invention proposed in JP-A-1-142009, and specifically, the product [Mn] is 1.
In order to obtain steel containing 2% by weight or more without the addition of manganese alloy iron or under similar operating conditions, [Mn] after the dephosphorization furnace can be removed without any particular cost increase, in other words, by improving operating conditions. An object of the present invention is to provide a steelmaking method involving melt reduction of manganese ore, which can increase the amount of manganese ore to 0.8% by weight or more, for example, about 0.8 to 0.9% by weight.
(課題を解決するための手段)
前記目的を達成するため、本発明者らは特開平1−14
2009号公報により提案された発明における操業条件
の各点を検討し、下記■ないし■に示すような改善を行
った。すなわち改善のポイントは以下のとおりである。(Means for Solving the Problem) In order to achieve the above object, the present inventors have disclosed
We studied various aspects of the operating conditions in the invention proposed in Publication No. 2009, and made improvements as shown in (1) to (2) below. In other words, the points for improvement are as follows.
■送酸パターンの限定
マンガン鉱石の溶融還元によるフェロマンガン削減メリ
ットを最大限に享受するためには、脱燐炉の熱的余裕の
許す限りにおいてマンガン鉱石を可及的多量に添加する
ことが望ましい。■Limited oxygen supply pattern In order to maximize the benefits of reducing ferromanganese by melting and reducing manganese ore, it is desirable to add as much manganese ore as possible within the thermal margin of the dephosphorization furnace. .
しかるに、その場合、大量添加により1次的にマンガン
鉱石を含む造滓剤の温度が低下し、マンガン鉱石の溶融
が見かけ上進行しないことを本発明者らは知見した。However, in that case, the present inventors found that the temperature of the slag-forming agent containing manganese ore is primarily lowered by adding a large amount, and melting of the manganese ore does not apparently proceed.
そこで、本発明においてはこの造滓剤の温度に注目し、
送酸速度が自由にコントロール可能な転炉を用いた溶銑
予備処理法の利点を活かし、吹錬初期から中期にかけて
の送酸速度を100〜22ONnf/hr −Tまでと
増大し、造滓剤の温度を高く保持するものである。Therefore, in the present invention, we pay attention to the temperature of this slag-forming agent,
Taking advantage of the hot metal pretreatment method using a converter, in which the oxygen delivery rate can be freely controlled, the oxygen delivery rate from the early to middle stages of blowing is increased to 100 to 22 ONnf/hr -T, and the slag-forming agent is It keeps the temperature high.
■底吹ガス流量パターンの限定
特開平1−142009号公報に示すごとく、脱燐を促
進する場合の炉底ガス撹拌の程度は通常の上下両吹き複
合吹錬におけるのと同程度で良いが、マンガンの溶融を
促進するためにはより高流量(0゜O6〜0.30 N
n(/sin・T)とすることが望ましい。■Limitation of bottom blowing gas flow rate pattern As shown in Japanese Patent Application Laid-Open No. 1-142009, the degree of bottom gas agitation when promoting dephosphorization may be the same as in normal upper and lower double blowing combined blowing. Higher flow rate (0°O6~0.30N
It is desirable to set it to n (/sin·T).
マンガンの熔融が完了した吹錬中期以降においても、ス
ラグ−メタル撹拌強化による還元促進の観点から、前記
高流量を継続して流すことが望ましい。Even after the middle stage of blowing when the melting of manganese is completed, it is desirable to continue flowing at the high flow rate from the viewpoint of promoting reduction by strengthening slag-metal stirring.
■造滓剤他添加タイミング
前記■で示したように、マンガン鉱石の熔融を最優先に
考える上で造滓剤の温度を上げる他に、造滓剤の融点を
下げることも当然検討されるべき項目である。■ Timing of addition of slag-forming agents and other substances As shown in (■) above, in addition to raising the temperature of the slag-forming agent, it is also natural to consider lowering the melting point of the slag-forming agent when considering the melting of the manganese ore as the top priority. It is an item.
そこで、本発明においては、CaOSiO宜−MnO擬
慎三元系において、融点を1300℃程度にまで低下さ
せるために、塩基度(Cab/Stow)がo、s 4
t、2程度になるように調整することを旨とした造滓法
、すなわち生石灰分は吹錬前に添加する転炉滓からの供
給分のみとした条件下において、マンガン鉱石を溶融還
元するものである。Therefore, in the present invention, in order to lower the melting point to about 1300°C in the CaOSiO-MnO pseudo-shin ternary system, basicity (Cab/Stow) is o, s 4
A slag making method that aims to adjust the amount to approximately 2.0 m, i.e., a method in which manganese ore is melted and reduced under conditions in which the quicklime content is only that supplied from the converter slag that is added before blowing. It is.
そして、本発明者らは上記の改善ポイント■ないし■に
基づいて、さらに検討を重ね、本発明を完成した。Based on the above improvement points (1) to (2), the present inventors conducted further studies and completed the present invention.
