JPH09162040A - Winding of transformer - Google Patents
Winding of transformerInfo
- Publication number
- JPH09162040A JPH09162040A JP7315564A JP31556495A JPH09162040A JP H09162040 A JPH09162040 A JP H09162040A JP 7315564 A JP7315564 A JP 7315564A JP 31556495 A JP31556495 A JP 31556495A JP H09162040 A JPH09162040 A JP H09162040A
- Authority
- JP
- Japan
- Prior art keywords
- flow
- winding
- flow control
- cooling medium
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Coils Of Transformers For General Uses (AREA)
- Transformer Cooling (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は変圧器において、円
板状をなす単位巻線を筒状に形成した巻線もしくは螺旋
状に形成された巻線の冷却性能を向上させる構造に係
り、特にSF6ガスを用いて巻線を冷却するのに好適な
変圧器巻線に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for improving the cooling performance of a winding formed by winding a disk-shaped unit winding in a tubular shape or a winding formed in a spiral shape in a transformer. It relates to a transformer winding suitable for cooling the winding with SF 6 gas.
【0002】[0002]
【従来の技術】都市に設置される変圧器にあっては防災
上、不燃化の要望が強く、また、大容量化,小型化の要
求も強い。変圧器内部には不燃性の冷却媒体を用いてい
るが、近年では、SF6ガスを用いたものが多くなって
いる。このSF6ガスは、密度,比熱,熱伝導度などの
冷却性能に関する物性値が、液状絶縁冷却媒体に比べて
小さいために冷却性能が劣り、また絶縁耐力も小さい。
このため、冷却媒体であるSF6ガスの体積流量を多く
流す一方、変圧器巻線内の絶縁距離を大きくしている。2. Description of the Related Art In the case of transformers installed in cities, there is a strong demand for non-combustible transformers for disaster prevention, and there is also a strong demand for larger capacity and smaller size. A non-flammable cooling medium is used inside the transformer, but in recent years, SF 6 gas is often used. Since the SF 6 gas has smaller physical properties regarding cooling performance such as density, specific heat, and thermal conductivity than the liquid insulating cooling medium, it has poor cooling performance and also has low dielectric strength.
For this reason, a large volume flow rate of SF 6 gas, which is a cooling medium, is caused to flow, while the insulation distance in the transformer winding is increased.
【0003】ところで、一般の変圧器巻線の構造とし
て、鉄心の周りに対し、素線を円板状にして単位巻線を
形成すると共に、その単位巻線を筒状に形成した巻線、
あるいは螺旋状に形成したヘリカリ巻線がある。このよ
うな筒状巻線,ヘリカリ巻線の場合、巻線の半径方向の
内周側,外周側に絶縁筒を設けると共に、絶縁筒に沿っ
て垂直スペーサを夫々配置し、該垂直スペーサと巻線と
の間に垂直ダクトが設けられている。By the way, as a structure of a general transformer winding, a unit winding is formed around the iron core by forming the disk into a disk shape, and the unit winding is formed into a cylindrical shape.
Alternatively, there is a helical winding formed in a spiral shape. In the case of such a tubular winding or helical winding, insulating cylinders are provided on the inner circumference side and the outer circumference side in the radial direction of the winding, and vertical spacers are arranged along the insulating cylinder. A vertical duct is provided between the lines.
【0004】また、筒状巻線の場合、巻線の軸方向には
巻線の各段毎に水平スペーサを挿入し、該水平スペーサ
と各段毎の巻線との間に水平ダクトが形成される一方、
複数枚の折流板を巻線の軸方向に沿って互い違いに挿入
して折流区が形成され、冷却媒体は、軸方向に流れに従
い巻線内における半径方向の流れが各折流区毎に交互に
変わるように構成されたものがある。Further, in the case of a tubular winding, horizontal spacers are inserted at each stage of the winding in the axial direction of the winding, and a horizontal duct is formed between the horizontal spacer and the winding at each stage. Meanwhile,
A plurality of folding plates are alternately inserted along the axial direction of the winding to form a split region, and the cooling medium follows the axial flow and the radial flow in the winding is different for each split region. There are some that are configured to alternate.
【0005】このような変圧器では、冷却媒体の体積流
量が多く、また冷却媒体の流れる水平ダクトの断面積が
大きいと、折流区内の上方の水平ダクトに冷却媒体が多
く流れる一方、下方部の水平ダクトには少なく流れる。
このため、巻線の温度上昇分布に大きな差が生じ、巻線
の平均温度上昇率に比べて巻線の最高温度上昇率が高く
なる傾向がある。このような傾向となることから、巻線
内の冷却媒体の流れを改善するための従来技術が種々提
案され、実用に供されている。In such a transformer, if the volumetric flow rate of the cooling medium is large and the horizontal duct in which the cooling medium flows has a large cross-sectional area, a large amount of the cooling medium flows in the upper horizontal duct in the flow break area, while the cooling medium flows downward. There is little flow in the horizontal duct of the section.
Therefore, there is a large difference in the temperature rise distribution of the winding, and the maximum temperature rise rate of the winding tends to be higher than the average temperature rise rate of the winding. Due to this tendency, various conventional techniques for improving the flow of the cooling medium in the winding have been proposed and put to practical use.
【0006】例えば、特開平4−168707号公報
(以下、第一の従来技術と云う)のものは、内周側及び
外周側からなる垂直ダクトのうち、絶縁筒に沿った内周
側の垂直ダクトの幅を特定の大きさにするように構成さ
れている。また、特開昭52−43937号公報,同5
3−40820号公報,同54−34025号公報(以
下、第二の従来技術と云う)のものは、垂直ダクトを設
け、しかも巻線の半径方向における内周側と外周側との
間の中央付近にそれより上下段の巻線部分より大きい孔
が設けられ、垂直ダクト全体として軸方向に沿い幅広の
ダクトを一段おきに設けて構成され、また垂直ダクトの
半径方向の寸法や位置を巻線の各段毎に異ならせ、垂直
ダクト全体として軸方向に沿いジクザグ形状に形成され
ている。For example, Japanese Patent Application Laid-Open No. 4-168707 (hereinafter referred to as the first prior art) discloses a vertical duct having an inner peripheral side and an outer peripheral side and having a vertical inner peripheral side along an insulating cylinder. It is configured to have a specific width for the duct. In addition, JP-A-52-43937 and JP-A-5-43937.
Nos. 3-40820 and 54-34025 (hereinafter referred to as the second prior art) are provided with a vertical duct, and the center between the inner circumference side and the outer circumference side of the winding in the radial direction. Holes larger than the upper and lower windings are provided in the vicinity, and the vertical duct as a whole is configured with wide ducts along the axial direction at every other stage, and the vertical duct radial dimension and position are wound. The vertical duct as a whole is formed in a zigzag shape along the axial direction by making each stage different.
【0007】[0007]
【発明が解決しようとする課題】しかし上記に示す従来
技術のものは、何れも下記の点について配慮されていな
い。However, none of the above-mentioned prior arts considers the following points.
【0008】即ち、垂直ダクトの半径方向の幅を大きく
した第一の従来技術では、垂直ダクトのうち、絶縁筒に
沿った内周側の垂直ダクト内を冷却媒体が多く流れる反
面、巻線間の水平ダクト内を流れる冷却媒体の流量が相
対的に少なくなり、そのため、冷却媒体の流量が不均一
になるので、巻線の温度上昇を低減させる効率が小さい
問題がある。That is, in the first prior art in which the radial width of the vertical duct is increased, a large amount of the cooling medium flows in the vertical duct on the inner peripheral side along the insulating tube among the vertical ducts, while the space between the windings is increased. Since the flow rate of the cooling medium flowing in the horizontal duct is relatively small, and the flow rate of the cooling medium becomes non-uniform, there is a problem that the efficiency of reducing the temperature rise of the winding is small.
【0009】第二の従来技術では、巻線の半径における
中央付近の垂直ダクトがジクザグに形成されているの
で、そのジグザグの垂直ダクトを設けた分だけ、巻線全
体としての半径方向の寸法を大きくしなければならず、
そのため、変圧器全体としての体積が大きくなる問題が
ある。この問題は、特に、大都市に設置される変圧器で
は前述の如く、小型化が強く要求されていることから重
要である。また、ジグザグの垂直ダクトを設けた場合、
冷却媒体の流れに分岐合流箇所が多くなるので、それだ
け冷却媒体の圧力損失が増大し、冷却媒体の流量が少な
くなるので、冷却効率が好ましくなかったり、あるいは
冷却媒体を流通させる手段に容量の大きいものが必要と
なる等の問題がある。In the second prior art, since the vertical duct in the vicinity of the center of the winding radius is formed in zigzag, the dimension of the entire winding in the radial direction is increased by the amount of the zigzag vertical duct. Have to be big,
Therefore, there is a problem that the volume of the entire transformer becomes large. This problem is particularly important in transformers installed in large cities, because there is a strong demand for miniaturization as described above. Also, when a zigzag vertical duct is provided,
Since the number of branching and merging points increases in the flow of the cooling medium, the pressure loss of the cooling medium increases correspondingly, and the flow rate of the cooling medium decreases, so that the cooling efficiency is unfavorable or the means for circulating the cooling medium has a large capacity. There is a problem that things are needed.
【0010】本発明の目的は、前記従来技術の問題点に
鑑み、冷却媒体としてSF6ガスを用いても、(各ダク
ト内を流れるガスの流量分布を均一化し、巻線が局部的
に過熱するのを確実に防止することができると共に、巻
線の温度上昇分布を均一化することができ、以て)巻線
の温度上昇を確実に低減することができると共に、巻線
全体を確実に小型化することができる変圧器巻線を提供
することにある。In view of the above-mentioned problems of the prior art, an object of the present invention is to make the flow rate distribution of gas flowing in each duct uniform and to locally overheat the winding even if SF 6 gas is used as a cooling medium. Can be reliably prevented, and the temperature rise distribution of the winding can be made uniform, so that the temperature rise of the winding can be surely reduced, and the entire winding is surely secured. It is to provide a transformer winding that can be miniaturized.
