JPH0218909A - Disc winding for induction electric apparatus - Google Patents

Disc winding for induction electric apparatus

Info

Publication number
JPH0218909A
JPH0218909A JP16781988A JP16781988A JPH0218909A JP H0218909 A JPH0218909 A JP H0218909A JP 16781988 A JP16781988 A JP 16781988A JP 16781988 A JP16781988 A JP 16781988A JP H0218909 A JPH0218909 A JP H0218909A
Authority
JP
Japan
Prior art keywords
winding
cooling
disc
horizontal
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16781988A
Other languages
Japanese (ja)
Inventor
Masumi Nakatate
真澄 中楯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16781988A priority Critical patent/JPH0218909A/en
Publication of JPH0218909A publication Critical patent/JPH0218909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To obtain minimum oil flow rate necessary and sufficient for cooing horizontal cooling passages in cooling zones and to avoid partly excessive temperature rise by gradually reducing the number of the cooling passages composed in the zones from the lower part to the upper part of a disc winding. CONSTITUTION:The number of horizontal cooling passages composed in one cooling zone is reduced gradually from the lower part to the upper part of a disc winding 3, i.e., an interval between inner and outer blocking plugs 10a, 11a is gradually reduced from the upper part to the lower part. Accordingly, an oil flowing speed distribution 13 in each horizontal cooling passage when insulating fluid flows to the winding 3 is such that the oil flowing speed is increased since the number of the passages is less in the cooling zone of the upper part of the winding. Thus, sufficient oil flowing speed necessary to cool the passages is obtained in each zone, a partial excessive temperature rise is avoided, and it is effectively cooled thereby to reduce a winding highest temperature.

Description

【発明の詳細な説明】 〔発明の目的〕 (作業上の利用分野) 本発明は油の自然対流により冷却を行う誘導電器円板巻
線に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Operational Application) The present invention relates to an induction electric disc winding that is cooled by natural convection of oil.

(従来の技術) 従来、変圧器等の誘導電器の巻線として用いられる円板
巻線は第3図に示すように構成されている。即ち、内側
絶縁筒1と外側絶縁筒2との間に素線導体を巻回して成
る複数枚の円板巻線3が軸方向に等間隔に複数段積み重
ねられて、夫々の円板巻線を渡り線により電気的に直列
に接続して構成されている。各円板巻線3間には複数個
の水平間隅片4が放射状に等間隔に配置され、各円板巻
線3間に半径方向の水平冷却路5が形成され、更に内、
外側絶縁筒1および2と前記各円板巻線3との間には垂
直間隅片6および7が前記水平間隅片に対応する位置に
設けられて、円板巻線3と内、外側絶縁筒1,2間に水
平冷却路5と連通する内側垂直冷却路8および外側垂直
冷却路9がそれぞれ形成されている。そして、図示しな
いタンク内に絶縁油と共に収納され絶縁油の自然対流に
より各冷却路内に絶縁油を流通させ巻線の冷却を打つて
いる。
(Prior Art) Conventionally, a disk winding used as a winding of an induction electric device such as a transformer is constructed as shown in FIG. That is, a plurality of disc windings 3 each formed by winding a wire conductor between an inner insulating cylinder 1 and an outer insulating cylinder 2 are stacked in multiple stages at equal intervals in the axial direction, and each disc winding is stacked at equal intervals in the axial direction. are electrically connected in series by crossover wires. A plurality of horizontal corner pieces 4 are arranged radially at equal intervals between each disc winding 3, and a radial horizontal cooling path 5 is formed between each disc winding 3.
Vertical corner pieces 6 and 7 are provided between the outer insulating cylinders 1 and 2 and each of the disc windings 3 at positions corresponding to the horizontal corner pieces, so that the disc windings 3 are connected to the inner and outer sides. An inner vertical cooling passage 8 and an outer vertical cooling passage 9 communicating with the horizontal cooling passage 5 are formed between the insulating cylinders 1 and 2, respectively. The insulating oil is stored together with insulating oil in a tank (not shown), and the insulating oil is circulated in each cooling path by natural convection of the insulating oil to cool the windings.

このような円板巻線は冷却効果をより高めるため、第4
図に示すように数段の前記円板巻線3で1つの冷却区域
が形成されるように円板巻線の数段毎にその全周に沿っ
て内側閉塞栓10および外側閉塞栓11が交互に設けら
れ前記各垂直冷却路8および9を内側、外側交互に閉塞
している。
In order to further enhance the cooling effect of this type of disc winding, the fourth
As shown in the figure, an inner blocker 10 and an outer blocker 11 are installed along the entire circumference of every several stages of the disc winding so that one cooling zone is formed by several stages of the disc winding 3. The vertical cooling passages 8 and 9 are alternately provided and are alternately closed on the inside and outside.

従って絶縁油は前記冷却区域毎に絶縁油の流入口および
流出口が内側、外側に反転し、ジグザグ状となって各円
板巻線3の間を流通し、巻線全体の冷却を効率よく行な
っている。
Therefore, the insulating oil flows between each disk winding 3 in a zigzag pattern with the insulating oil inlet and outlet reversed inward and outward in each cooling zone, thereby efficiently cooling the entire winding. I am doing it.

(発明が解決しようとする課題) しかしながら、上記構造の円板巻線においても、内側閉
塞栓10と外側閉塞栓11とになって仕切られたある1
つの冷却区域内の各水平冷却路5に分流する絶縁油の流
れを見てみると、必ずしも均一になっておらず、一般に
絶縁油の流出口付近にある上部の水平冷却路5内の油流
速度が絶縁油の流入口付近にある下部の水平冷却路5内
の油流速度に比較して非常に小さくなっており、ざらに
この傾向は円板巻線の上部はど顕著になっている。即ち
、このような円板巻線内の各水平冷却路5における油流
速度分布を見てみると、第4図に点線矢印12で示され
るように絶縁油の流出口に近づくに従って小さくなるよ
うになっており、ざらに1つの冷却区域内の流速差は、
円板巻線の上部はど大きくなっている。場合によっては
円板巻線上部の冷却区域内の流出口付近では絶縁油の滞
流あるいは逆流も起こり得る。
(Problem to be Solved by the Invention) However, even in the disk winding having the above structure, there is a certain block partitioned by an inner blocker 10 and an outer blocker 11.
Looking at the flow of insulating oil that branches into each horizontal cooling passage 5 in the two cooling zones, it is found that it is not necessarily uniform, and generally the oil flow in the upper horizontal cooling passage 5 near the insulating oil outlet. The velocity is very small compared to the oil flow velocity in the lower horizontal cooling path 5 near the insulating oil inlet, and this tendency is more pronounced in the upper part of the disc winding. . That is, when looking at the oil flow velocity distribution in each horizontal cooling path 5 in such a disk winding, it becomes smaller as it approaches the insulating oil outlet, as shown by the dotted arrow 12 in FIG. The difference in flow velocity within roughly one cooling zone is
The upper part of the disc winding is very large. In some cases, stagnation or backflow of insulating oil may occur near the outlet in the cooling zone above the disc winding.

このような場合の巻線温度上昇と垂直冷却路内の平均油
温上昇を第5図に示す。円板巻線の下部付近では、水平
冷却路内の油流速度が比較的均一であるため、巻線温度
上昇と平均油温度上昇との差はほぼ一定であり、これは
円板巻線から絶縁油への熱伝達率がほぼ一定であること
を示している。
FIG. 5 shows the winding temperature rise and average oil temperature rise in the vertical cooling path in such a case. Near the bottom of the disc winding, the oil flow velocity in the horizontal cooling path is relatively uniform, so the difference between the winding temperature rise and the average oil temperature rise is almost constant, which is due to the This shows that the heat transfer coefficient to the insulating oil is almost constant.

これに対し、水平冷却路内の油流速度の差が大きい円板
巻線上部では、1つの冷却区域内で特に上部の流出口付
近の巻線温度が大きく上昇しており、油流速度が遅いた
めに熱伝達率が悪くなったことを示している。
On the other hand, in the upper part of the disk winding where there is a large difference in oil flow velocity in the horizontal cooling path, the winding temperature in one cooling zone, especially near the upper outlet, increases significantly, and the oil flow velocity increases. This indicates that the heat transfer rate deteriorated due to the slowness.

従って、流入口付近に配置される円板巻線3に比べ、流
出口付近に配置される円板巻線3の冷却が十分になされ
ず、折角内側および外側閉塞栓10.11を取り付けて
巻線全体に絶縁油をジグザグ状に通すようにしても、特
に上部の冷却区域内においては期待したような円板巻線
3の−様な冷却効果が得られないため、巻線温度上昇の
均一化を行なうことができず、部分的に過大な温度上昇
が起こり、巻線絶縁物を劣化され変圧器の寿命を短縮し
てしまう欠点がある。
Therefore, compared to the disc winding 3 located near the inlet, the disc winding 3 located near the outlet is not sufficiently cooled, and the inner and outer plugs 10 and 11 are attached to the winding. Even if insulating oil is passed through the entire wire in a zigzag pattern, the expected cooling effect of the disk winding 3 cannot be obtained, especially in the upper cooling zone, so the winding temperature rise is not uniform. This has the disadvantage that excessive temperature rise occurs locally, degrading the winding insulation and shortening the life of the transformer.

このような問題の対策として、円板巻線3を形成してい
る素線導体の断面積を大きくして電流密度を下げること
や、絶縁油の水平冷却路5内の最小流速を基準とした巻
線冷却設計を行うことも考えられるが、いずれの場合も
変圧器を大形にさせてしまう欠点がある。
As a countermeasure for such problems, it is possible to increase the cross-sectional area of the wire conductor forming the disc winding 3 to lower the current density, and to increase the current density by increasing the current density by increasing the cross-sectional area of the wire conductor forming the disc winding 3. It is also possible to use a winding cooling design, but either method has the drawback of making the transformer larger.

本発明は、上記欠点を取り除き大形化することなく各冷
却区域内において各水平冷却路の冷却に必要十分な最小
限の油流速度を確保し、部分的に過大な温度上昇を避け
、効果的な冷却が行なえる自然冷却式の誘導電器円板巻
線を得ることを目的とするものである。
The present invention eliminates the above drawbacks, secures the minimum oil flow velocity necessary and sufficient for cooling each horizontal cooling path in each cooling zone without increasing the size, avoids excessive temperature rise in some parts, and is effective. The purpose of this invention is to obtain a naturally cooled induction electric disc winding that can be cooled in a natural manner.

〔発明の構成) (課題を解決するための手段) 本発明は以上の目的を達成するために、内側、外側垂直
冷却路に円板巻線の全周に沿って内側、外側交互に閉塞
栓を設けて絶縁流体をジグザグ状に流動させた誘導電器
円板巻線において、1つの冷却区域内に構成される水平
冷却路の数を円板巻線の下部から上部にかけて徐々に少
なく、つまり内側および外側閉塞栓の間隔を下部から上
部にかけて徐々に小さくしたことを特徴とするものであ
る。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides blocking plugs alternately inside and outside along the entire circumference of the disc winding in the inside and outside vertical cooling paths. In an induction electric disk winding in which an insulating fluid flows in a zigzag pattern, the number of horizontal cooling paths in one cooling area gradually decreases from the bottom to the top of the disk winding. Also, the interval between the outer obstructing plugs is gradually reduced from the lower part to the upper part.

(作 用) これにより、各冷却区域内において、各水平冷却路の冷
却に必要十分な油流速度を確保し、部分的に過大な温度
上昇を避け、効果的に冷却する。
(Function) As a result, in each cooling zone, sufficient oil flow velocity is ensured for cooling each horizontal cooling path, avoiding excessive temperature rise in some areas, and cooling effectively.

特に巻線最高温度を低下させる。In particular, it reduces the maximum winding temperature.

(実施例) 以下本発明の一実施例を第1図を参照して説明する。図
中第4図と同一部分は同一符号で示す。
(Example) An example of the present invention will be described below with reference to FIG. In the figure, the same parts as in FIG. 4 are indicated by the same reference numerals.

本発明の円板巻線は内側絶縁筒1と外側絶縁筒2との間
に素線導体を巻回して成る複数枚の円板巻線3が軸方向
に積み重ねられて、夫々円板巻線3を渡り線により電気
的に接続して構成されている。
In the disc winding of the present invention, a plurality of disc windings 3 made by winding a wire conductor between an inner insulating cylinder 1 and an outer insulating cylinder 2 are stacked in the axial direction, and each disc winding is 3 are electrically connected by crossover wires.

各円板巻線3の間には複数個の水平間隅片が放射状に等
間隔で配置され、各円板巻線3間に半径方向の水平冷却
路5を形成し、更に、内、外側絶縁筒1および2と前記
円板巻線3との各間には垂直間隅片が水平間隅片に対応
する位置に設けられて円板巻線3と内、外側絶縁筒1,
2間に水平冷却路5と連通ずる内側垂直冷却路8、およ
び外側垂直冷却路9が夫々形成されている。
A plurality of horizontal corner pieces are arranged radially at equal intervals between each disc winding 3, forming a radial horizontal cooling path 5 between each disc winding 3, and Vertical corner pieces are provided between the insulating tubes 1 and 2 and the disk winding 3 at positions corresponding to the horizontal corner pieces, so that the disk winding 3 and the inner and outer insulating tubes 1,
An inner vertical cooling passage 8 communicating with the horizontal cooling passage 5 and an outer vertical cooling passage 9 are formed between the two.

このようにして構成された内側垂直冷却路8および外側
垂直冷却路9に円板巻線3の数段毎に円板巻線3の全周
に沿って内側閉塞栓10aおよび外側閉塞栓11aを夫
々交互に取り付ける。ここで、本発明においては、内側
閉塞栓10aおよび外側閉塞栓11aにより形成される
各冷却区域内の水平冷却路の数を円板巻線の下部から上
部にかけて徐々に少なく、つまり内側閉塞栓10aおよ
び外側閉塞栓11aの間隔を下部から上部にかけて徐々
に小さくとる。
The inner vertical cooling passage 8 and the outer vertical cooling passage 9 configured in this way are provided with an inner blocking plug 10a and an outer blocking plug 11a along the entire circumference of the disc winding 3 every several stages of the disc winding 3. Attach each alternately. Here, in the present invention, the number of horizontal cooling paths in each cooling zone formed by the inner blocker 10a and the outer blocker 11a is gradually reduced from the bottom to the top of the disc winding, that is, the inner blocker 10a The interval between the outer obstructing plugs 11a is gradually reduced from the lower part to the upper part.

このように構成された円板巻線に絶縁流体が流れた場合
の各水平冷却路における油流速度分布13は、円板巻線
上部の冷却区域内においては水平冷却路の数が少ないた
めに油流速度が増加し、流出口付近にある上部の水平冷
却路においても冷却に必要十分な油流速度が確保される
。また、円板巻線下部の冷却区域内においては、もとも
と油流速度が均一であったため、多少水平冷却路の数が
増えても、若干流速が減少するのみで、冷却に必要十分
な油流速度はやはり確保される。従って、円板巻線の軸
方向の熱伝達率が均一化されることになり、第2図に示
すように巻線温度上昇と平均油温度上昇との差は上下方
向でほぼ一定になる。なお、比較のために、従来の場合
(第5図)の巻線温度上昇も同時に示している。
The oil flow velocity distribution 13 in each horizontal cooling path when the insulating fluid flows through the disk winding configured in this way is as follows: The oil flow velocity increases, and the oil flow velocity necessary and sufficient for cooling is ensured even in the upper horizontal cooling passage near the outlet. In addition, since the oil flow velocity was originally uniform in the cooling zone at the bottom of the disc winding, even if the number of horizontal cooling channels increases slightly, the flow velocity will only decrease slightly and the oil flow necessary and sufficient for cooling will be maintained. Speed is still guaranteed. Therefore, the heat transfer coefficient in the axial direction of the disc winding is made uniform, and the difference between the winding temperature rise and the average oil temperature rise becomes almost constant in the vertical direction, as shown in FIG. For comparison, the winding temperature rise in the conventional case (FIG. 5) is also shown.

また、円板巻線上部で油流速度の増加に従い、流路抵抗
も増加するが、これは、円板巻線下部での油流速度の減
少に対する流路抵抗の減少とキャンセルされるため、絶
縁油の全流量への影響はほとんどない。
In addition, as the oil flow velocity increases at the top of the disc winding, the flow path resistance also increases, but this is canceled out by the decrease in flow path resistance due to the decrease in oil flow speed at the bottom of the disc winding. There is almost no effect on the total flow rate of insulating oil.

従って、円板巻線全体として均一な冷却効果を得ること
ができ、特に上部の巻線温度上昇が過大になるというよ
うな不都合をなくすことができる。
Therefore, it is possible to obtain a uniform cooling effect on the entire disk winding, and it is possible to eliminate the disadvantage that the temperature rise in the upper winding becomes excessively high.

これにより素線導体の断面積を小さくして電流密度゛を
上げることが可能になり、冷却効果向上と小形、軽量化
を計れる。
This makes it possible to reduce the cross-sectional area of the stranded conductor and increase the current density, thereby improving the cooling effect and reducing the size and weight.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、内側および外側絶縁筒間
に円板巻線を複数段配置するとともに各円板巻線間に複
数個の水平間隅片を介在させて複数の水平冷却路を形成
し、前記内側、外側絶縁筒と円板巻線との間に複数個の
垂直間隅片を介在させ前記水平冷却路と連通する内側、
外側垂直冷却路を形成し、前記複数の水平冷却路で1つ
の冷却区域を構成するように内側、外側垂直冷却路に円
板巻線の全周に沿って内側、外側交互に閉塞栓を設けて
なる誘導電器円板巻線において、1つの冷却区域内に構
成される水平冷却路の数を円板巻線の下部から上部にか
け徐々に少なく、つまり内側および外側閉塞栓の間隔を
下部から上部にかけて徐々に小さくしたので、大形化す
ることなく、各冷却区域内において各水平冷却路の冷却
に必要十分な油流速度を確保し、部分的に過大な温度上
昇を避け、特に巻線上部の最高温度を低下させ、効果的
に冷却が行なえる自然冷却式誘導電器円板巻線を得るこ
とができる。
As described above, according to the present invention, a plurality of stages of disc windings are arranged between the inner and outer insulating cylinders, and a plurality of horizontal corner pieces are interposed between each disc winding, thereby forming a plurality of horizontal cooling paths. a plurality of vertical corner pieces are interposed between the inner and outer insulating cylinders and the disc winding, and an inner side communicates with the horizontal cooling path;
An outer vertical cooling path is formed, and plugs are provided alternately inside and outside the inner and outer vertical cooling paths along the entire circumference of the disc winding so that the plurality of horizontal cooling paths constitute one cooling area. In the induction electric disk winding, the number of horizontal cooling channels configured in one cooling section is gradually decreased from the bottom to the top of the disk winding, that is, the distance between the inner and outer plugs is increased from the bottom to the top. The design has been gradually reduced in size over the course of the cooling process, so that the oil flow velocity is sufficient to cool each horizontal cooling path in each cooling zone without increasing the size, and it is possible to avoid excessive temperature rise in some areas, especially in the upper part of the winding. Therefore, it is possible to obtain a naturally cooled induction electric disc winding that can effectively cool down the maximum temperature of the coil.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は、第
1図に対応した高さと温度上昇の関係を示す特性図、第
3図は一般の誘導電器円板巻線を示す平面図、第4図は
従来の誘導電器円板巻線を示す第3図のI−I線に沿う
矢視断面図、第5図は第4図に対応した高さと温度上昇
の関係を示す特性図である。 1・・・内側絶縁筒、   2・・・外側絶縁筒、3・
・・円板巻線、    4・・・水平間隅片、5・・・
水平冷却路、 6゜ 7・・・垂直間隅片 8・・・内側垂直冷却路、 9・・・外側垂直冷却路、 10.10a・・・内側閉塞栓、 11、118・・・外側閉塞栓、 ・・・油流速度分布。
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between height and temperature rise corresponding to Fig. 1, and Fig. 3 is a diagram showing a general induction electric disk winding. FIG. 4 is a cross-sectional view taken along line I-I in FIG. 3 showing a conventional induction electric disc winding, and FIG. 5 shows the relationship between height and temperature rise corresponding to FIG. 4. FIG. 1...Inner insulation tube, 2...Outer insulation tube, 3.
...Disc winding, 4...Horizontal corner piece, 5...
Horizontal cooling path, 6°7... Vertical corner piece 8... Inner vertical cooling path, 9... Outer vertical cooling path, 10.10a... Inner blocking plug, 11, 118... Outer blocking Plug, ...Oil flow velocity distribution.

Claims (1)

【特許請求の範囲】[Claims] 内側および外側絶縁筒間に円板巻線を複数段配置すると
ともに各円板巻線間に複数個の水平間隅片を介在させて
複数の水平冷却路を形成し、前記内側、外側絶縁筒と円
板巻線との間に複数個の垂直間隅片を介在させ、前記水
平冷却路し連通する内側、外側垂直冷却路を形成し、前
記複数の水平冷却路で1つの冷却区域を構成するように
内側、外側垂直冷却路に円板巻線の全周に沿って内側、
外側交互に閉塞栓を設けてなる誘導電器円板巻線におい
て、前記冷却区域内に構成される水平冷却路の数を円板
巻線の下部から上部にかけて徐々に少なくしたことを特
徴とする自然冷却式誘導電器円板巻線。
A plurality of stages of disc windings are arranged between the inner and outer insulating cylinders, and a plurality of horizontal corner pieces are interposed between each disc winding to form a plurality of horizontal cooling passages. and a disc winding, a plurality of vertical corner pieces are interposed between the inner and outer vertical cooling passages that communicate with the horizontal cooling passage, and the plurality of horizontal cooling passages constitute one cooling area. Inside along the entire circumference of the disc winding, into the inside and outside vertical cooling channels so that
In the induction electric disk winding in which blocking plugs are provided alternately on the outside, the number of horizontal cooling paths configured in the cooling area is gradually reduced from the bottom to the top of the disk winding. Cooled induction electric disk winding.
JP16781988A 1988-07-07 1988-07-07 Disc winding for induction electric apparatus Pending JPH0218909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16781988A JPH0218909A (en) 1988-07-07 1988-07-07 Disc winding for induction electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16781988A JPH0218909A (en) 1988-07-07 1988-07-07 Disc winding for induction electric apparatus

Publications (1)

Publication Number Publication Date
JPH0218909A true JPH0218909A (en) 1990-01-23

Family

ID=15856686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16781988A Pending JPH0218909A (en) 1988-07-07 1988-07-07 Disc winding for induction electric apparatus

Country Status (1)

Country Link
JP (1) JPH0218909A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640214A (en) * 1979-09-08 1981-04-16 Hitachi Ltd Natural cooling induction winding
JPS58151009A (en) * 1982-03-03 1983-09-08 Hitachi Ltd Winding of stationary induction electric apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640214A (en) * 1979-09-08 1981-04-16 Hitachi Ltd Natural cooling induction winding
JPS58151009A (en) * 1982-03-03 1983-09-08 Hitachi Ltd Winding of stationary induction electric apparatus

Similar Documents

Publication Publication Date Title
US4000482A (en) Transformer with improved natural circulation for cooling disc coils
US4245206A (en) Winding structure for static electrical induction apparatus
US4207550A (en) Winding structure of electric devices
JPH0218909A (en) Disc winding for induction electric apparatus
JP2508994B2 (en) Induction electric disk winding
JPH01183107A (en) Induction electric apparatus disk winding
JPH01313912A (en) Winding for induction electrical equipment
JPH01313913A (en) Disk winding for induction electrical equipment
JPH07176435A (en) Coil structure for induction equipment
JPS607457Y2 (en) electrical equipment winding
JPH02148809A (en) Disc winding for induction device
JPH04180207A (en) Disk winding for induction electric apparatus
KR200300078Y1 (en) Chiller of transformer winding
JP2953329B2 (en) Winding structure for induction magnet
JP3254914B2 (en) Transformer winding
JPH0822918A (en) Transformer winding
JP2897719B2 (en) Winding structure for induction electromagnetic equipment
JPH0249408A (en) Self-cooled stationary electromagnetic induction apparatus
JPS61150308A (en) Winding of electric equipment
JPS6113365B2 (en)
JPH01183108A (en) Induction electric apparatus disk winding
JPH09293617A (en) Guided spiral
JPS6017877Y2 (en) electrical equipment winding
JPS6320368B2 (en)
JPH0864431A (en) Induced electric appliance coil