ここに、本発明の要旨とするところは、上下両吹き機能
を有した2基の転炉形式の炉のうちの一方を脱燐炉、他
方を脱炭炉として溶銑の精錬を行う製鋼方法であって、
前記脱燐炉内へ注入した溶銑に前記脱炭炉で発生した転
炉滓およびマンガン鉱石を主成分とする精錬剤を添加し
、底吹きガス撹拌を行いつつ酸素ガスを上吹きして溶銑
温度を1400℃以下に保ちながら溶銑脱燐と溶銑〔M
n〕の上昇を行う工程と、得られた脱燐溶銑に通常造滓
剤とマンガン鉱石とを投入して脱炭炉で精錬し、溶銑の
脱炭と溶銑の精錬終点[Mnlの上昇を図る工程とを含
むことを特徴とする製鋼方法において、吹錬初期から中
期にかけての送酸速度を100〜22ONnf/hr4
とするとともに、炉底ガス流量は0.06〜0.3Nr
rf/+win HTとし、さらにCaO−5CaO−
5in系スラグのCan/5iftが0.5〜1.2と
なるように、上底吹撹拌ガス流量および造滓11qIの
11御を行うことを特徴とする、マンガン鉱石の溶融還
元を伴う製鋼方法である。Here, the gist of the present invention is a steelmaking method in which hot metal is refined by using one of two converter type furnaces having both upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace. There it is,
Converter slag generated in the decarburization furnace and a refining agent mainly composed of manganese ore are added to the hot metal injected into the dephosphorization furnace, and oxygen gas is blown upward while stirring the bottom blowing gas to adjust the temperature of the hot metal. Hot metal dephosphorization and hot metal [M
n], and the obtained dephosphorized hot metal is charged with a normal slag-forming agent and manganese ore and refined in a decarburization furnace to decarburize the hot metal and increase the molten iron refining end point [Mnl]. In a steelmaking method characterized by including a step of
At the same time, the bottom gas flow rate is 0.06 to 0.3Nr.
rf/+win HT, and further CaO-5CaO-
A steelmaking method involving smelting and reduction of manganese ore, characterized by controlling the top and bottom blowing agitation gas flow rate and the slag 11qI so that the Can/5ift of the 5-inch slag is 0.5 to 1.2. It is.
さらに、上記の本発明においては、被処理溶銑が、Si
含有量0.3重量%以下にまで予備脱珪処理されたもの
であってもよい、溶銑中のSi含有量が多くなるほど、
前記脱燐炉でのスラグ塩基度が低下して脱燐能が落ち、
全体での生石灰等の使用量が増加するからである。した
がって、溶銑のSi含有量は、出来れば0.3重量%以
下、好ましくは0.2重量%以下に調整しておくのが好
適である。Furthermore, in the present invention described above, the hot metal to be treated is Si
The higher the Si content in the hot metal, which may have been preliminarily desiliconized to a content of 0.3% by weight or less,
The slag basicity in the dephosphorization furnace decreases and the dephosphorization ability decreases,
This is because the total amount of quicklime etc. used increases. Therefore, the Si content of the hot metal is preferably adjusted to 0.3% by weight or less, preferably 0.2% by weight or less.
第1図に、本発明にかかる、マンガン鉱石の溶融還元を
伴う製鋼方法を実施する転炉を用いる溶銑の予備処理を
概念的に示す、すなわち、転炉形式の炉1 (脱燐炉)
および炉2 (脱炭炉)を用い、炉l内へ注入した溶銑
3に、炉2で発生した転炉スラグ4およびMnn万石蛍
石)を主成分とする精錬剤を添加し、攪拌ガス吹き込み
ノズル5より底吹ガス攪拌を行いつつ、酸素ガスをラン
ス6より上吹きして、溶銑3の温度を1400℃以下に
保持しつつ、溶銑脱燐と溶銑(Mnl の上昇を行う工
程でのマンガン鉱石の溶融還元を最高のものにするため
、前記■ないし■の改善を行うのである。FIG. 1 conceptually shows the preliminary treatment of hot metal using a converter that implements the steelmaking method involving smelting reduction of manganese ore according to the present invention, that is, a converter-type furnace 1 (dephosphorization furnace).
Using the furnace 2 (decarburization furnace), a refining agent mainly composed of converter slag 4 generated in the furnace 2 and Mnn Mangoku fluorite) is added to the hot metal 3 injected into the furnace 1, and the stirring gas While bottom-blowing gas is stirred from the blowing nozzle 5, oxygen gas is blown upward from the lance 6 to maintain the temperature of the hot metal 3 below 1400°C, and in the process of dephosphorizing the hot metal and raising the Mnl of the hot metal. In order to maximize the smelting reduction of manganese ore, improvements in (1) and (2) above are carried out.