【0011】[0011]
【課題を解決するための手段】本発明では、内周側の絶
縁筒と外周側の絶縁筒との間に軸方向に沿って配置さ
れ、かつ内周側の絶縁筒との間に画成された内側垂直ダ
クトと、外周側の絶縁筒との間に画成された外側垂直ダ
クトと、各段の単位巻線間に画成されると共に、内,外
側垂直ダクトを連絡する水平ダクトと、内,外周側の絶
縁筒に対し、所望段数の単位巻線を隔ててかつ軸方向に
沿って互い違いに取付けられて折流区域を各々形成する
と共に、先端と内,外周側の絶縁筒との間で冷却媒体の
流入出部を軸方向に互い違いに形成する複数の折流板と
を有し、各々の折流区域内で軸方向に沿い冷却媒体をジ
グザグ状に流通させる変圧器用巻線において、各折流区
域の内,外周側の絶縁筒の何れか一方に、冷却媒体が流
入するための流入出部と同一側に配置された流れ制御突
起を取付け、該流れ制御突起により、各折流区域に流入
した冷却媒体が内,外側垂直ダクトに沿って流れる流量
を絞ると共に、冷却媒体の一部を、所望の単位巻線方向
に向かうよう流量制御する構成としたことを特徴とする
ものである。According to the present invention, the insulating cylinder on the inner peripheral side and the insulating cylinder on the outer peripheral side are arranged along the axial direction and are defined between the insulating cylinder on the inner peripheral side. An outer vertical duct defined between the inner vertical duct and the outer insulating cylinder, and a horizontal duct defined between the unit windings of each stage and connecting the inner and outer vertical ducts. , The inner and outer insulating cylinders are alternately mounted along the axial direction with a desired number of unit windings separated from each other to form bent flow areas, and the tip and the inner and outer insulating cylinders are separated from each other. And a plurality of bent plates that alternately form the inflow and outflow portions of the cooling medium in the axial direction between them, and the winding for transformer that allows the cooling medium to flow in the zigzag shape along the axial direction in each of the bent regions. In each of the flow diverted areas, the inflow and outflow for the cooling medium to flow into either the insulating cylinder on the outer peripheral side And a flow control protrusion arranged on the same side as the flow control protrusion, the flow control protrusion restricts the flow rate of the cooling medium flowing into each of the flow diverting areas along the inner and outer vertical ducts, and part of the cooling medium, It is characterized in that the flow rate is controlled so as to be directed in a desired unit winding direction.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施例を図1乃至
図11により説明する。図1乃至図5は本発明による変
圧器巻線の第一の実施例を示している。図1に示す実施
例の変圧器巻線1は、内周側の絶縁筒2と外周側の絶縁
筒2′との間に軸方向に沿って形成されている。この変
圧器巻線1は、本例では素線を円板状に巻線して単位巻
線3が形成されると共に、その単位巻線3が軸方向に沿
って複数形成されることにより筒形巻線をなしている
が、螺旋状に形成されたヘリカル巻線を構成しても良
い。そして、内周側の絶縁筒2と変圧器巻線1の内周と
図2に示す垂直スペーサ9との間の空間が、内側垂直ダ
クト4を画成すると共に、変圧器巻線1の外周と外周側
の絶縁筒2′と図示しない垂直スペーサとの間の空間
が、外側垂直ダクト4′を画成し、かつ各単位巻線3間
に図示しない水平スペーサが挿入されることにより、各
単位巻線3間に水平ダクト5を画成している。なお、内
側垂直ダクト4を画成する前記垂直スペーサ9は、図2
に示すように、内周側の絶縁筒2の外周部に互いに適宜
の間隔を隔てて、かつ軸方向に沿って複数配設されてい
るが、外側垂直ダクト4′を画成する図示しない前記垂
直スペーサは、外周側の絶縁筒2′の内周部に垂直スペ
ーサ9と同様、適宜の間隔を隔ててかつ軸方向に沿って
複数配設されている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS. 1 to 5 show a first embodiment of a transformer winding according to the present invention. The transformer winding 1 of the embodiment shown in FIG. 1 is formed between an inner peripheral insulating cylinder 2 and an outer peripheral insulating cylinder 2'in the axial direction. In this transformer winding 1, a unit winding 3 is formed by winding a strand of wire in a disk shape in this example, and a plurality of the unit windings 3 are formed in the axial direction to form a cylinder. Although the shaped winding is formed, a helical winding formed in a spiral shape may be formed. Then, the space between the insulating cylinder 2 on the inner circumference side and the inner circumference of the transformer winding 1 and the vertical spacer 9 shown in FIG. 2 defines the inner vertical duct 4 and the outer circumference of the transformer winding 1. A space between the outer peripheral insulating cylinder 2'and a vertical spacer (not shown) defines an outer vertical duct 4 ', and a horizontal spacer (not shown) is inserted between the unit windings 3 so that A horizontal duct 5 is defined between the unit windings 3. The vertical spacers 9 that define the inner vertical ducts 4 are
As shown in FIG. 2, a plurality of insulating cylinders 2 on the inner peripheral side are arranged at appropriate intervals and along the axial direction, but a plurality of outer vertical ducts 4 ′ which are not shown are formed. As with the vertical spacers 9, a plurality of vertical spacers are arranged on the inner peripheral portion of the insulating cylinder 2'on the outer peripheral side at appropriate intervals and along the axial direction.
【0013】また、内周側の絶縁筒2と外周側の絶縁筒
2′には、折流板6が軸方向に沿って互い違いに複数取
付けられている。複数の折流板6は環状に形成された薄
い板であって、例えば内周側の絶縁筒2に取付けられた
とき、その先端と外周側の絶縁筒2′との間で流入出部
7b,7dを形成し、また外周側の絶縁筒2′に取付け
られたとき、その先端と内周側の絶縁筒2との間で流入
出部7a,7cを形成するようにしている。In addition, a plurality of folding plates 6 are attached to the insulating cylinder 2 on the inner peripheral side and the insulating cylinder 2'on the outer peripheral side in a staggered manner along the axial direction. The plurality of flow distribution plates 6 are thin plates formed in an annular shape, and when attached to the inner peripheral insulating cylinder 2, for example, the inflow / outflow portion 7b is provided between the tip of the inner flow insulating plate 2 and the outer peripheral insulating cylinder 2 '. , 7d, and when attached to the outer peripheral insulating cylinder 2 ', the inflow / outflow portions 7a, 7c are formed between the tip of the outer peripheral insulating cylinder 2'and the inner peripheral insulating cylinder 2'.
【0014】具体的に述べると、図1において、例えば
外周側の絶縁筒2′の下部に一枚目の折流板6aが水平
方向に取付けられると、該折流板6aの先端と内周側の
絶縁筒2との間で流入出部7aが形成される。また、内
周側の絶縁筒2には一枚目の折流板6aから上方に向か
って10段の単位巻線3を越えた位置に二枚目の折流板
6bが取付けられることにより、該折流板6bと外周側
の絶縁筒2′との間で流入出部7bが形成される。そし
て、その二枚目の折流板6bからまた上方に10段の単
位巻線3を越えた位置では三枚目の折流板6cが外周側
の絶縁筒2′に取付けられることにより、折流板6cと
内周側の絶縁筒2との間で流入出部7cが形成され、さ
らに三枚目の折流板6cから10段の単位巻線3を越え
た内周側の絶縁筒2に四枚目の折流板6dが取付けられ
ることにより、折流板6dの先端と外周側の絶縁筒2′
との間で流入出部7dが形成される。各折流区域8a〜
8cの下部に設けられている流入出部7a〜7dは、各
折流区域8aにSF6ガスが流入するためのものであ
る。More specifically, referring to FIG. 1, for example, when the first folding plate 6a is horizontally attached to the lower portion of the insulating cylinder 2'on the outer peripheral side, the tip of the folding plate 6a and the inner periphery thereof are arranged. An inflow / outflow portion 7a is formed between the side insulating cylinder 2 and the side insulating cylinder 2. In addition, by attaching the second folding plate 6b to the insulating cylinder 2 on the inner peripheral side at a position above the first folding plate 6a and beyond the unit windings 10 of 10 stages, An inflow / outflow portion 7b is formed between the flow fold plate 6b and the outer peripheral insulating cylinder 2 '. Then, at a position above the second folding plate 6b and beyond the unit winding 3 of 10 steps, the third folding plate 6c is attached to the outer peripheral insulating cylinder 2 ', so that An inflow / outflow portion 7c is formed between the flow plate 6c and the inner peripheral insulating cylinder 2, and the inner peripheral insulating cylinder 2 beyond the ten unit windings 3 from the third folding plate 6c. Since the fourth folding plate 6d is attached to the front end of the folding plate 6d and the outer peripheral insulating tube 2 '.
An inflow / outflow portion 7d is formed between and. Each break area 8a ~
The inflow / outflow portions 7a to 7d provided in the lower portion of 8c are for the SF 6 gas to flow into each of the flow-flow areas 8a.
【0015】従って、各折流板6a〜6dが内周側の絶
縁筒2と外周側の絶縁筒2′とに軸方向に沿って互い違
いに設けられた場合、下方から上方に向かい冷却媒体と
してSF6ガスが供給されると、そのSF6ガスが、一枚
目の折流板6a側の流入出部7aを通り、該折流板6a
と二枚目の折流板6bとの区域である折流区域8aに入
り込み、該折流区域8a内で内側垂直ダクト4,水平ダ
クト5,外側垂直ダクト4′を通過して上方に進み、次
いで二枚目の折流板6b側の流入出部7bを通り、該折
流板6bと三枚目の折流板6cとの区域である折流区域
8bに入り込み、該折流区域8b内で外側垂直ダクト
4′,水平ダクト5,内側垂直ダクト4を通過してさら
に上方に進み、同様にして上方の折流区域8cをも通過
することにより、SF6ガスが各々折流区域8a〜8c
を軸方向にジクザグ状に流通し、かくして単位巻線3の
表面を冷却することにより、変圧器巻線1全体を冷却す
るようにしている。Therefore, when the folding plates 6a to 6d are provided alternately in the inner peripheral insulating cylinder 2 and the outer peripheral insulating cylinder 2'in the axial direction, they serve as a cooling medium from the lower side to the upper side. When the SF 6 gas is supplied, the SF 6 gas passes through the inflow / outflow portion 7a on the side of the first flow fold plate 6a, and flows through the flow fold plate 6a.
And the second folding plate 6b, which is the region of the folding region 8a, passes through the inner vertical duct 4, the horizontal duct 5, and the outer vertical duct 4'in the folding region 8a, and proceeds upward. Then, it passes through the inflow / outflow portion 7b on the side of the second folding plate 6b, enters the folding region 8b which is the region between the folding plate 6b and the third folding plate 6c, and inside the folding region 8b. By passing through the outer vertical duct 4 ′, the horizontal duct 5 and the inner vertical duct 4 and going further upward, and similarly passing through the upper bent region 8 c as well, SF 6 gas respectively flows in the bent regions 8 a to 8 a. 8c
Are circulated in a zigzag shape in the axial direction, thus cooling the surface of the unit winding 3 to cool the entire transformer winding 1.
