JPH01183108A - Induction electric apparatus disk winding - Google Patents

Induction electric apparatus disk winding

Info

Publication number
JPH01183108A
JPH01183108A JP794388A JP794388A JPH01183108A JP H01183108 A JPH01183108 A JP H01183108A JP 794388 A JP794388 A JP 794388A JP 794388 A JP794388 A JP 794388A JP H01183108 A JPH01183108 A JP H01183108A
Authority
JP
Japan
Prior art keywords
cooling
winding
vertical
horizontal
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP794388A
Other languages
Japanese (ja)
Inventor
Masumi Nakatate
真澄 中楯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP794388A priority Critical patent/JPH01183108A/en
Publication of JPH01183108A publication Critical patent/JPH01183108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To make the oil flow in each horizontal cooling path at the same rate, by setting the vertical cooling path on the side of the inlet for insulation oil wider than that on the side of the outlet for the insulation oil in one cooling area. CONSTITUTION:In each cooling area formed by an inner stopper 10 and an outer stopper 11, the width l1 of a vertical spacing member on the side of the outlet for an insulation oil is set about 3-6mm, and the width l2 of that on the side of the inlet for the insulation oil is set about 1-3mm larger than that on the side of the outlet. Therefore, the vertical cooling path 13 on the side of the outlet is about 3-6mm wide and the vertical cooling path 14 on the side of the inlet is about 1-3mm wider than that on the side of the outlet to achieve an uniform flux 15 in each path as shown by the arrow of broken lines. This makes the oil flow in each horizontal cooling path flow at the same rate to perform the uniform cooling effectively.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は油の自然対流によシ冷却を行う誘導電器円板巻
線に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an induction electric disk winding that is cooled by natural convection of oil.

(従来の技術) 従来、変圧器等の誘導電器の巻線として用いられる円板
巻線は第1図に示すように構成されている。即ち、内側
絶縁筒1と外側絶縁筒2との間に素線導体を巻回して成
る複数枚の円板巻線3が軸方向に等間隔に複数段積み重
ねられて、夫々の円板巻線を渡シ線によシミ気的に直列
に接続して構成されている。各円板巻線3間には複数個
の水(こ 半間隔片4が放射状に等間隔〆配置され、各円板巻線3
間に半径方向の水平冷却路5が形成され、更に内、外側
絶縁筒1および2と前記各円板巻線3との間には垂直間
隔片6および7が前記水平間隔片に対応する位置に設け
られて、円板巻線3と内、外側絶縁筒1,2間に水平冷
却路5と連通する内側垂直冷却路8および外側垂直冷却
路9がそれぞれ形成されている。そして、図示しないタ
ンク内に絶縁油とQK収納され絶縁油の自然対流によシ
各冷゛却路内に絶縁油を流通させ巻線の冷却を行ってい
る。
(Prior Art) Conventionally, a disk winding used as a winding of an induction electric device such as a transformer is constructed as shown in FIG. That is, a plurality of disc windings 3 each formed by winding a wire conductor between an inner insulating cylinder 1 and an outer insulating cylinder 2 are stacked in multiple stages at equal intervals in the axial direction, and each disc winding is stacked at equal intervals in the axial direction. It is constructed by connecting the wires in series with each other. Between each disc winding 3, a plurality of semi-spaced pieces 4 are arranged radially at equal intervals, and each disc winding 3
A radial horizontal cooling passage 5 is formed between the inner and outer insulating cylinders 1 and 2 and each of the disk windings 3, and vertical spacing pieces 6 and 7 are provided at positions corresponding to the horizontal spacing pieces. An inner vertical cooling passage 8 and an outer vertical cooling passage 9 communicating with the horizontal cooling passage 5 are formed between the disc winding 3 and the inner and outer insulating cylinders 1 and 2, respectively. Insulating oil and QK are stored in a tank (not shown), and the insulating oil is circulated in each cooling path by natural convection of the insulating oil to cool the windings.