本発明の、この改善ポイント■ないし■を第2図に概念
的に示す、すなわち、
■吹錬初期から中期にかけての送酸速度を100〜22
0 N rrr/hr−T と増大すること、■底吹ガ
ス流量を0.06〜0.3ON rrf/hr−Tとす
ること、および
■造滓剤その他の添加タイミングを、例えば第2図に示
す如くに制御することにより、CaO−5rO1MnO
系スラグのCaO/SiO2を0.5〜1.2 とする
こと
である。The improvement points (1) to (2) of the present invention are conceptually shown in Fig. 2.
0 N rrr/hr-T, (2) setting the bottom blowing gas flow rate to 0.06 to 0.3 ON rrr/hr-T, and (2) adding the slag agent and other timing as shown in Fig. 2. By controlling as shown, CaO-5rO1MnO
The CaO/SiO2 ratio of the system slag is 0.5 to 1.2.
(作用)
本発明の構成および作用について詳細に説明する。なお
、本明細書においては、特にことわりがない限り、「%
」は「重量%」を意味するものとする。(Operation) The configuration and operation of the present invention will be explained in detail. In addition, in this specification, unless otherwise specified, "%"
” shall mean “% by weight”.
1、送酸パターン
前述した本発明の送酸パターン(送酸速度:100〜2
2ONm’/hr−T)による造滓剤の温度推移と従来
の送酸パターン(送酸速度: 50〜95Nm!/hr
−T)による温度推移の一例を第3図に示した。1. Acid feeding pattern The acid feeding pattern of the present invention described above (acid feeding rate: 100-2
2ONm'/hr-T) and the conventional oxygen supply pattern (acid supply rate: 50-95Nm!/hr)
An example of the temperature change due to -T) is shown in FIG.
特定の時間間隔ごとに測温した結果をプロットしたもの
であるが、従来の送酸パターンによればマンガン鉱石の
添加に伴い、かなりの1M度変化を生じており、特にマ
ンガン鉱石の初期−括投入を行った場合にその傾向が顕
著である。The results of temperature measurement at specific time intervals are plotted, and according to the conventional oxygen supply pattern, a considerable change of 1M degree occurs with the addition of manganese ore, especially in the initial stage of manganese ore. This tendency is noticeable when inputs are made.
マンガン鉱石を分割添加した場合は温度降下量はいくぶ
ん緩和されるものの基本的にその傾向は存続する。また
分割添加した場合は限られた吹錬時間内で、造滓剤中の
マンガンを溶銑中に還元する時間が十分にとれないため
、仮に溶融したとしても還元量が少なくなるという欠点
がある。When manganese ore is added in portions, the temperature drop is somewhat alleviated, but basically the same tendency remains. Furthermore, when adding in portions, there is not enough time to reduce manganese in the slag-forming agent into hot metal within the limited blowing time, so there is a drawback that even if it is melted, the amount of reduction will be small.
従って、本発明によれば、仮にマンガン鉱石を初期−括
投入したとしても、造滓剤の温度を1300℃以上に保
つことができるため、マンガン鉱石の溶融という観点か
らは申し分のないものである。Therefore, according to the present invention, even if manganese ore is initially charged, the temperature of the slag forming agent can be maintained at 1300°C or higher, which is perfect from the viewpoint of melting manganese ore. .
マンガン鉱石が一旦全量溶融した後は、溶滓中のマンガ
ンの還元時間を確保するために送酸速度を低下させるこ
とが望ましい、これは不要な脱炭を抑える意味において
も効果がある。Once the entire amount of manganese ore has been melted, it is desirable to reduce the oxygen delivery rate in order to ensure time for reducing the manganese in the slag, and this is also effective in suppressing unnecessary decarburization.
送酸速度は、マンガン鉱石の添加量に応じて変更するの
が最も望ましいのは言うまでもないが、若干のタイミン
グのずれは、それほど問題とはならないため、変更タイ
ミングについての限定は特に必要でない。It goes without saying that it is most desirable to change the oxygen feeding rate in accordance with the amount of manganese ore added, but a slight timing difference does not pose much of a problem, so there is no particular need to limit the timing of the change.
なお、吹錬初期から中期にかけての送酸速度を100〜
220 Nrrr/hrTに限定した理由は、100
Nrrf/hr・1未満の場合、造滓剤の温度が充分に
上昇しないため本発明の効果が得られないためであり、
一方220 Nm’/hrT超の場合は、脱燐炉での
脱炭が過大に起こり、後の脱炭炉における熱的余裕度が
低下してしまうためである。In addition, the oxygen supply rate from the early stage to the middle stage of blowing should be adjusted to 100~
The reason for limiting it to 220 Nrrr/hrT is 100
This is because if it is less than Nrrf/hr・1, the temperature of the slag forming agent will not rise sufficiently and the effect of the present invention cannot be obtained.