【0016】即ち、この変圧器巻線は、内周側の絶縁筒
2と外周側の絶縁筒2′との間に軸方向に沿って配置さ
れ、しかも内周側の絶縁筒2との間に画成された内側垂
直ダクト4と、外周側の絶縁筒2′との間に画成された
外側垂直ダクト4′と、各段の単位巻線3間に画成され
ると共に、内,外側垂直ダクト4,4′と連絡する水平
ダクト5と、内,外周側の絶縁筒2,2′に対し、所望
段数の単位巻線を隔ててかつ軸方向に沿って互い違いに
取付けられると共に、内,外周側の絶縁筒2,2′との
間でSF6ガスの流入出部7a〜7dを軸方向に互い違
いに形成する複数の折流板6a〜6dとを有し、該複数
の折流板6a〜6dは、互いに隣接する折流板との間で
折流区域を形成すると共に、各々の折流区域内で軸方向
に沿ってSF6ガスをジグザグ状に流通させるように構
成されている。That is, this transformer winding is arranged axially between the inner peripheral insulating cylinder 2 and the outer peripheral insulating tube 2 ', and between the inner peripheral insulating cylinder 2 and the inner peripheral insulating cylinder 2'. The inner vertical duct 4 defined between the outer vertical duct 4'and the outer vertical duct 4'defined between the outer peripheral insulating tube 2'and the unit winding 3 of each stage, and The horizontal duct 5 communicating with the outer vertical ducts 4 and 4'and the insulating cylinders 2 and 2'on the inner and outer peripheries are alternately mounted with unit windings of a desired number of stages separated from each other and along the axial direction. And a plurality of folding plates 6a to 6d for forming the inflow / outflow portions 7a to 7d of SF 6 gas alternately in the axial direction between the inner and outer insulating cylinders 2 and 2 '. The flow plates 6a to 6d form a flow-flow area between the flow-flow plates adjacent to each other, and the SF 6 gas is axially formed in each flow-flow area. Is configured to be distributed in a zigzag shape.
【0017】なお、この変圧器巻線1に対し、下方から
SF6ガスを上方に供給して流通させる手段の記載は省
略している。It should be noted that description of means for supplying SF 6 gas from the lower side to the upper side of the transformer winding 1 for circulation is omitted.
【0018】しかして、各折流区8a〜8cにおける
内,外周側の絶縁筒2,2′には、SF6ガスが流入す
るための下部の流入出部と同一側であって、かつ特定の
単位巻線3と対向する位置に配置された流れ制御突起1
0が取付けられている。Therefore, the inner and outer insulation cylinders 2 and 2'of each of the flow-divided zones 8a to 8c are on the same side as the lower inflow / outflow portion for the SF 6 gas to flow in, and are specified. Flow control projection 1 arranged at a position facing the unit winding 3 of
0 is attached.
【0019】詳しく述べると、この流れ制御突起10
は、図1及び図2に示すように、頂部が単位巻線3と対
向するように配置された三角形状をなしている。そし
て、流れ制御突起10としては、巻線によって発生する
磁力線及び電流に影響を与えず、かつ冷却媒体としての
SF6ガスによって劣化することがないような材質のも
の、例えばテトラフルオロエチレン/ヘキサフルオロプ
ロピレン共重合体(FEP)で構成されている。More specifically, the flow control protrusion 10
As shown in FIGS. 1 and 2, each has a triangular shape whose top portion is arranged to face the unit winding 3. The flow control protrusion 10 is made of a material that does not affect the magnetic lines of force and current generated by the winding and is not deteriorated by SF 6 gas as a cooling medium, for example, tetrafluoroethylene / hexafluoro. It is composed of a propylene copolymer (FEP).
【0020】さらに、各流れ制御突起10は、内,外周
側の絶縁筒2,2′のうち、各折流区域8a〜8c内に
おいてSF6ガスが流入しようとする流入出部7a〜7
cと同一側の位置であって、例えば各折流区域8a〜8
c内で4段目の単位巻線3と対向する位置に配置されて
いる。その場合、流れ制御突起10は、図3に示すよう
に、両端部が垂直スペーサ9,9間に架装されると共
に、底辺部10aが内,外周側の絶縁筒2,2′に密着
され、しかもその頂部が4段目の単位巻線3と対向して
いる。Further, each of the flow control projections 10 has inflow / outflow portions 7a to 7 to which SF 6 gas is to flow in in each of the flow fold regions 8a to 8c of the inner and outer insulating cylinders 2 and 2 '.
It is a position on the same side as c, for example, each of the flow-bending areas 8a-8
It is arranged at a position facing the unit winding 3 of the fourth stage in c. In that case, as shown in FIG. 3, the flow control projection 10 has both ends mounted between the vertical spacers 9 and 9, and the bottom portion 10a is closely attached to the inner and outer insulating cylinders 2 and 2 '. Moreover, the top part thereof faces the unit winding 3 of the fourth stage.
【0021】これら流れ制御突起10a〜10cの各々
は、SF6ガスが各折流区域8a〜8cの流入出部7
a,7b,7cより各折流区域8a〜8c内に流入した
場合、そのSF6ガスが、流入した位置の内,外側垂直
ダクト4,4′に沿って流れるが、流れ制御突起10の
頂部とこれと対向する単位巻線3との間で内,外側垂直
ダクト4,4′の一部が狭小化されていることにより、
SF6ガスの流量を絞り込むと共に、SF6ガスが流れ制
御突起10の流入側斜面部10bに沿って流れることに
より、SF6ガスが4段目の単位巻線3より一段下の単
位巻線3の上下にある水平ダクト5a方向に向くよう分
散制御させるようにしている。In each of the flow control protrusions 10a to 10c, the SF 6 gas inflow / outflow portion 7 of each of the flow diverting sections 8a to 8c is supplied.
When the SF 6 gas flows from the a, 7b, and 7c into each of the flow diverting sections 8a to 8c, the SF 6 gas flows along the outer vertical ducts 4 and 4 ′ at the position of the inflow, but the top of the flow control protrusion 10 Since a part of the inner and outer vertical ducts 4 and 4 ′ is narrowed between the unit winding 3 and the unit winding 3 which faces this,
SF 6 with Filter flow rate of the gas, SF by flowing along the 6 inlet-side slope portion 10b of the control projection 10 gas flows, SF 6 unit winding 3 of one step below the unit winding 3 gas fourth stage The dispersion is controlled so as to face the horizontal ducts 5a above and below.
【0022】このため、各流れ制御突起10は、その頂
部と単位巻線3とで内,外側垂直ダクト4,4′の一部
を狭小化させると共に、その流入側斜面部10bに沿い
SF6ガスの流れ方向を分散制御し得るよう三角形状を
なしており、その寸法はSF6ガスの流通量及び変圧器
巻線1の構成部品の大きさ等により若干異なるが、本例
では、内,外側垂直ダクト4,4′の水平方向の幅寸法
が20mmのとき、底辺部10aと流入側斜面部10b
とのなす角度を45度,底辺部10aと流出側斜面部1
0cとのなす角度を30度,高さを前記ダクト4,4′
の幅寸法のほぼ1/3の大きさとしている。Therefore, each of the flow control protrusions 10 narrows a part of the inner and outer vertical ducts 4 and 4'at the top and the unit winding 3, and SF 6 along the inflow side slope 10b. It has a triangular shape so that the flow direction of the gas can be controlled in a distributed manner, and its size is slightly different depending on the flow rate of SF 6 gas and the size of the components of the transformer winding 1, but in this example, When the horizontal width of the outer vertical ducts 4 and 4'is 20 mm, the bottom portion 10a and the inflow side slope portion 10b
The angle between the bottom side 10a and the outflow side slope 1 is 45 degrees.
The angle with 0c is 30 degrees, and the height is the ducts 4, 4 '
The width is approximately 1/3 of the width.
【0023】実施例の変圧器巻線1は、上記の如き構成
よりなるので、次にその作用について述べる。Since the transformer winding 1 of the embodiment has the above-mentioned structure, its operation will be described below.
【0024】今、図1に示す如く、下方からSF6ガス
を供給することによってSF6ガスが下部の流入出部7
aから第一段目の折流区域8aに入ると、そのSF6ガ
スは、内周側の絶縁筒2に沿い内側垂直ダクト4を上昇
する一方、その一部が各単位巻線3間の水平ダクト5を
通って外側の絶縁筒2′に至ることにより、各単位巻線
3を冷却する。また、第一段目の折流区域8aからのS
F6ガスは、上部の流入出部7bから第二段目の折流区
域8bに入ると、外周側の絶縁筒2′に沿い外側垂直ダ
クト4′を上昇する一方、その一部が各単位巻線3間の
水平ダクト5を通って内側の絶縁筒2に至ることにより
各単位巻線3を冷却する。この冷却作用は、SF6ガス
が各折流区域8a〜8cに流入するたびに行われる。Now, as shown in FIG. 1, the SF 6 gas is supplied from below to cause the SF 6 gas to flow into the lower inflow / outflow portion 7
When entering the first-stage flow divergence area 8a from a, the SF 6 gas rises in the inner vertical duct 4 along the insulating cylinder 2 on the inner peripheral side, while part of the SF 6 gas is between the unit windings 3. Each unit winding 3 is cooled by reaching the outer insulating cylinder 2'through the horizontal duct 5. In addition, S from the first-stage fold area 8a
When the F 6 gas enters from the upper inflow / outflow portion 7b to the second-stage fold flow area 8b, the F 6 gas rises in the outer vertical duct 4 ′ along the outer peripheral insulating tube 2 ′, while a part of each unit Each unit winding 3 is cooled by reaching the inner insulating tube 2 through the horizontal duct 5 between the windings 3. This cooling action is performed every time the SF 6 gas flows into each of the flow diverting sections 8a to 8c.
【0025】上記冷却時、流れ制御突起10を設けてい
ない従来技術では、図4に示すように、折流区域8aに
流れ込んだSF6ガスは、内周側の絶縁筒に沿い内側垂
直ダクト4を上昇するが、その上昇するSF6ガスは、
内側垂直ダクト4の幅方向において、内周側の絶縁筒に
最も近い部分では流速が大きく、かつ該絶縁筒から距離
が離れるに従い流速が著しく低下してしまう。そのた
め、折流区域8a内において折流板6aから3段目の単
位巻線3の上下位置にある水平ダクト5に流れ込むSF
6ガスの流速は、流入出部6aでの流速に比較し、1/
10以下となり、ほとんど停滞してしまうので、3段
目,4段目,2段目の単位巻線3では温度上昇が著しく
なり、従って局部的に巻線が過熱する問題があった。In the prior art in which the flow control projection 10 is not provided during the cooling, as shown in FIG. 4, the SF 6 gas which has flowed into the flow diverting area 8a follows the inner vertical duct 4 along the insulating cylinder on the inner peripheral side. The rising SF 6 gas is
In the width direction of the inner vertical duct 4, the flow velocity is large at the portion closest to the insulating cylinder on the inner peripheral side, and the flow velocity is significantly reduced as the distance from the insulating cylinder increases. Therefore, SF flowing from the flow fold plate 6a into the horizontal ducts 5 above and below the unit winding 3 of the third stage in the flow fold area 8a.