このような円板巻線は冷却効果をよ)高めるため、第4
図に示すように数段の前記円板巻線3で1つの冷却区域
が形成されるように円板巻線の数段毎にその全周に沿っ
て内側閉塞栓10および外側閉塞栓11が交互に設けら
れ前記各垂直冷却路8および9を内側、外側交互に閉塞
している。
In order to further enhance the cooling effect of this type of disc winding, the fourth
As shown in the figure, an inner blocker 10 and an outer blocker 11 are installed along the entire circumference of every several stages of the disc winding so that one cooling zone is formed by several stages of the disc winding 3. The vertical cooling passages 8 and 9 are alternately provided and are alternately closed on the inside and outside.

従って絶縁油は前記冷却区域毎に絶縁油の流入口および
流出口が内側、外側に反転し、ジグザグ状となって各円
板巻IW3の間を流通し、巻線全体の冷却を効率よく行
なっている。
Therefore, the insulating oil inlet and outlet of the insulating oil are reversed inward and outward in each cooling zone, and the insulating oil flows between each disc winding IW3 in a zigzag pattern, thereby efficiently cooling the entire winding. ing.

(発明が解決しようとする課題) しかしながら、上記構造の円板巻線においても、内側閉
塞栓10と外側閉塞栓1ノとによって仕切られたある1
つの冷却区域内の各水平冷却路5に分流する絶縁油の流
れを見てみると、必ずしも均−罠なっておらず、一般に
絶縁油の流出日付近くある上部の水平冷却路5内の油流
速度が絶縁油の流入口付近にある下部の水平冷却路5内
の油流速度に比較して非常に小さくなる。即ちこのよう
な1つの冷却区域内の各水平冷却路5における油流速度
分布を見てみると第4図に点線矢印12で示されるよう
に絶縁油の流出口に近づくに従って小さくなるようにな
っている。従って、流入口付近に配置される円板巻線3
に比べ、流出口付近に配置される円板巻線3の冷却が十
分になされず、折角内側および外側閉塞栓10.11を
取シ付けて巻線全体に絶縁油をジグザグ状に通すように
しても、各冷却区域内においては期待したような各円板
巻線3の−様な冷却効果が得られないため、巻線温度上
昇の均一化を行なうことができず、各冷却区域内におい
て部分的に過大な温度上昇が起□ こり、巻線絶縁物を
劣化させ変圧器の寿命を短縮してしまう欠点がある。
(Problem to be Solved by the Invention) However, even in the disk winding having the above structure, there is a certain area partitioned by the inner blocker 10 and the outer blocker 1.
Looking at the flow of insulating oil branching into each horizontal cooling passage 5 in the two cooling zones, it is found that the oil flow in the upper horizontal cooling passage 5, which is not necessarily uniform and is generally close to the date of the insulating oil spill. The velocity is very small compared to the oil flow velocity in the lower horizontal cooling passage 5 near the insulating oil inlet. That is, if we look at the oil flow velocity distribution in each horizontal cooling passage 5 in one cooling zone, as shown by the dotted arrow 12 in FIG. 4, it becomes smaller as it approaches the insulating oil outlet. ing. Therefore, the disk winding 3 placed near the inlet
Compared to the above, the disk winding 3 placed near the outlet was not sufficiently cooled, so we took the trouble to install inner and outer plugs 10 and 11 to allow insulating oil to pass through the entire winding in a zigzag pattern. However, in each cooling zone, the expected cooling effect of each disc winding 3 cannot be obtained, so it is not possible to equalize the winding temperature rise, and in each cooling zone This has the disadvantage that an excessive temperature rise occurs in some parts, deteriorating the winding insulation and shortening the life of the transformer.

このような問題の対策として、円板巻線3を形成してい
る素線導体の断面積を大きくして電流密度を下げること
や、絶縁油の水平冷却路5内の最小流速を基準とした巻
線冷却設計を行うことも考えられるが、いずれの場合も
変圧器を大形にさせてしまう欠点がある。
As a countermeasure for such problems, it is possible to increase the cross-sectional area of the wire conductor forming the disc winding 3 to lower the current density, and to increase the current density by increasing the current density by increasing the cross-sectional area of the wire conductor forming the disc winding 3. It is also possible to use a winding cooling design, but either method has the drawback of making the transformer larger.