On the other hand, if it exceeds 220 Nm'/hrT, decarburization in the dephosphorization furnace occurs excessively, and the thermal margin in the subsequent decarburization furnace decreases.
2、底吹ガス流量パターン
底吹ガス流量が0.03Nm’/min −Tと0.1
’5 Nm″/sin・Tの2つの場合につき、次記の
溶銑条件(送酸速度:17ONm”/hr−T、 Ca
O/SiO2:2.5)における溶銑〔Mn〕の推移を
第4図に示す、生石灰添加前の溶融期、添加後の還元期
の両者において、底吹ガス流量の効果が明確に表われて
いる。2. Bottom blowing gas flow rate pattern Bottom blowing gas flow rate is 0.03Nm'/min -T and 0.1
For the two cases of '5 Nm''/sin・T, the following hot metal conditions (oxygen feed rate: 17ONm''/hr-T, Ca
Figure 4 shows the transition of hot metal [Mn] in O/SiO2:2.5), and the effect of the bottom blowing gas flow rate is clearly visible in both the melting period before the addition of quicklime and the reduction period after the addition. There is.
底吹ガス流量の上限を0.30 Nn(/min・Tと
定めた理由は、これを超える流量を流しても、効果が飽
和してくること、また炉底耐火物の寿命が低下してくる
こと、さらにはガス種として炭酸ガスを選んだ場合に溶
銑炭素との反応による吸熱効果等が生じるためである。The reason why the upper limit of the bottom blowing gas flow rate was set at 0.30 Nn (/min・T) is that even if the flow rate exceeds this, the effect will be saturated, and the life of the bottom refractory will be shortened. Furthermore, when carbon dioxide gas is selected as the gas species, an endothermic effect occurs due to the reaction with hot metal carbon.
一方、下限を0.06Nm”/sin・Tと定めた理由
は、この値よりも小さいとマンガンの溶融が不充分とな
ってしまうおそれがあるためである。On the other hand, the reason why the lower limit is set at 0.06 Nm''/sin·T is that if the value is smaller than this value, there is a possibility that the melting of manganese will be insufficient.
もちろん、特開平1−142009号公報にて示したご
とく、炉底から吹込む撹拌ガスは炭素ガス以外のアルゴ
ン、−酸化炭素等のいずれでもよく、これらを用いた場
合は、前記吸熱反応は起こらないのは当然である。Of course, as shown in JP-A-1-142009, the stirring gas injected from the bottom of the furnace may be any gas other than carbon gas, such as argon or -carbon oxide, and if these are used, the endothermic reaction will not occur. Of course there isn't.
3、造滓剤他添加タイミング
前述したように、CaO−MnO−3in、擬似三元系
において、塩基度(CaO/SiO2)を0.5〜1.
2程度になるように調整することにより、第5図に示す
ような造滓剤の融点が1300℃まで低下する領域が存
在する。3. Timing of addition of slag forming agent, etc. As mentioned above, in the CaO-MnO-3in, pseudo-ternary system, the basicity (CaO/SiO2) is 0.5 to 1.
By adjusting the melting point to about 2, there is a region where the melting point of the slag-forming agent decreases to 1300° C. as shown in FIG.
具体的には、生石灰分は吹錬前に添加する転炉滓からの
供給分のみとした条件下にて吹錬を開始し、マンガン鉱
石を熔融する。すなわち溶銑〔S1〕からの予想Si島
量と転炉滓中の5iotitとの和で転炉滓中のCaO
量を割った値が、前記0.5〜1.2の中におさまるよ
うに溶銑(Si )の値に応じて、転炉滓の量をコント
ロールするのである。Specifically, blowing is started under the condition that the quicklime content is only the amount supplied from the converter slag added before blowing, and the manganese ore is melted. In other words, the CaO in the converter slag is the sum of the expected amount of Si islands from hot metal [S1] and 5iotit in the converter slag.
The amount of converter slag is controlled according to the value of hot metal (Si) so that the value divided by the amount falls within the range of 0.5 to 1.2.
もちろん造滓剤の一部としてホタル石を添加しているた
め第5図に示す融点よりもさらに低い値をとることが充
分予想されるが、全体としての傾向は、第5図に示すと
おりである。Of course, since fluorite is added as part of the slag-forming agent, it is fully expected that the melting point will be even lower than the melting point shown in Figure 5, but the overall trend is as shown in Figure 5. be.
マンガン鉱石の溶融が完了した後、生石灰を添加し、マ
ンガンの還元工程に入る。この理由は特開平1−142
009号公報に示しているように、スラグ塩基度が高い
ほど酸化マンガンは、還元され易くなり、第6図に示す
ように、スラグ塩基度が2゜5以上の領域ではこの傾向
が最も強くなって一定化するためである。After the manganese ore has been melted, quicklime is added and the manganese reduction process begins. The reason for this is JP-A-1-142
As shown in Publication No. 009, the higher the slag basicity, the more easily manganese oxide is reduced, and as shown in Figure 6, this tendency is strongest in the region where the slag basicity is 2.5 or more. This is to make it constant.