Compared with the flow velocity at the inflow / outflow part 6a, the flow velocity of 6 gas is 1 /
Since it is 10 or less and is almost stagnant, the temperature of the unit winding 3 of the third stage, the fourth stage, and the second stage is remarkably increased, and there is a problem that the winding locally overheats.
【0026】また、従来技術では、図4に示すように、
2〜4段目の単位巻線より上方に存在する6段目,9段
目の単位巻線側では、内周側の絶縁筒2から距離が隔て
るに従いSF6ガスの流速が低下するものの、3段目の
単位巻線3の上下位置にある水平ダクト5側の流速に比
較して大きいので、各折流区域8a〜8c内における上
方部分ほど、多くのSF6ガスが水平ダクトに流れるこ
ととなる。そのため、従来技術では図5に白抜き丸にて
示すように、各折流区域8a〜8c内の上方部分ほど冷
却効果があった。In the prior art, as shown in FIG.
On the side of the unit windings of the sixth and ninth stages existing above the unit windings of the second to fourth stages, the flow velocity of SF 6 gas decreases as the distance from the insulating cylinder 2 on the inner peripheral side increases. Since the flow velocity on the side of the horizontal duct 5 located above and below the unit winding 3 in the third stage is higher, more SF 6 gas flows into the horizontal duct toward the upper part in each of the flow diverting sections 8a to 8c. Becomes Therefore, in the prior art, as shown by the white circles in FIG. 5, the cooling effect was higher toward the upper part in each of the flow-flow areas 8a to 8c.
【0027】しかしながら、実施例では、内側垂直ダク
ト4に流れ制御突起10が配置されているので、上記冷
却時、内側垂直ダクト4を上昇したSF6ガスは、内側
垂直ダクト4に配置されている流れ制御突起10に至る
と、該流れ制御突起10と変圧器巻線1間の内側垂直ダ
クト4の空間部分が他の部分より狭小化していることに
より、絞り込まれて流量及び流速が低下する。このとき
同時に、SF6ガスは、流れ制御突起10の流入側斜面
部10bに沿って流れることにより、流れ制御突起10
と対向する単位巻線3側に分流して流れ、該分流したS
F6ガスが、流れ制御突起10と対向する単位巻線3よ
り一段低い単位巻線3の上下方向、即ち、3段目の単位
巻線3の上下位置にある水平ダクト5a,5b側に、図
1において左から右へ流れ込み、しかもその流れが流れ
制御突起10の流入側斜面部10bに沿い比較的速い流
れとなって水平ダクト5に流れ込むので、その速い流れ
により、折流区流入口7a近傍にある複数の単位巻線3
を均等に冷却することができる。即ち、3段目の単位巻
線3の上下にある水平ダクト5a,5b側をSF6ガス
が速く流れるので、図5に黒丸にて示すように、4〜2
段目の単位巻線3を有効に冷却することができ、各折流
区域8a〜8c内における各々の単位巻線3をほぼ均等
に冷却することができる。However, in the embodiment, since the flow control protrusion 10 is arranged in the inner vertical duct 4, the SF 6 gas which has risen in the inner vertical duct 4 during the cooling is arranged in the inner vertical duct 4. When reaching the flow control protrusion 10, the space portion of the inner vertical duct 4 between the flow control protrusion 10 and the transformer winding 1 is narrower than the other portions, so that the flow amount and the flow rate are reduced. At this time, at the same time, the SF 6 gas flows along the inflow side slope 10b of the flow control protrusion 10 to cause the flow control protrusion 10 to flow.
Flow toward the unit winding 3 side facing the
The F 6 gas is lower than the unit winding 3 facing the flow control protrusion 10 in the vertical direction of the unit winding 3, that is, to the horizontal ducts 5a and 5b side above and below the unit winding 3 in the third stage, In FIG. 1, the flow flows from the left to the right, and the flow becomes a relatively fast flow along the inflow side slope 10b of the flow control projection 10 into the horizontal duct 5. Multiple unit windings 3 in the vicinity
Can be cooled evenly. That is, since SF 6 gas rapidly flows through the horizontal ducts 5a and 5b above and below the unit winding 3 of the third stage, as shown by black circles in FIG.
It is possible to effectively cool the unit windings 3 of the stage, and it is possible to cool each of the unit windings 3 in each of the bent-flow sections 8a to 8c substantially uniformly.
【0028】その結果、内側垂直ダクト4においては上
述の如く、流れ制御突起10と変圧器巻線1間の空間部
分が他の部分より狭小化することにより、SF6ガスの
流量及び流速を低下させ、しかも流れ制御突起10によ
り、これと向かい合う単位巻線3側の水平ダクト5にS
F6ガスを分散させ、変圧器巻線1の各単位巻線3にほ
ぼ一様にSF6ガスを流通できるので、各単位巻線3を
均等に冷却することができ、従って、第一の従来技術の
ように一部のみにガスが多く流れると云うのを防止する
ことができ、変圧器巻線1全体をむらなく効率的に冷却
することができる。As a result, in the inner vertical duct 4, as described above, the space between the flow control projection 10 and the transformer winding 1 becomes narrower than the other portions, so that the flow rate and flow velocity of SF 6 gas are reduced. In addition, the flow control projection 10 causes the horizontal duct 5 on the side of the unit winding 3 that faces the flow control projection 10 to be S-shaped.
Since the F 6 gas can be dispersed and the SF 6 gas can flow through the unit windings 3 of the transformer winding 1 almost uniformly, the unit windings 3 can be cooled evenly, and therefore It can be prevented that a large amount of gas flows only in a part as in the conventional technique, and the entire transformer winding 1 can be cooled uniformly and efficiently.
【0029】また、第二の従来技術のように垂直ダクト
の幅を大きくしたり、単位巻線の半径方向の途中位置に
各段毎に幅の異なるガスダクトをいちいち設けたりする
ことがないので、変圧器巻線1の寸法が大きくなること
がなく、変圧器全体の体積の増大を防げ、従って、小型
化の要求に対処することが可能となる。しかも、内側,
外側垂直ダクト4,4′と水平ダクト5以外のダクトが
不要になることにより、SF6ガスの流れに分岐合流箇
所がなく、そのため、SF6ガスの圧力損失の増大を回
避することができ、SF6ガスの供給手段として大型の
ものを用いる必要もない。Further, since the width of the vertical duct is not increased or the gas duct having the different width for each stage is not provided at the middle position in the radial direction of the unit winding as in the second prior art, The size of the transformer winding 1 does not increase, and it is possible to prevent the volume of the entire transformer from increasing, and thus it is possible to meet the demand for miniaturization. Besides, inside,
By outer vertical ducts 4,4 'and the horizontal ducts 5 other duct is not required, there is no branching point to the flow of SF 6 gas, therefore, it is possible to avoid an increase in pressure loss of the SF 6 gas, It is not necessary to use a large SF 6 gas supply means.
【0030】さらに、流れ制御突起10を設けた場合、
上述の如く、流れ制御突起10と巻線変圧器巻線1間の
内側垂直ダクト4の空間部分が他の部分より狭小化して
いることにより、絞り込まれて流速が低下するが、この
流速は単位巻線の冷却には充分なものであるから問題と
なることがない。Further, when the flow control protrusion 10 is provided,
As described above, since the space portion of the inner vertical duct 4 between the flow control protrusion 10 and the winding transformer winding 1 is narrower than the other portions, the flow velocity is reduced by being narrowed down. There is no problem because it is sufficient for cooling the winding.
【0031】なお、図5は折流区域における各単位巻線
と温度上昇との関係を試験装置により得られたデータを
示している。この場合の試験装置は、図1に示す変圧器
を収納した容器,SF6ガス用の冷却器及びその供給手
段としてのブロワ,各種計測器,配管等からなり、SF
6ガスが循環するように構成されている。変圧器巻線1
として、幅6mm及び高さ15mmの銅線内にヒータと
熱電対を埋め込み、これに絶縁フィルムを巻いて模擬導
体とし、さらにこれを複数本並べて単位巻線3とし、該
単位巻線3を一つの折流区域につき10段ずつ設けるこ
とにより構成した。また、巻線の流路長(水平方向)が
80mm,水平ダクトの高さが4mm,内・外周垂直ダ
クトの幅が20mmである。Incidentally, FIG. 5 shows the data obtained by the test device regarding the relationship between each unit winding and the temperature rise in the bent-flow area. The test apparatus in this case is composed of a container accommodating the transformer shown in FIG. 1, a cooler for SF 6 gas and a blower as its supply means, various measuring instruments, piping, etc.
It is configured to circulate 6 gases. Transformer winding 1
As a conductor, a heater and a thermocouple are embedded in a copper wire having a width of 6 mm and a height of 15 mm, and an insulating film is wound around the copper wire to form a simulated conductor. It was configured by providing 10 stages for each of the flow break areas. The flow path length (horizontal direction) of the winding is 80 mm, the height of the horizontal duct is 4 mm, and the width of the inner / outer peripheral vertical duct is 20 mm.
【0032】そして、このような変圧器巻線として、上
述した大きさの流れ制御突起10を有する実施例のもの
と、流れ制御突起10を有しない従来技術のものとを夫
々製作した。試験方法は、模擬導体に埋め込まれたヒー
タに所定の電流を流して発熱させ、SF6ガスをブロワ
により循環させ、模擬導体の温度を測定することで行っ
た。但し、SF6ガスの圧力は0.2MPa,巻線の発
熱密度107kW/m3である。As such transformer windings, an embodiment having the flow control protrusion 10 having the above-described size and a conventional one having no flow control protrusion 10 were manufactured. The test method was performed by supplying a predetermined current to a heater embedded in the simulated conductor to generate heat, circulating SF 6 gas with a blower, and measuring the temperature of the simulated conductor. However, the pressure of SF 6 gas is 0.2 MPa, and the heat generation density of the winding is 107 kW / m 3 .