本発明は上記欠点を取シ除き大形化することなく各冷却
区域内において各水平冷却路の油流速度の均一化を計シ
、効果的にかつ均一な冷却が行える誘導電器円板巻線を
得ることを目的とするものである。
The present invention eliminates the above-mentioned drawbacks, uniformizes the oil flow velocity of each horizontal cooling path in each cooling zone without increasing the size, and enables induction electric disk winding to achieve effective and uniform cooling. The purpose is to obtain.

[発明の構成コ (課題を解決するための手段) 本発明は以上の目的を達成するために、内側、外側垂直
冷却路に円板巻線の全周に沿って内側、外側交互に閉塞
栓を設けて絶縁流体をジグザグ状に流動させた誘導電器
巻線において、1つの冷却区域の中で絶縁油の入口側冷
却路の幅を絶縁油の出口側垂直冷却路の幅より1乃至3
間程度大きくなるように垂直間隔片の幅を調整したこと
を特徴とするものである。
[Structure of the Invention (Means for Solving the Problems) In order to achieve the above object, the present invention provides blocking plugs alternately inside and outside along the entire circumference of the disc winding in the inside and outside vertical cooling paths. In an induction electric winding in which an insulating fluid is made to flow in a zigzag pattern, the width of the insulating oil inlet side cooling path is 1 to 3 times larger than the width of the insulating oil outlet side vertical cooling path in one cooling zone.
The vertical spacing piece is characterized in that the width of the vertical spacing piece is adjusted so that the width is increased by about 100 mm.

(作用) これによシ各冷却区域内において流路抵抗を調整し、各
水平冷却路の油流速度を均一化して円板巻線を効果的に
かつ均一に冷却する。
(Function) This adjusts the flow path resistance in each cooling zone, equalizes the oil flow velocity in each horizontal cooling path, and cools the disc winding effectively and uniformly.

(実施例) 以下本発明の一実施例を第1図を参照して説! 明する。図中第i図と同一部分は同一符号で示す。(Example) An embodiment of the present invention will be explained below with reference to FIG. I will clarify. In the figure, the same parts as in FIG. i are indicated by the same reference numerals.

本発明の円板巻線は内側絶縁筒1と外側絶縁筒2との間
KX線導体を巻回して成る複数枚の円板巻線3が軸方向
に積み重ねられて、夫々円板巻線3を渡シ線によシミ気
的に接続して構成されている。
In the disc winding of the present invention, a plurality of disc windings 3 made by winding a KX-ray conductor between an inner insulating cylinder 1 and an outer insulating cylinder 2 are stacked in the axial direction, and each disc winding 3 is stacked in the axial direction. It is constructed by connecting the wire to the wire.

各円板巻線3の間には複数個の水平間隔片が放射状に等
間隔で配置され、各円板巻線3間に半径方向の水平冷却
路5aを形成し、更に1内、外側絶縁筒1および2と前
記円板巻線3との各間には垂直間隔片が水平間隔片に対
応する位置に設けられて円板巻線3と内、外側絶縁筒1
,2間に水平冷却路5jLと連通ずる内側垂直冷却路8
、および外側垂直冷却路9が夫々形成されている。
A plurality of horizontally spaced pieces are arranged radially at equal intervals between each disc winding 3, forming a radial horizontal cooling path 5a between each disc winding 3, and further insulating the inner and outer parts of the disc winding 3. Vertical spacing pieces are provided between each of the cylinders 1 and 2 and the disc winding 3 at positions corresponding to the horizontal spacing pieces, so that the disc winding 3 and the inner and outer insulating cylinders 1
, an inner vertical cooling passage 8 communicating with the horizontal cooling passage 5jL between the
, and an outer vertical cooling passage 9 are formed, respectively.