なお、第4図にも示したように、生石灰添加後の溶銑〔
Mn〕、は再び上昇する傾向にあり、第6図の結果をよ
く裏づけるものである。Furthermore, as shown in Figure 4, hot metal after adding quicklime [
Mn] has a tendency to rise again, which supports the results shown in Figure 6 well.
このようにして、脱燐炉で[11nlを上昇させた脱燐
溶銑を得ることができる。In this way, it is possible to obtain dephosphorized hot metal in which the amount of [11 nl] has been increased in the dephosphorizing furnace.
そして、この後は、特開平1−142009号公報に開
示されているように、通常造滓剤とマンガン絋、石とを
投入して脱炭炉で精錬し、溶銑の脱炭と精錬終点[Mn
lの上昇とを図ればよい。After this, as disclosed in JP-A-1-142009, a slag-forming agent, manganese wire, and stones are usually added and refined in a decarburization furnace to decarburize the hot metal and reach the final point of refining [ Mn
What is necessary is to increase l.
さらに、本発明を実施する場合には、出来れば適用され
る溶銑の事前脱硫処理を行うのが良い。Furthermore, when carrying out the present invention, it is preferable to perform a preliminary desulfurization treatment on the applied hot metal if possible.
その第一の理由として、この方法においては、脱硫の進
行が極めて鈍いことが挙げられるが、他方では事前脱硫
していない溶銑を用いた場合には転炉スラグ中のS含有
量が上昇し、次のチャージにおける溶鋼S含有量を高め
ることも懸念されるからである。なお、前記事前脱硫は
通常行われている溶銑脱硫方法の何れによってもよい。The first reason is that desulfurization progresses extremely slowly in this method, but on the other hand, when hot metal that has not been desulfurized in advance is used, the S content in the converter slag increases, This is because there is also a concern that the molten steel S content in the next charge may be increased. Note that the preliminary desulfurization may be performed by any of the commonly used hot metal desulfurization methods.
本発明を比較例と対比した実施例により、さらに具体的
に説明する。The present invention will be explained in more detail with reference to examples in comparison with comparative examples.
実施例1
脱燐炉内に注銑した第1表の上段に示される如き成分の
、脱珪、脱硫溶銑250Tに、脱炭炉で発生した転炉滓
25kg八とホタル石11kg/lのほか、粒径30m
m以下のマンガン鉱石15.3kg八を添加して9分間
の脱燐処理を行って本発明例である試料とした。Example 1 250T of desiliconized and desulfurized hot metal having the components shown in the upper row of Table 1 was poured into a dephosphorization furnace, and 25kg of converter slag generated in the decarburization furnace and 11kg/l of fluorite were added. , particle size 30m
After adding 15.3 kg of manganese ore with a particle diameter of less than 100 m, a dephosphorization treatment was performed for 9 minutes to prepare a sample as an example of the present invention.
第1表
第2表
なお、実施例1における操業条件は第2表の本発明例の
項に示すごとく、送酸速度の変更、底吹ガス流量の高流
量化、造滓側添加タイミング変更の各項目を実施したも
のである。Table 1 Table 2 The operating conditions in Example 1 are as shown in the section of the present invention example in Table 2. Each item was implemented.
(以下余白)
後述する比較例に対し、若干少量のマンガン鉱石を使用
しているにもかかわらず、処理後の[Mnlは高く脱燐
炉におけるインプットマンガン歩留も約55%と25%
もの改善が得られている。(Left below) Compared to the comparative example described below, although a slightly smaller amount of manganese ore is used, the [Mnl after treatment is high and the input manganese yield in the dephosphorization furnace is approximately 55% and 25%.
Improvements have been made.
実施例2
鋼種における硫黄濃度の制限が比較的緩やかな場合は、
特開平1−142009号公報にも示したように、脱燐
炉において約60%の脱硫が進行する。従って、事前に
溶銑脱硫をする必要はない。Example 2 If the restrictions on sulfur concentration in steel types are relatively loose,
As shown in JP-A-1-142009, about 60% of desulfurization progresses in the dephosphorization furnace. Therefore, there is no need to desulfurize the hot metal in advance.
脱燐炉内に注銑した第3表の上段に示される如き成分の
脱珪溶銑250Tに、脱炭炉で発生した転炉滓25kg
八と、ホタル石10kg/lのほか、粒径30m−以下
のマンガン鉱石24.3kg八を添加し、9分間の脱燐
処理を行った。250T of desiliconized hot metal having the composition shown in the upper row of Table 3 was poured into the dephosphorization furnace, and 25kg of converter slag generated in the decarburization furnace was added.
In addition to 10 kg/l of fluorite, 24.3 kg of manganese ore with a particle size of 30 m or less was added, and dephosphorization was performed for 9 minutes.