【0033】図5において、横軸は下段の折流区域の流
入出のガス温度からの各模擬単位巻線の平均温度上昇を
示し、横軸は最も下の折流板上に順次配置された単位巻
線の位置を表している。同図に示す白抜き丸は流れ制御
突起のない従来技術を、黒丸は流れ制御突起を設けた実
施例であり、実施例では従来技術に比較し、巻線の最高
温度上昇を約25%低減でき、しかも各単位巻線での温
度上昇のばらつきを約60%低減できた。また、この試
験に際し、流れ制御突起10を比誘電率2.2のFEP
で製作したとき、巻線に高電圧がかかる場合でも、絶縁
破壊に結び付く電界集中が発生しないことを確認するこ
とができた。In FIG. 5, the horizontal axis represents the average temperature rise of each simulated unit winding from the gas temperature at the inflow and outflow of the lower folding area, and the horizontal axis was sequentially arranged on the lowermost folding plate. Shows the position of the unit winding. The white circles shown in the same figure are the prior art without flow control projections, and the black circles are the embodiments with flow control projections. In the embodiment, the maximum temperature rise of the winding is reduced by about 25% compared to the prior art. In addition, it was possible to reduce the variation in temperature rise in each unit winding by about 60%. In addition, in this test, the flow control protrusion 10 was set to FEP with a relative dielectric constant of 2.2.
It was confirmed that the electric field concentration that would lead to dielectric breakdown does not occur even when a high voltage is applied to the winding when manufactured in.
【0034】図6及び図7は本発明による変圧器巻線の
第二の実施例を示している。この実施例は、内側垂直ダ
クト4,外側垂直ダクト4′の幅寸法が前記第一の実施
例の二倍となる大きさのものに適用している。FIGS. 6 and 7 show a second embodiment of the transformer winding according to the invention. This embodiment is applied to the one in which the width dimension of the inner vertical duct 4 and the outer vertical duct 4'is double that of the first embodiment.
【0035】即ち、内,外側垂直ダクト4,4′の幅が
大きい場合、冷却媒体としてのSF6ガスの流れが第一
の実施例と異なり、折流板6aに最も近い単位巻線3を
囲む上下位置の水平ダクト5において流入出部7aでの
流速の1/10以下となり、殆ど停滞してしまう一方、
最も近い単位巻線3側の水平ダクト5より上方位置の水
平ダクト5では流速が大きくなり、図6においての左側
から右側に流れてしまうと云う不均一な状態になる。従
って、図7に白抜き丸で示しように、流入出部7aに近
い単位巻線3では温度が上昇する問題があった。That is, when the widths of the inner and outer vertical ducts 4 and 4'are large, the flow of SF 6 gas as a cooling medium is different from that in the first embodiment, and the unit winding 3 closest to the flow diverting plate 6a is formed. In the surrounding upper and lower horizontal ducts 5, the flow velocity becomes 1/10 or less of the flow velocity at the inflow / outflow portion 7a, and almost stagnates.
In the horizontal duct 5 located above the horizontal duct 5 closest to the unit winding 3, the flow velocity becomes large, resulting in a non-uniform state in which the flow flows from the left side to the right side in FIG. Therefore, there is a problem that the temperature increases in the unit winding 3 close to the inflow / outflow portion 7a, as indicated by a white circle in FIG.
【0036】そこで、この実施例では、折流区域8aの
流入出部7a側の単位巻線3と対向する位置、例えば内
側垂直ダクト4において2段目の単位巻線3と対向する
位置に流れ制御突起10が配置されている。この場合の
流れ制御突起10は、第一の実施例のものと同材質であ
ってかつ相似形であるが、高さを内,外側垂直ダクト
4,4′の幅の1/2としている。そして、折流区域8
aにおいて、SF6ガスが内側垂直ダクト4内を流通す
るとき、流れ制御突起10とこれと対向する単位巻線3
間でSF6ガスの流量を絞る込むことにより、それより
上方に流れるSF6ガスの流量及び流速を低下すると共
に、流れ制御突起10の流入側斜面部10bにより2段
目の単位巻線3の上下位置にある水平ダクト5は勿論の
こと、1段目の単位巻線3と折流板6aとの間の水平ダ
クト5にもSF6ガスを積極的に分流させることによ
り、SF6ガスが各単位巻線3間をほぼ一様に流通し、
均一な冷却効果を得るようにしている。Therefore, in this embodiment, the flow flows to a position facing the unit winding 3 on the inflow / outflow portion 7a side of the flow diverting section 8a, for example, a position facing the second unit winding 3 in the inner vertical duct 4. A control protrusion 10 is arranged. The flow control projection 10 in this case is made of the same material as that of the first embodiment and has a similar shape, but the height thereof is ½ of the width of the inner and outer vertical ducts 4, 4 '. And, the break area 8
In a, when the SF 6 gas flows through the inner vertical duct 4, the flow control protrusion 10 and the unit winding 3 facing the flow control protrusion 10 are provided.
By narrowing the flow rate of the SF 6 gas between them, the flow rate and the flow velocity of the SF 6 gas flowing thereabove are reduced, and the inflow side slope portion 10b of the flow control projection 10 reduces the flow rate of the second-stage unit winding 3. vertical position of course the horizontal duct 5 which is in, by actively shunt the SF 6 gas to the horizontal duct 5 between the first-stage unit winding 3 and the folding flow plate 6a, SF 6 gas It flows almost uniformly between each unit winding 3,
The uniform cooling effect is obtained.
【0037】その効果は図7に示すとおりである。即
ち、図7は図5に対応するものであって、最下段の折流
区域における各単位巻線と温度上昇との関係の試験結果
を示している。この場合の試験条件は、SF6ガスの圧
力が0.6MPa,単位巻線の発熱密度が496kW/
m3で、単位巻線3の流路長(水平方向)が147m
m,水平ダクトの高さが4.5mm,内・外側垂直ダク
トが上述の如く40mmである。図7において、白抜き
丸は流れ制御突起のない従来技術のものを、かつ黒丸は
流れ制御突起を有する実施例のものを夫々表しており、
実施例のものは従来技術に比較し、単位巻線3の最高温
度上昇を約23%に低減でき、また各単位巻線での温度
上昇のばらつきを約69%に低減することができた。The effect is as shown in FIG. That is, FIG. 7 corresponds to FIG. 5 and shows the test results of the relationship between each unit winding and the temperature rise in the lowermost fold-flow area. The test conditions in this case were that the pressure of SF 6 gas was 0.6 MPa, and the heat generation density of the unit winding was 496 kW /
In m 3, the flow path length of the unit winding 3 (horizontal direction) is 147m
m, the height of the horizontal duct is 4.5 mm, and the inner and outer vertical ducts are 40 mm as described above. In FIG. 7, white circles represent the prior art without flow control projections, and black circles represent the embodiment with flow control projections,
In the embodiment, the maximum temperature rise of the unit winding 3 can be reduced to about 23%, and the variation in the temperature rise in each unit winding can be reduced to about 69%, as compared with the prior art.
【0038】なお図示実施例では、内側垂直ダクト4に
流れ制御突起10を有する最下段の折流区域8aのみを
図示したが、この流れ制御突起10は、他の折流区域8
b,8cにも設けてもよいし、所望の折流区のみに設け
てもよく、要は必要な個所に設ければよい。In the illustrated embodiment, the innermost vertical duct 4 has only the lowermost flow fold section 8a having the flow control projections 10, but the flow control projections 10 have other flow fold areas 8a.
It may be provided also in b and 8c, or may be provided only in a desired fold section, and the point is that it may be provided in a necessary place.
【0039】また、以降の図8〜図10の実施例では、
内側垂直ダクト4に流れ突起10が配置された最下段の
折流区域8aのみを表しているが、他の折流区域8b,
8cも同様の構成であるとする。Further, in the following embodiments shown in FIGS. 8 to 10,
Only the lowermost fold section 8a in which the flow projections 10 are arranged in the inner vertical duct 4 is shown, but other fold sections 8b,
8c has the same configuration.
【0040】図8は第三の実施例であって、この場合
は、内側垂直ダクト4に配置される流れ制御突起10
が、内周側の絶縁筒2と狭い流路11を隔てて取付けら
れたものである。即ち、この流れ制御突起10は詳細に
図示していないものの、その両端が、内周側の絶縁筒2
に固着された垂直スペーサ9とこれに隣列する垂直スペ
ーサ9とに架装され、底辺部10aが内周側の絶縁筒2
と狭い流路11を隔てている。そして、流れ制御突起1
0の頂部とこれに対向する単位巻線3とでSF6ガスの
流量を絞り込む一方、狭い流路11よりSF6ガスを流
通させ、流れ制御突起10より上方にガス流量を増加さ
せることにより、上方に位置する単位巻線の冷却を増進
させるようにしている。FIG. 8 shows a third embodiment, in this case a flow control projection 10 arranged in the inner vertical duct 4.
However, the insulating cylinder 2 on the inner peripheral side and the narrow flow passage 11 are attached to each other. That is, although the flow control projection 10 is not shown in detail, both ends of the flow control projection 10 are on the inner peripheral side of the insulating cylinder 2.
Is mounted on the vertical spacers 9 fixed to the vertical spacers 9 and the vertical spacers 9 adjacent to the vertical spacers 9.
And a narrow channel 11 is separated. And the flow control protrusion 1
The flow rate of SF 6 gas is narrowed by the top of 0 and the unit winding 3 facing this, while the SF 6 gas is circulated through the narrow channel 11 and the gas flow rate is increased above the flow control protrusion 10. The unit winding located above is cooled more efficiently.
【0041】単位巻線3が複数段に設けられた場合、下
段側の単位巻線3の発熱により、上段側の単位巻線の温
度が下段側のものより上昇するおそれがある。しかしな
がら、実施例の如く、流れ制御突起10より上方に対
し、SF6ガスの流量を増加すれば、その上方位置の単
位巻線3が、それより下方の単位巻線の発熱で温度上昇
するのを防止することができ、各単位巻線3をいっそう
均一に冷却できる効果がある。When the unit windings 3 are provided in a plurality of stages, the temperature of the upper unit windings may be higher than that of the lower unit windings due to the heat generation of the lower unit windings 3. However, as in the embodiment, when the flow rate of the SF 6 gas is increased above the flow control protrusion 10, the temperature of the unit winding 3 located above the flow control projection 10 rises due to heat generation of the unit winding below the unit winding 3. This has the effect of preventing each of the unit windings 3 and cooling the unit windings 3 more uniformly.
【0042】図9は第四の実施例を示している。即ち、
この場合は、流れ制御突起として図6の実施例とほぼ同
様に形成された流れ制御突起10を有する他、それより
上流側にも流れ制御突起12を有している。FIG. 9 shows a fourth embodiment. That is,
In this case, as the flow control protrusion, the flow control protrusion 10 formed in substantially the same manner as the embodiment of FIG. 6 is provided, and the flow control protrusion 12 is also provided on the upstream side thereof.
【0043】この上流側の流れ制御突起12は、内周側
の絶縁筒2において本来の流れ制御突起10より上流側
にあって、しかも折流板6aより一段下方の単位巻線3
と対向するように取付けられ、その高さが内側垂直ダク
ト4の1/4程度としている。そして、内側垂直ダクト
4にSF6が流れた場合、該SF6ガスは、流れ制御突起
12の流入側斜面部12bに沿って流れることにより、
折流板6aとその上に配置されている1段目の単位巻線
3との間の水平ダクト5内に流れ込み、1段目の単位巻
線3を積極的に冷却するようにしている。The upstream flow control projection 12 is located upstream of the original flow control projection 10 in the insulating cylinder 2 on the inner peripheral side, and is located one step lower than the flow fold plate 6a.