このようKして構成された内側垂直冷却路8および外側
垂直冷却路9に円板巻11A3の数段毎九円板巻線3の
全周に?8って内側閉塞栓10および外側−閉塞栓1ノ
を夫々交互に取シ付ける。そして、本発明においては内
側閉塞栓1oおよび外側閉塞栓11によ多形成される各
冷却区域内で絶縁油の出口側垂直間隔片の幅1.を3〜
61m程度とし、さらに絶縁油の入口側垂直間隔片の幅
t2を出口側のそれより1〜3閣程度大きくとる。つま
シ、出口側垂直冷却路13の幅は3〜6101程度にな
シ、入口側垂直冷却路14の幅は出口側の幅より1〜3
簡程度大きくなる。
In the inner vertical cooling path 8 and the outer vertical cooling path 9 configured in this way, the disk winding 11A3 is arranged every several stages around the entire circumference of the disk winding 3? 8, the inner plug 10 and the outer plug 1 are installed alternately. In the present invention, the width of the vertical spacing piece on the outlet side of the insulating oil in each cooling zone formed in the inner plug 1o and the outer plug 11 is 1. 3~
The width t2 of the vertical spacing piece on the insulating oil inlet side is about 1 to 3 mm larger than that on the outlet side. The width of the vertical cooling passage 13 on the outlet side is approximately 3 to 610 mm, and the width of the vertical cooling passage 14 on the inlet side is 1 to 3 mm wider than the width of the outlet side.
It becomes slightly larger.

このように構成された円板巻線に絶縁流体が流れた場合
、各冷却区域内においては下部水平流路では幅の狭い垂
直冷却路をよシ長<流れるため流路抵抗が大きく、逆に
上部水平冷却路では幅の広い垂直冷却路をよシ長く流れ
るため流路抵抗が小さくなる。
When insulating fluid flows through the disk windings configured in this way, in each cooling zone, the flow resistance is large because it flows through the narrow vertical cooling path in the lower horizontal flow path; In the upper horizontal cooling path, the flow path resistance is reduced because the fluid flows for a longer length through the wide vertical cooling path.

ここで、垂直冷却路の幅と流量の関係を実験によシ求め
た結果を第2図に示す。垂直冷却路の幅が311111
程度以下では流路抵抗が急増し、流体温度が上昇してし
まい好ましくない。また、6m程度以上では流量がほぼ
一定になるため入口側、出口側垂直冷却路の幅に差をつ
けても流路抵抗にはあまシ影響がない。
Here, the relationship between the width of the vertical cooling path and the flow rate was experimentally determined and the results are shown in FIG. The width of the vertical cooling path is 311111
If it is below this level, the flow path resistance will increase rapidly and the fluid temperature will rise, which is not preferable. Further, since the flow rate is approximately constant over about 6 m, even if the widths of the vertical cooling passages on the inlet side and the outlet side are different, there is no significant effect on the flow path resistance.

従って、1つの冷却区域の出口側垂直冷却路の幅は前者
よシ1〜311111程度大きくとれば前述のような流
路抵抗が得られ、第1図に点線矢印で示すような均一な
流速分布15が得られる。第2図は絶縁油の例であるが
他の絶縁流体についてもほぼ同じ関係がある。この結果
各冷却区域はもちろん円板巻線全体として均一な冷却効
果を得ることができ、巻線の温度上昇が部分的に過大に
なるというような不都合をなくすことができる。これに
よ)素線導体の断面積を小さくして電流密度を上げるこ
とが可能になシ、冷却効果向上と小形、軽量化を計れる
Therefore, if the width of the vertical cooling passage on the exit side of one cooling section is made larger than the former by about 1 to 311111, the flow resistance as described above can be obtained, and a uniform flow velocity distribution as shown by the dotted line arrow in Fig. 1 can be obtained. 15 is obtained. Although FIG. 2 shows an example of insulating oil, almost the same relationship applies to other insulating fluids. As a result, it is possible to obtain a uniform cooling effect not only in each cooling zone but also in the entire disc winding, and it is possible to eliminate the inconvenience of excessive temperature rise in some parts of the winding. This makes it possible to increase the current density by reducing the cross-sectional area of the strand conductor, thereby improving the cooling effect and making it smaller and lighter.

ところで、垂直冷却路の幅は第3図に示すように内側お
よび外側絶縁筒1h、2mの厚さを各冷却区域ごとに変
えることで調整しても効果は同じである。
By the way, the same effect can be obtained even if the width of the vertical cooling path is adjusted by changing the thickness of the inner and outer insulating tubes 1h and 2m for each cooling zone, as shown in FIG.

[発明の効果] 以上のように本発明によれば、内側および外側絶縁筒間
に円板巻線を複数段配置するとともに各円板巻線間に複
数個の水平間隔片を介在させて複数の水平冷却路を形成
し、前記内側、外側′絶縁筒と円板巻線との間に複数個
の垂直間隔片を介在させ前記水平冷却路と連通する内側
、外側垂直冷却路を形成し、前記複数の水平冷却路で1
つの冷却区域を構成するように内側、外側垂直冷却路に
円板巻線の全周に洛って内側、外側交互に閉塞栓を設け
てなる誘導電器円板巻lsにおいて、前記冷却区域の絶
縁油の入口側垂直冷却路の幅を絶縁油の出口側垂直冷却
路の幅より1乃至311III大きくし、さらに前記出
口側垂直冷却路の幅は3乃至6mとしたので、大形化す
ることなく、各冷却区域内において各水平冷却路の油流
速度の均一化を計シ、効果的にかつ均一な冷却が行える
誘導電器円板巻線を得ることができる。
[Effects of the Invention] As described above, according to the present invention, a plurality of disc windings are arranged between the inner and outer insulating cylinders, and a plurality of horizontal spacing pieces are interposed between each disc winding. forming a horizontal cooling path, and interposing a plurality of vertical spacing pieces between the inner and outer insulating cylinders and the disk winding to form inner and outer vertical cooling paths that communicate with the horizontal cooling path; 1 in the plurality of horizontal cooling passages.
In the induction electric disk winding Ls, the inner and outer vertical cooling passages are provided with blocking plugs alternately on the inner and outer sides around the entire circumference of the disk winding, insulating the cooling area. The width of the vertical cooling passage on the inlet side of the oil is set to be 1 to 311III times larger than the width of the vertical cooling passage on the outlet side of the insulating oil, and the width of the vertical cooling passage on the outlet side is set to 3 to 6 m, so that there is no need to increase the size. By equalizing the oil flow velocity of each horizontal cooling path in each cooling zone, it is possible to obtain an induction electric disc winding that can perform effective and uniform cooling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は垂直
冷却路の幅とそこを流れる流量の関係を示す特性図、第
3図は本発明の他の実施例を示す断面図、第4図は一般
の誘導電器円板巻線を示す平面図、第5図は従来の誘導
電器円板巻線を示す第4図のI−JIK清う矢視断面図
である。 1・・・内側絶縁筒、2・・・外側絶縁筒、3・・・円
板巻線、4・・・水平間隔片、5a・・・水平冷却路、
6,7・・・垂直間隔片、8・・・内側垂直冷却路、9
・・・外側垂直冷却路、10・・・内側閉塞栓、11・
・・外側閉塞栓、13・・・出口側垂直冷却路、14・
・・入口側垂直冷却路。
Fig. 1 is a sectional view showing one embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between the width of the vertical cooling path and the flow rate flowing therethrough, and Fig. 3 is a sectional view showing another embodiment of the invention. 4 is a plan view showing a general induction electric disk winding, and FIG. 5 is a sectional view taken along the line I-JIK in FIG. 4 showing a conventional induction electric disk winding. DESCRIPTION OF SYMBOLS 1... Inner insulating tube, 2... Outer insulating tube, 3... Disc winding, 4... Horizontal spacing piece, 5a... Horizontal cooling path,
6, 7... Vertical spacing piece, 8... Inner vertical cooling path, 9
...Outer vertical cooling path, 10...Inner blocking plug, 11.
・・Outside blockage plug, 13・・Outlet side vertical cooling path, 14・
...Vertical cooling path on the inlet side.

Claims (1)

【特許請求の範囲】[Claims] 内側および外側絶縁筒間に円板巻線を複数段配置すると
ともに各円板巻線間に複数個の水平間隔片を介在させて
複数の水平冷却路を形成し、前記内側、外側絶縁筒と円
板巻線との間に複数個の垂直間隔片を介在させ、前記水
平冷却路と連通する内側、外側垂直冷却路を形成し、前
記複数の水平冷却路で1つの冷却区域を構成するように
内側、外側垂直冷却路に円板巻線の全周に沿って内側、
外側交互に閉塞栓を設けてなる誘導電器円板巻線におい
て、前記冷却区域の絶縁油の入口側垂直冷却路の幅を絶
縁油の出口側垂直冷却路の幅より1乃至3mm大きくし
、さらに前記出口側垂直冷却路の幅は3乃至6mmとし
たことを特徴とする誘導電器円板巻線。
A plurality of stages of disc windings are arranged between the inner and outer insulating cylinders, and a plurality of horizontal spacers are interposed between each disc winding to form a plurality of horizontal cooling paths, and the inner and outer insulating cylinders A plurality of vertical spacing pieces are interposed between the disc winding and the inner and outer vertical cooling passages communicating with the horizontal cooling passage, and the plurality of horizontal cooling passages constitute one cooling area. inside along the entire circumference of the disc winding, with an outside vertical cooling path inside;
In the induction electric disk winding in which blocking plugs are provided alternately on the outside, the width of the vertical cooling passage on the insulating oil inlet side of the cooling zone is made 1 to 3 mm larger than the width of the vertical cooling passage on the outlet side of the insulating oil, and A disk winding for an induction electric device, characterized in that the width of the vertical cooling path on the exit side is 3 to 6 mm.
JP794388A 1988-01-18 1988-01-18 Induction electric apparatus disk winding Pending JPH01183108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP794388A JPH01183108A (en) 1988-01-18 1988-01-18 Induction electric apparatus disk winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP794388A JPH01183108A (en) 1988-01-18 1988-01-18 Induction electric apparatus disk winding

Publications (1)

Publication Number Publication Date
JPH01183108A true JPH01183108A (en) 1989-07-20

Family

ID=11679584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP794388A Pending JPH01183108A (en) 1988-01-18 1988-01-18 Induction electric apparatus disk winding

Country Status (1)

Country Link
JP (1) JPH01183108A (en)

Similar Documents

Publication Publication Date Title
US4245206A (en) Winding structure for static electrical induction apparatus
JPH01183108A (en) Induction electric apparatus disk winding
JPH01183107A (en) Induction electric apparatus disk winding
JPH01313912A (en) Winding for induction electrical equipment
JP2000077236A (en) Stationary induction device
JPS6017877Y2 (en) electrical equipment winding
JPH04168707A (en) Disk winding of induction apparatus
JPS607457Y2 (en) electrical equipment winding
JPH0218909A (en) Disc winding for induction electric apparatus
JP2953329B2 (en) Winding structure for induction magnet
JPH07176435A (en) Coil structure for induction equipment
JPH09162040A (en) Winding of transformer
JPH09293617A (en) Guided spiral
JP2998407B2 (en) Cooling structure of electromagnetic induction disk winding
JP2000235926A (en) Winding structure of static induction electrical equipment
JPH01313913A (en) Disk winding for induction electrical equipment
JPH06267756A (en) Winding of induction apparatus
JPH11317313A (en) Static guide equipment
JPH07161541A (en) Transformer winding
JPH088173B2 (en) Induction electric disk winding
JPS60227407A (en) Winding of stationary induction apparatus
JP2016082073A (en) Induction electric device winding apparatus
JPS6199310A (en) Transformer winding
JPS63305727A (en) Winding of induction electrical equipment
JPH0822918A (en) Transformer winding