第3表
比較例
事前に脱珪し、脱硫処理した第4表の上段に示される如
き成分の溶銑250トンを脱燐炉として使用する上下両
吹き複合吹錬転炉に注銑し、これに同様形式の脱炭炉で
発生した転炉滓を冷却、凝固して30IIIIl以下の
粒径に破砕したもの25kg八と、同様の粒径をもつマ
ンガン鉱石17.7kg/lならびにホタル石10kg
へとを添加して10分間の脱燐処理を行った。Table 3 Comparative Example 250 tons of hot metal having the composition shown in the upper row of Table 4, which had been desiliconized and desulfurized in advance, was poured into an upper and lower double blowing composite blowing converter used as a dephosphorization furnace. 25kg of converter slag generated in a similar type of decarburization furnace after being cooled and solidified and crushed to a particle size of 30IIIL or less, 17.7kg/L of manganese ore with a similar particle size, and 10kg of fluorite.
Dephosphorization treatment was carried out for 10 minutes by adding heto.
第4表
実施例1に比較し、マンガン鉱石量が多いのは、溶銑脱
硫に伴う温度降下がなくなるため、脱燐処理前の溶銑温
度が高いためである。マンガン鉱石量が多いにもかかわ
らず、インプットマンガン歩留は、実施例1と同程度で
あり、脱燐処理後[Mnl≧0.9%を達成している。The reason why the amount of manganese ore is large compared to Example 1 in Table 4 is that the temperature of the hot metal before the dephosphorization treatment is high because there is no temperature drop accompanying hot metal desulfurization. Despite the large amount of manganese ore, the input manganese yield was comparable to that of Example 1, and after the dephosphorization treatment [Mnl≧0.9% was achieved.
なお、操業条件は第2表の本発明例に示すとおりであり
、実施例1となんら変わるところはない。Note that the operating conditions are as shown in the invention example in Table 2, and there is no difference from Example 1.
なお、比較例における操業条件は第2表の比較例の項に
示すごとく、送酸速度を6ONm+3/hr・Tと一定
とし、底吹ガス流量を0.03Nm’/5in−Tと低
流量とし、さらに造滓剤およびマンガン鉱石を[に添加
したものである。As shown in the Comparative Example section of Table 2, the operating conditions in the comparative example were as follows: the oxygen supply rate was constant at 6ONm+3/hr・T, and the bottom blowing gas flow rate was as low as 0.03Nm'/5in-T. , further added with a slag-forming agent and manganese ore.
脱燐処理後の[Mn)は上昇してはいるものの、上昇分
は少なく脱炭炉から発生する転炉滓中のマンガンを考え
合わせても、脱燐炉におけるインプットマンガン歩留で
約30%と非常に低位である。Although [Mn] increases after dephosphorization, the amount of increase is small and even considering the manganese in the converter slag generated from the decarburization furnace, the input manganese yield in the dephosphorization furnace is approximately 30%. and is very low.
ここで、その他の実施例も含め、脱燐炉におけるマンガ
ン鉱石添加量と、インプットマンガン歩留との関係を第
7図に示す。Here, FIG. 7 shows the relationship between the amount of manganese ore added in the dephosphorization furnace and the input manganese yield, including other examples.
本発明の効果により、マンガン鉱石添加量にかかわらず
、20%以上のマンガン歩留の向上・改善が得られてい
る。As a result of the effects of the present invention, the manganese yield has been improved by 20% or more regardless of the amount of manganese ore added.
この結果、実施例1.2に示す如く脱炭炉における比較
的少量のマンガン鉱石添加にもかかわらず、脱炭炉後(
Mn、lは、1%ないし1.2%を越えるものとなって
いる。As a result, despite the addition of a relatively small amount of manganese ore in the decarburization furnace as shown in Example 1.2, after the decarburization furnace (
Mn, l exceeds 1% to 1.2%.
もちろん脱炭炉の熱余裕から通常約15〜20kg/l
のマンガン鉱石は添加可能であるから、鋼種のマンガン
規格に応じ、さらに終点〔Mn〕の高い溶鋼を製造する
ことは容易である。Of course, it is usually about 15 to 20 kg/l due to the heat margin of the decarburization furnace.
Since manganese ore can be added, it is easy to produce molten steel with a high end point [Mn] in accordance with the manganese standard of the steel type.
(発明の効果)
本発明は、以上説明したとおりの構成により、炭材等の
熱余裕拡大のための特殊な物を使用しなくとも、脱燐精
錬後、0.6%以上の(6n]を安定して溶製すること
ができる。特に事前脱硫の操作を加えず、高温の溶銑が
使用できる場合は、0.9%以上もの高い〔Mn〕を有
する溶銑製造が可能である。(Effects of the Invention) With the configuration as explained above, the present invention enables the production of 0.6% or more of In particular, if high-temperature hot metal can be used without pre-desulfurization, it is possible to produce hot metal with a high [Mn] content of 0.9% or more.