It is attached so as to face with, and its height is about 1/4 of the inner vertical duct 4. When the SF 6 flows inside vertical duct 4, the SF 6 gas, by flowing along the inlet-side slope portion 12b of the flow control projection 12,
The first-stage unit winding 3 is actively cooled by flowing into the horizontal duct 5 between the folding plate 6a and the first-stage unit winding 3 arranged thereon.
【0044】従って、この実施例は、流れ制御突起10
のみならず、もう一つの流れ制御突起12を設けると、
折流板6aに最も近い1段目の単位巻線3を積極的に冷
却することができ、しかも1段目の単位巻線3と折流板
6a間の水平ダクト5に対するSF6ガスの流量が増大
すると、内側垂直ダクト4と反対側にある外側垂直ダク
ト4′へのガス流量も増えるので、2段目,3段目の単
位巻線3の冷却効果をさらに上げることができる。その
ため、図7に示した試験結果では1段目〜3段目の単位
巻線の温度上昇率が他の単位巻線より若干上がっていた
が、それら1段目〜3段目の単位巻線3の温度上昇をい
っそう低減することができ、一つの折流区域における各
単位巻線3の温度をよりいっそう均等にかつ効率的に下
げることができる。Therefore, in this embodiment, the flow control projection 10
Not only that, but if another flow control protrusion 12 is provided,
It is possible to positively cool the unit winding 3 of the first stage closest to the flow distribution plate 6a, and the flow rate of SF 6 gas to the horizontal duct 5 between the unit winding 3 of the first stage and the flow distribution plate 6a. Is increased, the gas flow rate to the outer vertical duct 4'on the opposite side of the inner vertical duct 4 is also increased, so that the cooling effect of the second and third unit windings 3 can be further enhanced. Therefore, in the test results shown in FIG. 7, the temperature increase rate of the unit windings of the first to third stages was slightly higher than that of the other unit windings. The temperature rise of the unit windings 3 can be further reduced, and the temperature of each of the unit windings 3 in one bent region can be reduced more evenly and efficiently.
【0045】なお、試験結果では、巻線の最高温度上昇
を約28%に低減でき、また各単位巻線の温度上昇のば
らつきを約78%に低減することができた。この値は一
つの流れ制御突起10しか設けていない図6の実施例よ
りいっそう効果があることが明白である。According to the test results, the maximum temperature rise of the winding can be reduced to about 28%, and the variation in temperature rise of each unit winding can be reduced to about 78%. It is clear that this value is even more effective than the embodiment of FIG. 6 in which only one flow control protrusion 10 is provided.
【0046】図10は第五の実施例を示している。この
実施例は、第一の実施例の変形例であって、折流区域8
aにおいて4段目の単位巻線3と対向する位置に設けた
流れ制御突起10の他、4段目の単位巻線3とその上に
ある5段目の単位巻線3との間の水平ダクト5a内に、
分流板13が設けられている。該分流板13は、適宜の
板幅をもつものであって、図示していない水平スペーサ
に取付けられ、幅方向の一端が内側垂直ダクト4に突出
するように配置されている。この場合、分流板13の一
端が突出する寸法は、内側垂直ダクト4の幅の1/5と
している。FIG. 10 shows a fifth embodiment. This embodiment is a modification of the first embodiment, and includes the flow fold area 8
In addition to the flow control protrusion 10 provided at a position facing the fourth-stage unit winding 3 in a, the horizontal between the fourth-stage unit winding 3 and the fifth-stage unit winding 3 above it. In the duct 5a,
A flow dividing plate 13 is provided. The flow distribution plate 13 has an appropriate plate width, is attached to a horizontal spacer (not shown), and is arranged so that one end in the width direction projects into the inner vertical duct 4. In this case, the dimension at which one end of the flow dividing plate 13 projects is ⅕ of the width of the inner vertical duct 4.
【0047】流れ制御突起10を設けた場合、それと対
向する4段目の単位巻線3のすぐ上の水平ダクト5cに
流れ込むSF6ガスの流量が、他の水平ダクトを通るガ
スに比較し、若干下がるおそれがある。しかし、上述の
如く分流板13を設けると、流れ制御突起10を通過し
たSF6ガスが分流板13と4段目の単位巻線3との間
に流れ込み、その水平ダクト5cを通るSF6ガスの流
量を増加することができる。従って、流れ制御突起10
よりすぐ上の水平ダクト5cに対するSF6ガスの流量
を増加できるので、それだけ各単位巻線3をより均一に
冷却することができる。When the flow control protrusion 10 is provided, the flow rate of the SF 6 gas flowing into the horizontal duct 5c immediately above the unit winding 3 of the fourth stage opposite thereto is greater than that of the gas passing through other horizontal ducts. It may drop slightly. However, when the flow dividing plate 13 is provided as described above, the SF 6 gas that has passed through the flow control projection 10 flows between the flow dividing plate 13 and the unit winding 3 of the fourth stage, and the SF 6 gas that passes through the horizontal duct 5c thereof. The flow rate can be increased. Therefore, the flow control protrusion 10
Since the flow rate of SF 6 gas to the horizontal duct 5c immediately above can be increased, the unit windings 3 can be cooled more uniformly.
【0048】なお試験結果では、従来技術に比較し、巻
線の最高温度上昇で約30%低減でき、各単位巻線3で
の温度上昇のばらつきを約70%に低減でき、従って、
第一の実施例よりいっそう効果的であることが確認され
た。The test result shows that the maximum temperature rise of the windings can be reduced by about 30% and the variation in the temperature rise in each unit winding 3 can be reduced to about 70% as compared with the conventional technique.
It was confirmed that it was more effective than the first example.
【0049】図11は他の実施例を示し、この場合は、
流れ制御突起10の形状を改良したものである。即ち、
これまでの前述した各実施例では流れ制御突起10の流
入側斜面部10b及び流出側斜面部10cが真直に形成
された例を示したが、本実施例では、各斜面部がSF6
ガスの流通が円滑となるように形成される。具体的に述
べると、この流れ制御突起10は、流入側斜面部10b
が図11に示すように、底辺部10aから頂部にかけて
緩慢に彎曲して凹む形状をなし、また頂部においては丸
味を帯びた形状をなし、さらに流出側斜面部10cでは
頂部から底辺部10aにかけて流入側斜面部10bより
さらに緩やかに凹むような形状をなしている。FIG. 11 shows another embodiment. In this case,
The shape of the flow control protrusion 10 is improved. That is,
In each of the above-described embodiments, the inflow side slope 10b and the outflow side slope 10c of the flow control protrusion 10 are straightly formed. However, in the present embodiment, each slope is SF 6
The gas is formed so as to flow smoothly. More specifically, the flow control protrusion 10 has the inflow side slope 10b.
As shown in FIG. 11, the bottom portion 10a has a shape that is gently curved and recessed from the top portion to the top portion, and the top portion has a rounded shape. It is shaped so as to be recessed more gently than the side slope portion 10b.
【0050】このように、流入側斜面部10b,流出側
斜面部10cの双方が緩やかな彎曲形状に形成される
と、SF6ガスが流れ制御突起10を流通した場合、該
流れ制御突起10の流入側斜面部10b,流出側斜面部
10cに沿ってSF6ガスが流れるので、SF6ガスの圧
力損失を低減することができる。この場合、流入側斜面
部10b,流出側斜面部10cの彎曲度合いにもよる
が、第一の実施例と同様の大きさにしたとき、試験結果
では第一の実施例とほぼ同様の冷却効果を得ることがで
きた。As described above, when both the inflow side slope 10b and the outflow side slope 10c are formed in a gentle curved shape, when the SF 6 gas flows through the flow control projection 10, the flow control projection 10 inflow-side slope portion 10b, since SF 6 gas flows along the outlet side slope portion 10c, it is possible to reduce the pressure loss of the SF 6 gas. In this case, although it depends on the degree of curvature of the inflow side slope portion 10b and the outflow side slope portion 10c, when the size is the same as that of the first embodiment, the test result shows that the cooling effect is almost the same as that of the first embodiment. I was able to get
【0051】なお、これまで述べた各実施例では、流れ
制御突起10の三角形状として、底辺部10aと流入側
斜面部10bとが45度,底辺部10aと流出側斜面部
10cとが30度となるように形成した例を示したが、
本発明はこれに限定されるものではなく、SF6ガスの
圧力,垂直ダクト4,4′,単位巻線3の大きさ等によ
って多少異なるものの、SFガスの流れる向きに応じ適
宜の角度に選定することができ、例えば底辺部10aと
流入側斜面部10bとが30度以上でかつ鋭角であれ
ば、また底辺部10aと流出側斜面部10cとが15度
以上でかつ鋭角であれば、同様の作用効果を得ることが
できる。また、流れ制御突起10の高さとして、内,外
側垂直ダクト4,4′の1/3及び1/2とした例を示
したが、およそ1/4〜3/4程度の大きさに選定すれ
ば、同様の効果を得ることができる。In each of the embodiments described so far, the flow control projection 10 has a triangular shape with the bottom portion 10a and the inflow side slope portion 10b being 45 degrees, and the bottom portion 10a and the outflow side slope portion 10c being 30 degrees. Although the example was formed so that
The present invention is not limited to this, and although it is somewhat different depending on the pressure of the SF 6 gas, the sizes of the vertical ducts 4, 4 ′, the unit winding 3, etc., it is selected at an appropriate angle depending on the flowing direction of the SF gas. For example, if the bottom portion 10a and the inflow side slope portion 10b have an angle of 30 degrees or more and an acute angle, and if the bottom portion 10a and the outflow side slope portion 10c have an angle of 15 degrees or more and an acute angle, the same applies. The effect of can be obtained. Further, the height of the flow control projection 10 is set to 1/3 and 1/2 of the inner and outer vertical ducts 4 and 4 ', but the size is selected to be about 1/4 to 3/4. Then, the same effect can be obtained.
【0052】そして、流れ制御突起10の材質として、
各実施例では比誘電率2.2のFEPを用いた例を示し
たが、比誘電率が3以下のものであれば、巻線に高電圧
がかかる場合でも、電界集中がないことを確認した。但
し、材質としては、FEPに限定されるものではなく、
例えば架橋ポリエチレン等のような低誘電率のもので形
成しても良い。さらには、流れ制御突起10の構造物に
低誘電率のテープ等を巻き込んで形成することにより、
安価でかつ容易な製作を実施し得る効果もある。As the material of the flow control protrusion 10,
In each of the examples, an example using an FEP having a relative permittivity of 2.2 was shown, but if the relative permittivity is 3 or less, it is confirmed that there is no electric field concentration even when a high voltage is applied to the winding. did. However, the material is not limited to FEP,
For example, it may be formed of a material having a low dielectric constant such as cross-linked polyethylene. Further, by forming a tape having a low dielectric constant on the structure of the flow control protrusion 10 to form the structure,
There is also an effect that inexpensive and easy manufacturing can be carried out.
【0053】[0053]
【発明の効果】以上述べたように、本発明の請求項1〜
3によれば、流れ制御突起と変圧器巻線間の空間部分が
他の部分より狭小化することにより、冷却媒体の流量及
び流速を低下させ、しかも流れ制御突起により、これと
向かい合う単位巻線側の水平ダクトに冷却媒体を分散さ
せて流し込み、変圧器巻線の各単位巻線にほぼ一様に冷
却媒体を流通できるように構成したので、各単位巻線を
均等に冷却し、変圧器巻線全体をむらなく効率的に冷却
することができる効果があり、また変圧器巻線の寸法が
大きくなることがなく、変圧器全体の体積の増大を防
げ、従って、小型化の要求に対処することが可能とな
り、しかも、冷却媒体の圧力損失の増大を回避できるこ
とにより、冷却媒体の供給手段として大型のものを用い
る必要もない効果がある。As described above, claims 1 to 5 of the present invention.
According to 3, the space between the flow control protrusion and the transformer winding is made narrower than the other portions, so that the flow rate and flow velocity of the cooling medium are reduced, and the flow control protrusion causes the unit winding facing the unit winding. The cooling medium is distributed and poured into the horizontal duct on the side so that the cooling medium can flow almost uniformly to each unit winding of the transformer winding. It has the effect of cooling the entire winding evenly and efficiently, and does not increase the size of the transformer winding, thus preventing the volume of the entire transformer from increasing, and thus addressing the demand for miniaturization. Since it is possible to prevent the increase of the pressure loss of the cooling medium, there is an effect that it is not necessary to use a large-sized cooling medium supply means.
【0054】また請求項4,5によれば、流れ制御突起
が三角形状をなしているので、簡単かつ容易に冷却媒体
を所望方向に流通させることができ、所望段の単位巻線
を確実に冷却することができる効果があり、特に、請求
項5によれば、流れ制御突起より上方に位置する単位巻
線の冷却を増進させることができるので、各単位巻線を
いっそう均一に冷却できる効果がある。Further, according to the fourth and fifth aspects, since the flow control projection has a triangular shape, the cooling medium can be easily and easily circulated in the desired direction, and the unit winding of the desired stage can be reliably performed. According to the fifth aspect, it is possible to enhance the cooling of the unit windings located above the flow control protrusions, so that the unit windings can be cooled more uniformly. There is.
【0055】そして、請求項6によれば、流れ制御突起
の流入側斜面部と流出側斜面部とが彎曲形状をなすと共
に、その流入側斜面部と流出側斜面部間の頂部が円弧形
状をなしているので、冷却媒体の流れを円滑にでき、冷
却媒体の圧力損失をいっそう低減できる効果がある。請
求項7によれば、流れ制御突起の材質を選定することに
より、巻線に高電圧がかかる場合でも、絶縁破壊に結び
つく電界集中が発生するのを確実に防止でき、安全性の
面でもそれだけ信頼性がある。請求項8によれば、低誘
電率のテープを巻き付けるので、それだけ安価にかつ容
易に製作できると云う効果もある。According to the sixth aspect, the inflow side slope portion and the outflow side slope portion of the flow control projection have a curved shape, and the top between the inflow side slope portion and the outflow side slope portion has an arc shape. Since this is done, there is an effect that the flow of the cooling medium can be made smooth and the pressure loss of the cooling medium can be further reduced. According to the seventh aspect, by selecting the material of the flow control protrusion, even when a high voltage is applied to the winding, it is possible to reliably prevent the electric field concentration that causes the dielectric breakdown, and in terms of safety as well. Reliable. According to the eighth aspect, since the tape having a low dielectric constant is wound, there is also an effect that it can be manufactured at a low cost and easily.
【図1】本発明による変圧器巻線の第一の実施例を示す
説明用断面図。FIG. 1 is an explanatory sectional view showing a first embodiment of a transformer winding according to the present invention.
【図2】同じく変圧器巻線の要部を示す説明用斜視図。FIG. 2 is a perspective view for explaining the main part of the transformer winding.
【図3】流れ制御突起の取付け状態を示す説明用斜視
図。FIG. 3 is an explanatory perspective view showing an attached state of a flow control protrusion.
【図4】従来技術の変圧器巻線の各折流区域における単
位巻線でのSF6ガスの流速と垂直ダクト幅方向の位置
との関係を示す説明図。FIG. 4 is an explanatory diagram showing the relationship between the flow velocity of SF 6 gas in the unit winding and the position in the width direction of the vertical duct in each of the bent-flow regions of the transformer winding of the related art.
【図5】折流区域における各単位巻線と流れ制御突起と
の位置関係を示す説明図(a),及び各単位巻線とその
温度との関係を示す試験結果の説明図(b)。5A and 5B are an explanatory view showing a positional relationship between each unit winding and a flow control protrusion in a folded flow area, and an explanatory view showing a test result showing a relationship between each unit winding and its temperature.
【図6】本発明による変圧器巻線の第二の実施例を示す
説明用断面図。FIG. 6 is an explanatory sectional view showing a second embodiment of the transformer winding according to the present invention.
【図7】折流区域における各単位巻線と流れ制御突起と
の位置関係を示す説明図(a),及び各単位巻線とその
温度との関係を示す試験結果の説明図(b)。FIG. 7 is an explanatory view (a) showing a positional relationship between each unit winding and a flow control projection in a folded area, and an explanatory view (b) of a test result showing a relationship between each unit winding and its temperature.
【図8】本発明による変圧器巻線の第三の実施例を示す
説明用断面図。FIG. 8 is an explanatory sectional view showing a third embodiment of the transformer winding according to the present invention.
【図9】本発明による変圧器巻線の第四の実施例を示す
説明用断面図。FIG. 9 is an explanatory sectional view showing a fourth embodiment of the transformer winding according to the present invention.
【図10】本発明による変圧器巻線の第五の実施例を示
す説明用断面図。FIG. 10 is an explanatory sectional view showing a fifth embodiment of a transformer winding according to the present invention.
【図11】本発明による変圧器巻線の他の実施例を示す
流れ制御突起の側面図(a),及び斜視図(b)。FIG. 11 is a side view (a) and a perspective view (b) of a flow control protrusion showing another embodiment of the transformer winding according to the present invention.
1…変圧器巻線、2…内周側の絶縁筒、2′…外周側の
絶縁筒、3…単位巻線、4…内側垂直ダクト、4′…外
側垂直ダクト、5,5a〜5c…水平ダクト、6a〜6
d…折流板、7a〜7d…流入出部、8a〜8c…折流
区域、10,10′…流れ制御突起、10a…底辺部、
10b…流入側斜面部、10c…流出側斜面部、13…
分流板。DESCRIPTION OF SYMBOLS 1 ... Transformer winding, 2 ... Inner peripheral insulating cylinder, 2 '... Outer peripheral insulating cylinder, 3 ... Unit winding, 4 ... Inner vertical duct, 4' ... Outer vertical duct, 5, 5a-5c ... Horizontal duct, 6a-6
d ... fold flow plate, 7a to 7d ... inflow / outflow portion, 8a to 8c ... fold flow area, 10, 10 '... flow control protrusion, 10a ... bottom portion,
10b ... Inflow side slope portion, 10c ... Outflow side slope portion, 13 ...
Flow divider.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 裕幸 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 平石 清登 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroyuki Fujita 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubu Plant, Hitachi, Ltd. (72) Inventor Kiyoto Hiraishi 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture No. 1 Inside the Kokubu Plant of Hitachi, Ltd.
Claims (8)
に軸方向に沿って配置され、かつ内周側の絶縁筒との間
に画成された内側垂直ダクトと、外周側の絶縁筒との間
に画成された外側垂直ダクトと、各段の単位巻線間に画
成されると共に、内,外側垂直ダクトを連絡する水平ダ
クトと、内,外周側の絶縁筒に対し、所望段数の単位巻
線を隔ててかつ軸方向に沿って互い違いに取付けられて
折流区域を各々形成すると共に、先端と内,外周側の絶
縁筒との間で冷却媒体の流入出部を軸方向に互い違いに
形成する複数の折流板とを有し、各々の折流区域内で軸
方向に沿い冷却媒体をジグザグ状に流通させる変圧器用
巻線において、各折流区域の内,外周側の絶縁筒の何れ
か一方に、冷却媒体が流入するための流入出部と同一側
に配置された流れ制御突起を取付け、該流れ制御突起に
より、各折流区域に流入した冷却媒体が内,外側垂直ダ
クトに沿って流れる流量を絞ると共に、冷却媒体の一部
を、所望の単位巻線方向に向かうよう流量制御する構成
としたことを特徴とする変圧器巻線。1. An inner vertical duct which is disposed axially between an inner peripheral insulating cylinder and an outer peripheral insulating cylinder and which is defined between the inner peripheral insulating cylinder and an inner peripheral insulating cylinder, and an outer periphery. Outer vertical duct defined between the inner and outer insulating ducts, a horizontal duct defined between the unit windings of each stage and connecting the inner and outer vertical ducts, and inner and outer insulating cylinders On the other hand, the unit windings of a desired number of stages are arranged in a staggered manner along the axial direction so as to form a flow-divided area, and a cooling medium flows in and out between the tip and the inner and outer insulating cylinders. In a transformer winding that has a plurality of bent plates that are alternately formed in the axial direction and that allows a cooling medium to flow in a zigzag shape along the axial direction in each bent region, , A flow control device arranged on the same side as the inflow / outflow part for inflow of the cooling medium into either one of the outer peripheral insulating cylinders. A control projection is attached, and the flow control projection restricts the flow rate of the cooling medium flowing into each of the flow-straight sections along the inner and outer vertical ducts, and directs a part of the cooling medium in a desired unit winding direction. A transformer winding characterized in that it is configured to control the flow rate.