従って、脱炭炉におけるマンガン鉱石使用蟹を過大なも
のにしなくとも、換言すれば、炭材等を使用しなくとも
、脱炭炉後〔Mn〕として1%以上は容易に達成でき、
フェロマンガン使用量として18〜10kg/lの節減
が可能となる。Therefore, even if the amount of manganese ore used in the decarburization furnace is not excessive, in other words, even without using carbon materials, it is possible to easily achieve [Mn] of 1% or more after the decarburization furnace.
It is possible to reduce the amount of ferromanganese used by 18 to 10 kg/l.
さらに特開平1−142009号公報にも示したごとく
、脱炭炉滓を再利用できる点で、製鋼工程の全体を通じ
て必要な造滓剤量の著しい低減も達成できるなど、産業
上、極めて有用な効果がもたらされるのである。Furthermore, as shown in JP-A-1-142009, the decarburization furnace slag can be reused, and the amount of slag forming agent required throughout the steelmaking process can be significantly reduced, making it extremely useful industrially. It brings about an effect.
なお、本発明においては、実施例に示したように、特に
炭材等の熱余裕拡大剤を使用していない。Note that, in the present invention, as shown in the examples, no heat margin expander such as carbon material is used.
それは、前述したように、炭材等を使用しなくとも1%
ないし1.2%Mn以上の溶鋼が安定して溶製可能なた
めであるが、近年ますます増加傾向にある〔Mn〕21
.5%の高マンガン鋼においてもメリフトを享受するた
めに脱燐炉において炭材を用いてもよいのは当然である
。As mentioned above, it is 1% even without using carbon materials etc.
This is because molten steel with a Mn content of 1.2% or more can be produced stably, but in recent years, the number of Mn has been increasing [Mn] 21
.. It goes without saying that carbonaceous material may be used in the dephosphorization furnace to enjoy the merit lift even in 5% high manganese steel.
第1図は、本発明方法を実施する転炉を用いた溶銑予備
処理の概念図;
第2図は、上記プロセスのうちの脱燐炉における本発明
による吹錬過程の略式説明図;第3図は、本発明による
吹錬方法を実施した時の脱燐炉内スラグ温度の推移を示
すグラフ;第4図は、吹錬中のマンガン濃度推移を示す
グラフ;
第5図は、CaO−MnO−3ing系スラグの融点分
布を示すグラフ:
第6図は、脱燐炉でのMn分配比とスラグ塩基度との関
係を示すグラフ;および
第7図は、脱燐炉でのインプットマンガン歩留とマンガ
ン鉱石添加量との関係を示すグラフである。
1:脱燐炉 2:脱炭炉
3:溶銑 4:転炉滓
4°:転炉滓を主成分とする脱燐スラグ5:撹拌ガス吹
き込みノズル
6:ランス
第1図
!L5回
第2図
第乙回
(Cab) / (SiOJ
呟dwA灯
望e於J
・蔭疵ト昇?
ll\帰 −りFig. 1 is a conceptual diagram of hot metal pretreatment using a converter that implements the method of the present invention; Fig. 2 is a schematic explanatory diagram of the blowing process according to the present invention in a dephosphorization furnace of the above process; The figure is a graph showing the change in slag temperature in the dephosphorization furnace when the blowing method according to the present invention is carried out; Figure 4 is a graph showing the change in manganese concentration during blowing; Figure 5 is a graph showing changes in the concentration of manganese during blowing; A graph showing the melting point distribution of -3ing system slag: Figure 6 is a graph showing the relationship between Mn distribution ratio and slag basicity in the dephosphorization furnace; and Figure 7 is a graph showing the input manganese yield in the dephosphorization furnace. It is a graph showing the relationship between the amount of manganese ore added and the amount of manganese ore added. 1: Dephosphorization furnace 2: Decarburization furnace 3: Hot metal 4: Converter slag 4°: Dephosphorization slag mainly composed of converter slag 5: Stirring gas injection nozzle 6: Lance Figure 1! L5, Figure 2, Part 2 (Cab) / (SiOJ)
Claims (2)
ちの一方を脱燐炉、他方を脱炭炉として溶銑の精錬を行
う製鋼方法であって、前記脱燐炉内へ注入した溶銑に前
記脱炭炉で発生した転炉滓およびマンガン鉱石を主成分
とする精錬剤を添加し、底吹きガス撹拌を行いつつ酸素
ガスを上吹きして溶銑温度を1400℃以下に保ちなが
ら溶銑脱燐と溶銑〔Mn〕の上昇を行う工程と、得られ
た脱燐溶銑に通常造滓剤とマンガン鉱石とを投入して脱
炭炉で精錬し、溶銑の脱炭と溶銑の精錬終点[Mn]の
上昇を図る工程とを含むことを特徴とする製綱方法にお
いて、吹錬初期から中期にかけての送酸速度を100〜
220Nm^3/hr・Tとするとともに、炉底ガス流
量は0.06〜0.3Nm^3/min.Tとし、さら
にCaO−SiO_2−MnO系スラグのCaO/Si
O_2が0.5〜1.2となるように、上底吹撹拌ガス
流量および造滓剤量の制御を行うことを特徴とする、マ
ンガン鉱石の溶融還元を伴う製鋼方法。(1) A steelmaking method in which hot metal is refined by using one of two converter-type furnaces having both upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace, and in which the hot metal is refined into the dephosphorization furnace. A refining agent mainly composed of converter slag and manganese ore generated in the decarburization furnace is added to the injected hot metal, and the temperature of the hot metal is kept below 1400 ° C by blowing oxygen gas upward while stirring the bottom blowing gas. A process of dephosphorizing the hot metal and raising the hot metal [Mn], and adding a normal slag forming agent and manganese ore to the obtained dephosphorized hot metal and refining it in a decarburizing furnace, decarburizing the hot metal and refining the hot metal. In a rope manufacturing method characterized by including a step of increasing the end point [Mn], the oxygen supply rate from the early to middle stages of blowing is set at 100 to