に軸方向に沿って配置され、かつ内周側の絶縁筒との間
に画成された内側垂直ダクトと、外周側の絶縁筒との間
に画成された外側垂直ダクトと、各段の単位巻線間に画
成されると共に、内,外側垂直ダクトを連絡する水平ダ
クトと、内,外周側の絶縁筒に対し、所望段数の単位巻
線を隔ててかつ軸方向に沿って互い違いに取付けられて
折流区域を各々形成すると共に、先端と内,外周側の絶
縁筒との間で冷却媒体の流入出部を軸方向に互い違いに
形成する複数の折流板とを有し、各々の折流区域内で軸
方向に沿い冷却媒体をジグザグ状に流通させる変圧器用
巻線において、各折流区域の内,外周側の絶縁筒の何れ
か一方に、冷却媒体が流入するための流入出部と同一側
であって、かつ特定の単位巻線と対向する位置に配置さ
れた流れ制御突起を取付け、該流れ制御突起により、各
折流区域に流入した冷却媒体が内,外側垂直ダクトに沿
って流れる流量を絞ると共に、冷却媒体の一部を、特定
の単位巻線の近傍位置の水平ダクトに流通させるよう流
量制御する構成としたことを特徴とする変圧器巻線。2. An inner vertical duct, which is disposed axially between the inner peripheral insulating cylinder and the outer peripheral insulating cylinder, and is defined between the inner peripheral insulating cylinder and the inner peripheral insulating cylinder. Outer vertical duct defined between the inner and outer insulating ducts, a horizontal duct defined between the unit windings of each stage and connecting the inner and outer vertical ducts, and inner and outer insulating cylinders On the other hand, the unit windings of a desired number of stages are arranged in a staggered manner along the axial direction so as to form a flow-divided area, and a cooling medium flows in and out between the tip and the inner and outer insulating cylinders. In a transformer winding that has a plurality of bent plates that are alternately formed in the axial direction and that allows a cooling medium to flow in a zigzag shape along the axial direction in each bent region, Specified on the same side as the inflow / outflow part for the cooling medium to flow into one of the outer peripheral insulating cylinders, and A flow control protrusion arranged at a position opposed to the unit winding of the cooling medium, the flow control protrusion restricts the flow rate of the cooling medium flowing into each of the flow diverting areas along the inner and outer vertical ducts, and the cooling medium. The transformer winding is characterized in that the flow rate is controlled so that a part of the flow is circulated to a horizontal duct near a specific unit winding.
に軸方向に沿って配置され、かつ内周側の絶縁筒との間
に画成された内側垂直ダクトと、外周側の絶縁筒との間
に画成された外側垂直ダクトと、各段の単位巻線間に画
成されると共に、内,外側垂直ダクトを連絡する水平ダ
クトと、内,外周側の絶縁筒に対し、所望段数の単位巻
線を隔ててかつ軸方向に沿って互い違いに取付けられて
折流区域を各々形成すると共に、先端と内,外周側の絶
縁筒との間で冷却媒体の流入出部を軸方向に互い違いに
形成する複数の折流板とを有し、各々の折流区域内で軸
方向に沿い冷却媒体をジグザグ状に流通させる変圧器用
巻線において、各折流区域の内,外周側の絶縁筒の何れ
か一方に、冷却媒体が流入するための流入出部と同一側
であって、かつ特定の単位巻線と対向する位置に配置さ
れた流れ制御突起を取付け、該流れ制御突起と対向する
単位巻線の上部の水平ダクト内に、一端が前記流れ制御
突起を有する垂直ダクトに突出して配置された分流板を
取付け、前記流れ制御突起により、各折流区域に流入し
た冷却媒体が内,外側垂直ダクトに沿って流れる流量を
絞ると共に、冷却媒体の一部を、特定の単位巻線の近傍
位置の水平ダクトに流通させるよう流量制御すると共
に、前記分流板により、流れ制御突起を通過した冷却媒
体が、特定の単位巻線より下流側の水平ダクト内に流入
する流量を増加させることを特徴とする変圧器巻線。3. An inner vertical duct that is disposed along the axial direction between the inner peripheral insulating cylinder and the outer peripheral insulating cylinder and that is defined between the inner peripheral insulating cylinder and the outer peripheral insulating cylinder. Outer vertical duct defined between the inner and outer insulating ducts, a horizontal duct defined between the unit windings of each stage and connecting the inner and outer vertical ducts, and inner and outer insulating cylinders On the other hand, the unit windings of a desired number of stages are arranged in a staggered manner along the axial direction so as to form a flow-divided area, and a cooling medium flows in and out between the tip and the inner and outer insulating cylinders. In a transformer winding that has a plurality of bent plates that are alternately formed in the axial direction and that allows a cooling medium to flow in a zigzag shape along the axial direction in each bent region, Specified on the same side as the inflow / outflow part for the cooling medium to flow into one of the outer peripheral insulating cylinders, and A flow control protrusion arranged at a position opposed to the unit winding, and disposed in a horizontal duct at an upper portion of the unit winding opposed to the flow control protrusion so that one end projects to a vertical duct having the flow control protrusion. Attached to the flow control projections, the flow control projections restrict the flow rate of the cooling medium flowing into each of the flow diverting areas along the inner and outer vertical ducts, and cut a part of the cooling medium to a specific unit winding. While controlling the flow rate so as to circulate through the horizontal duct in the vicinity, it is possible to increase the flow rate of the cooling medium that has passed through the flow control projections into the horizontal duct on the downstream side of the specific unit winding by the flow dividing plate. Characteristic transformer winding.
に対し底辺部が密着して取付けられ、かつ頂部が特定の
単位巻線と対向して配置された三角形状をなしているこ
とを特徴とする特許請求の範囲第1〜3の何れか一項に
記載の変圧器巻線。4. The flow control protrusion has a triangular shape in which a bottom portion is closely attached to inner and outer insulating cylinders and a top portion is arranged to face a specific unit winding. The transformer winding according to any one of claims 1 to 3.
に対し、底辺部が狭い流路を隔てて取付けられ、かつ頂
部が特定の単位巻線と対向して配置された三角形状をな
していることを特徴とする特許請求の範囲第1〜3の何
れか一項に記載の変圧器巻線。5. The flow control projection has a triangular shape in which the bottom is attached to the inner and outer insulating cylinders with a narrow flow path and the top is arranged to face a specific unit winding. The transformer winding according to any one of claims 1 to 3, wherein the transformer winding is provided.
成されると共に、流入側斜面部と流出側斜面部とが彎曲
形状をなすと共に、その流入側斜面部と流出側斜面部間
の頂部が円弧形状をなしていることを特徴とする特許請
求の範囲第4項,第5項の何れか一項に記載の変圧器巻
線。6. The flow control protrusion has a bottom portion formed straight, an inflow side slope portion and an outflow side slope portion having a curved shape, and a space between the inflow side slope portion and the outflow side slope portion. The transformer winding according to any one of claims 4 and 5, wherein the top portion has an arc shape.
の材質からなることを特徴とする特許請求範囲第1項〜
第3項の何れか一項に記載の変圧器巻線。7. The flow control protrusions are made of a material having a relative dielectric constant of 3 or less.
The transformer winding according to any one of item 3.
材質からなるテープを巻き付けていることを特徴とする
特許請求の範囲第1項〜第3項の何れか一項に記載の変
圧器巻線。8. The transformer according to claim 1, wherein a tape made of a material having a low dielectric constant is wound around the flow control protrusion. Winding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7315564A JPH09162040A (en) | 1995-12-04 | 1995-12-04 | Winding of transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7315564A JPH09162040A (en) | 1995-12-04 | 1995-12-04 | Winding of transformer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09162040A true JPH09162040A (en) | 1997-06-20 |
Family
ID=18066870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7315564A Pending JPH09162040A (en) | 1995-12-04 | 1995-12-04 | Winding of transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09162040A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016082073A (en) * | 2014-10-17 | 2016-05-16 | 三菱電機株式会社 | Induction electric device winding apparatus |
CN107466188A (en) * | 2017-08-16 | 2017-12-12 | 中国原子能科学研究院 | A kind of cooling medium transport structure on high potential xegregating unit |
WO2020217274A1 (en) * | 2019-04-22 | 2020-10-29 | 東芝三菱電機産業システム株式会社 | Cooling structure for transformer |
EP4052276A4 (en) * | 2019-11-01 | 2023-07-26 | Hitachi Energy Switzerland AG | Insulation assembly, transformer assembly, and dry type transformer |
-
1995
- 1995-12-04 JP JP7315564A patent/JPH09162040A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016082073A (en) * | 2014-10-17 | 2016-05-16 | 三菱電機株式会社 | Induction electric device winding apparatus |
CN107466188A (en) * | 2017-08-16 | 2017-12-12 | 中国原子能科学研究院 | A kind of cooling medium transport structure on high potential xegregating unit |
WO2020217274A1 (en) * | 2019-04-22 | 2020-10-29 | 東芝三菱電機産業システム株式会社 | Cooling structure for transformer |
CN112119473A (en) * | 2019-04-22 | 2020-12-22 | 东芝三菱电机产业系统株式会社 | Cooling structure of transformer |
US12033780B2 (en) | 2019-04-22 | 2024-07-09 | Tmeic Corporation | Cooling structure for transformer |
CN112119473B (en) * | 2019-04-22 | 2024-08-16 | 东芝三菱电机产业系统株式会社 | Cooling structure of transformer |
EP4052276A4 (en) * | 2019-11-01 | 2023-07-26 | Hitachi Energy Switzerland AG | Insulation assembly, transformer assembly, and dry type transformer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4245206A (en) | Winding structure for static electrical induction apparatus | |
JPH09162040A (en) | Winding of transformer | |
JP3254998B2 (en) | Transformer winding | |
US4207550A (en) | Winding structure of electric devices | |
JP3535562B2 (en) | Gas-cooled power equipment | |
JPH06251956A (en) | Transformer winding | |
KR101832789B1 (en) | Electric transformer | |
JPH09293617A (en) | Guided spiral | |
JP2741876B2 (en) | Cooling structure of non-combustible transformer winding | |
JP3254914B2 (en) | Transformer winding | |
JP2000260629A (en) | Winding of stationary induction electric apparatus | |
JP2000077236A (en) | Stationary induction device | |
JPS58151009A (en) | Winding of stationary induction electric apparatus | |
JPH08273945A (en) | Transformer winding | |
JPS607457Y2 (en) | electrical equipment winding | |
JPH0822918A (en) | Transformer winding | |
JPH04168707A (en) | Disk winding of induction apparatus | |
JPH11168014A (en) | Transformer | |
JPH01183108A (en) | Induction electric apparatus disk winding | |
JPH01313912A (en) | Winding for induction electrical equipment | |
JPH0831656A (en) | Winding wire of transformer | |
JPH11121250A (en) | Winding of induction electrical apparatus | |
JPH10106848A (en) | Winding for induction electrical equipment | |
JP3465373B2 (en) | Winding cooling structure of gas insulation equipment | |
JPS61144804A (en) | Forced cooling oil-immersed electric apparatus winding |