220 Nm^3/hr・T, and the furnace bottom gas flow rate was 0.06 to 0.3 Nm^3/min. T, and CaO/Si of CaO-SiO_2-MnO system slag
A steelmaking method involving melt reduction of manganese ore, characterized by controlling the flow rate of top and bottom blowing stirring gas and the amount of slag forming agent so that O_2 is 0.5 to 1.2.
で予備脱珪処理されたものである、請求項1記載のマン
ガン鉱石の溶融還元を伴う製鋼方法。(2) The steelmaking method involving smelting reduction of manganese ore according to claim 1, wherein the hot metal to be treated has been subjected to a preliminary desiliconization treatment to reduce the Si content to 0.3% by weight or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1290740A JPH0696729B2 (en) | 1989-11-08 | 1989-11-08 | Steelmaking process with smelting reduction of manganese ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1290740A JPH0696729B2 (en) | 1989-11-08 | 1989-11-08 | Steelmaking process with smelting reduction of manganese ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03153811A true JPH03153811A (en) | 1991-07-01 |
JPH0696729B2 JPH0696729B2 (en) | 1994-11-30 |
Family
ID=17759912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1290740A Expired - Lifetime JPH0696729B2 (en) | 1989-11-08 | 1989-11-08 | Steelmaking process with smelting reduction of manganese ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0696729B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06158137A (en) * | 1992-11-24 | 1994-06-07 | Nippon Steel Corp | Mn-containing oxide free from aging deterioration |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01142009A (en) * | 1987-11-28 | 1989-06-02 | Sumitomo Metal Ind Ltd | Steel making method |
-
1989
- 1989-11-08 JP JP1290740A patent/JPH0696729B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01142009A (en) * | 1987-11-28 | 1989-06-02 | Sumitomo Metal Ind Ltd | Steel making method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06158137A (en) * | 1992-11-24 | 1994-06-07 | Nippon Steel Corp | Mn-containing oxide free from aging deterioration |
Also Published As
Publication number | Publication date |
---|---|
JPH0696729B2 (en) | 1994-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63195209A (en) | Steel making method | |
JP2000073111A (en) | Manufacture of low-phosphorus molten iron | |
JPH11323420A (en) | Pretreating method for molten iron | |
JPH03153811A (en) | Steelmaking method accompanied with smelting reduction of manganese ore | |
JPH0471965B2 (en) | ||
JPH0437135B2 (en) | ||
JP2587286B2 (en) | Steelmaking method | |
JPS63195211A (en) | Production of low phosphorus and low carbon steel with little mn loss | |
JPS6393813A (en) | Steel making method | |
JPS6247417A (en) | Melt refining method for scrap | |
JP2842231B2 (en) | Pretreatment of hot metal by bottom-blown gas stirring | |
JPH0841519A (en) | Steelmaking method | |
JP2755027B2 (en) | Steelmaking method | |
JPH0433844B2 (en) | ||
JPH0214404B2 (en) | ||
JPH01215917A (en) | Method for melting stainless steel | |
JPS6342686B2 (en) | ||
JPH032312A (en) | Production of low-phosphorus pig iron | |
JPH01312020A (en) | Method for dephosphorizing molten iron by heating | |
JPH01142009A (en) | Steel making method | |
JPS6214603B2 (en) | ||
JPH02182820A (en) | Refining method for increasing mn-content in molten steel in converter | |
JPH07138628A (en) | Method for refining steel enabling addition of large quantity of cold material | |
JPH04257691A (en) | Manufacture of high manganese steel | |
JPH04214810A (en) | Treatment of molten iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071130 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081130 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091130 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |