JPH0831656A - Winding wire of transformer - Google Patents

Winding wire of transformer

Info

Publication number
JPH0831656A
JPH0831656A JP6169102A JP16910294A JPH0831656A JP H0831656 A JPH0831656 A JP H0831656A JP 6169102 A JP6169102 A JP 6169102A JP 16910294 A JP16910294 A JP 16910294A JP H0831656 A JPH0831656 A JP H0831656A
Authority
JP
Japan
Prior art keywords
vertical duct
duct
refrigerant
side vertical
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6169102A
Other languages
Japanese (ja)
Inventor
Koichi Sato
公一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP6169102A priority Critical patent/JPH0831656A/en
Publication of JPH0831656A publication Critical patent/JPH0831656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To provide a transformer winding wire which is restrained from being locally overheated and enhanced in cooling efficiency by a method wherein a pressure control member such as a corrugated board or the like is provided to an inlet-side vertical duct to enhance cooling medium in pressure loss so as to control it in flow rate toward a horizontal duct. CONSTITUTION:A coil 1 is arranged in an axial direction through the intermediary of horizontal ducts 2 (a to e), an inlet-side vertical duct 4 is formed between the coil 1 and an insulating cylinder 3, an outlet-side vertical duct 6 is formed between the coil 1 and an insulating cylinder 5, a deflecting plate 7 is disposed above the inlet-side vertical duct 4, a deflecting plate 8 is disposed below the outlet-side vertical duct 6, and a corrugated board 9 of insulating material such as FRP or press board is arranged between the coil 1 and the insulating cylinder 3. Cooling medium is enhanced in pressure loss by the corrugated board 9 provided to the inlet-side vertical duct 4 in a deflection zone, whereby it is restrained from drifting and controlled in flow rate to the horizontal duct 2, and the coil 1 is prevented from being locally overheated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変圧器の巻線に関し、
特に円板巻線(ディスクコイル)およびヘリカル巻線の
折流区方式による冷却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a winding of a transformer,
In particular, the present invention relates to a cooling structure of a disk winding (disk coil) and a helical winding by a split-flow section method.

【0002】[0002]

【従来の技術】従来の変圧器の巻線の巻線方式には多く
の方式があるが、その中で円板巻線は導体を径方向に巻
回した単位円板コイルを間隔片(ダクトピース)をはさ
んで軸方向に積み重ねたものである。また、ヘリカル巻
線は複数の導体を径方向に積み重ねたものを螺旋状に巻
回したものである。いずれの場合もコイル間(ヘリカル
コイルの場合はターン間)にダクトピースをはさんで水
平ダクト構成し、巻線(コイル)の内周および外周に絶
縁筒を配置し、この絶縁筒と巻線の間に軸方向スペーサ
を円周方向に適宜の間隔で配置し、冷媒の通路となる垂
直ダクトが構成されている。
2. Description of the Related Art There are many conventional winding methods for the windings of a transformer. Among them, a disk winding is a unit disk coil in which a conductor is wound in a radial direction. Pieces) are stacked in the axial direction. The helical winding is a spiral winding of a plurality of conductors stacked in the radial direction. In either case, a duct piece is sandwiched between coils (between turns in the case of a helical coil) to form a horizontal duct, and insulating cylinders are arranged on the inner and outer circumferences of the winding (coil). Axial spacers are circumferentially arranged between them at appropriate intervals to form a vertical duct that serves as a passage for the refrigerant.

【0003】前記の変圧器の巻線において、巻線の下部
から流入した冷媒の大部分は垂直ダクト内を通り、水平
ダクトへ流れる冷媒は少ない。そこで折流区方式という
構造が採用されてきた。折流区方式は、垂直ダクトの中
の所定の位置に内外交互に折流板を配置して冷却媒体の
流れを水平ダクト側へ変更させてジグザグに流して、巻
線の冷却効果を高める方法で、この方法が採用されてき
た。
In the above winding of the transformer, most of the refrigerant flowing from the lower part of the winding passes through the vertical duct and a small amount of refrigerant flows into the horizontal duct. Therefore, a structure called a split-flow system has been adopted. The split-flow zone method is a method of increasing the cooling effect of the winding by arranging the split-flow plates alternately at the predetermined positions in the vertical duct to change the flow of the cooling medium to the side of the horizontal duct and flowing it in zigzag. So, this method has been adopted.

【0004】図6は従来の折流区方式の変圧器巻線の要
部を示す要部縦断面図で、図6において、コイル21は
水平ダクト22(a〜e)を介して軸方向に配置され、
コイル21と絶縁筒23の間には入口側垂直ダクト24
が、絶縁筒25との間には出口側垂直ダクト26が形成
されている。そして、入口側垂直ダクト24の上部には
折流板27が、出口側垂直ダクト26の下部には折流板
28が配置されて冷媒の流れの方向を転換されている。
FIG. 6 is a vertical cross-sectional view showing a main part of a conventional winding winding type transformer winding. In FIG. 6, a coil 21 is axially arranged via a horizontal duct 22 (a to e). Placed,
An inlet side vertical duct 24 is provided between the coil 21 and the insulating cylinder 23.
However, an outlet side vertical duct 26 is formed between the insulating cylinder 25 and the insulating cylinder 25. A flow diverter plate 27 is arranged above the inlet side vertical duct 24, and a flow fold plate 28 is arranged below the outlet side vertical duct 26 to change the flow direction of the refrigerant.

【0005】冷媒は図示省略した前段の折流区の出口側
垂直ダクトの出口から冷媒入口29に流入し、該入口2
9から当折流区の入口側垂直ダクト24へ流入し、各水
平ダクト22のa〜eへ分流する。分流した冷媒は出口
側垂直ダクト26で合流し、当折流区の出口側垂直ダク
ト26の冷媒出口30から次の折流区の入口側垂直ダク
トの入口へ流入するという流路を通る。
Refrigerant flows into the refrigerant inlet 29 from the outlet of the outlet side vertical duct of the flow break section in the preceding stage (not shown), and the inlet 2
9 flows into the vertical duct 24 on the inlet side of the current flow section, and branches into a to e of each horizontal duct 22. The split refrigerants merge in the outlet-side vertical duct 26, and pass through a flow path in which the refrigerant outlet 30 of the outlet-side vertical duct 26 of the current flow section flows into the inlet-side vertical duct of the next flow-flow section.

【0006】図7は図6の変圧器巻線の各水平ダクト2
2のa〜eの位置における冷媒流量の流量曲線図で、図
7に示すように、各水平ダクト夫々の流量は、折流区の
出口側垂直ダクト26の冷媒出口30に近い水平ダクト
22eが最大で、その他の水平ダクト22a〜22dは
極端に少なくなっている。
FIG. 7 shows each horizontal duct 2 of the transformer winding of FIG.
2 is a flow rate curve diagram of the refrigerant flow rate at the positions a to e, the horizontal duct 22e near the refrigerant outlet 30 of the outlet side vertical duct 26 of the mixed flow section has a flow rate of each horizontal duct as shown in FIG. At the maximum, the other horizontal ducts 22a to 22d are extremely small.

【0007】[0007]

【発明が解決しようとする課題】このような従来の構成
では、入口側垂直ダクト24から水平ダクト22に冷媒
が流れを変える部分に曲がり損を発生する。このため冷
媒の大半は入口側垂直ダクト24のa〜cを直進し、出
口側垂直ダクト26の出口近くの水平ダクト22eに流
量が集中(図7参照)し、入口側垂直ダクト24の冷媒
入口29付近の水平ダクト22aには殆ど冷媒が流れな
いという偏流を生じる。この冷媒の偏流に伴って、冷媒
流量の極端に少ない場所に位置するコイルには局部過熱
を生じる可能性が大となる。
In such a conventional structure, bending loss occurs at the portion where the refrigerant changes the flow from the inlet side vertical duct 24 to the horizontal duct 22. Therefore, most of the refrigerant goes straight through a to c of the inlet side vertical duct 24, and the flow rate is concentrated in the horizontal duct 22e near the outlet of the outlet side vertical duct 26 (see FIG. 7). A drift occurs in which the refrigerant hardly flows in the horizontal duct 22a near 29. Due to this uneven flow of the refrigerant, there is a high possibility that local overheating will occur in the coil located at a place where the refrigerant flow rate is extremely low.

【0008】本発明は、以上のような点に鑑みてなされ
たもので、折流区の入口側垂直ダクトに、波形コルゲー
トボードまたはパイプ等の圧力調整部材を設置して圧力
損失を高めることにより水平ダクトへの冷媒の流量を調
整して、巻線の局部過熱の発生を抑制して冷却効率を高
めた変圧器を提供することを目的とする。
The present invention has been made in view of the above points, and a pressure adjusting member such as a corrugated corrugated board or a pipe is installed in a vertical duct on the inlet side of a flow break section to increase pressure loss. An object of the present invention is to provide a transformer in which the refrigerant flow rate to the horizontal duct is adjusted to suppress the occurrence of local overheating of the winding and to improve the cooling efficiency.

【0009】[0009]

【課題を解決するための手段】本発明において、上記の
課題を解決するための手段は、折流区方式の冷却構造を
有する変圧器巻線において、折流区の入口側垂直ダクト
のコイルと絶縁筒間に、絶縁材料製の圧力調整部材を設
けて圧力損失を高め、水平ダクトへの冷媒の流量を調整
して巻線の局部過熱の発生を抑制するようにする。
Means for Solving the Problems In the present invention, a means for solving the above-mentioned problems is to provide a coil of a vertical duct on the inlet side of a diversion section in a transformer winding having a cooling structure of a diversion section type. A pressure adjusting member made of an insulating material is provided between the insulating cylinders to increase the pressure loss and adjust the flow rate of the refrigerant to the horizontal duct to suppress the local overheating of the winding.

【0010】この圧力調整部材は、波形コルゲート、角
型又は丸型パイプの1又は2の組み合わせにより構成す
ることを好適とする。
It is preferable that this pressure adjusting member is constructed by a combination of one or two of a corrugated corrugated pipe, a square pipe or a round pipe.

【0011】また、入口側垂直ダクトに配置する圧力調
整部材の垂直ダクト断面積に占める割合を冷媒入口側か
ら出口側へ向かって順次大きくして冷媒の水平ダクトへ
の分流率を均一化して冷却効率を高める。
Further, the ratio of the pressure adjusting member arranged in the inlet side vertical duct to the vertical duct cross-sectional area is gradually increased from the refrigerant inlet side to the outlet side to uniformize the flow distribution ratio of the refrigerant to the horizontal duct for cooling. Increase efficiency.

【0012】この圧力調整部材の垂直ダクト断面積に占
める割合の調整手段は、波形コルゲートによる場合は波
目の荒さの異なるもの、パイプによる場合は、パイプの
開口率の異なるものを用いて垂直ダクトの開口率を調整
するようにする。
As a means for adjusting the ratio of the pressure adjusting member to the cross-sectional area of the vertical duct, a corrugated corrugator having different corrugation roughness and a pipe having different opening ratio of the pipe are used. Adjust the aperture ratio of.

【0013】[0013]

【作用】本発明の構成では、折流区の入口側垂直ダクト
に波形コルゲートボードまたはパイプ等の圧力調整部材
を設置して圧力損失を高めることにより、偏流を抑制し
て水平ダクトへの冷媒の流量を調整し、局部過熱の発生
を抑制し、変圧器巻線の冷却効率が高められる。
In the structure of the present invention, a pressure adjusting member such as a corrugated corrugated board or a pipe is installed in the vertical duct on the inlet side of the flow diversion section to increase pressure loss, thereby suppressing uneven flow and preventing the refrigerant from flowing into the horizontal duct. It regulates the flow rate, suppresses the occurrence of local overheating, and enhances the cooling efficiency of the transformer winding.

【0014】[0014]

【実施例】以下、本発明の変圧器巻線の実施例を図に基
づいて説明する。
Embodiments of the transformer winding of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の変圧器巻線の第1実施例の
要部の縦断面図、図2は図1のA−A′線における要部
横断面図で、図1および図2において、コイル1は水平
ダクト2(2a〜2e)を介して軸方向に配置され、コ
イル1と絶縁筒3の間には入口側(上流側)垂直ダクト
4が、絶縁筒5との間には出口側垂直ダクト6が形成さ
れている。そして、入口側垂直ダクト4の上部には折流
板7が、出口側(下流側)垂直ダクト6の下部には折流
板8が配置されている。コイル1と絶縁筒3の間にはプ
レスボード、FRPなどの絶縁材料製の圧力調整部材を
設ける。
FIG. 1 is a longitudinal sectional view of an essential part of a first embodiment of a transformer winding of the present invention, and FIG. 2 is a lateral sectional view of an essential part taken along the line AA 'of FIG. In, the coil 1 is arranged in the axial direction via the horizontal ducts 2 (2a to 2e), the inlet side (upstream side) vertical duct 4 is provided between the coil 1 and the insulating tube 3, and the insulating tube 5 is provided. The outlet side vertical duct 6 is formed. A flow fold plate 7 is arranged above the inlet-side vertical duct 4, and a flow fold plate 8 is arranged below the outlet-side (downstream) vertical duct 6. A pressure adjusting member made of an insulating material such as a press board or FRP is provided between the coil 1 and the insulating cylinder 3.

【0016】本実施例における圧力調整部材は、波形
(波の形状は、半円形、三角波形、方形波形、サインウ
ェーブ形など)コルゲートボード9で構成してある。な
お、10は水平ダクト2を形成するためのダクトピー
ス、11は冷媒入口、12は冷媒出口であると同時に、
次の折流区の冷媒入口となる。図2においては外側に入
口側垂直ダクト4がある場合の折流区の断面を示してい
るが、折流区は入口側垂直ダクト4と出口側垂直ダクト
6はコイル1の内側と外側に交互に形成されるので、入
口側垂直ダクト4がコイル1の内側にある折流区では、
波形コルゲートボード9がコイル1の内側に配置され
る。
The pressure adjusting member in this embodiment is composed of a corrugated board 9 having a wave shape (wave shape is semicircular, triangular wave, square wave, sine wave, etc.). In addition, 10 is a duct piece for forming the horizontal duct 2, 11 is a refrigerant inlet, 12 is a refrigerant outlet, and at the same time,
It will be the refrigerant inlet for the next break-up area. In FIG. 2, the cross section of the fold flow section when the inlet side vertical duct 4 is provided on the outside is shown, but the fold flow section alternates between the inlet side vertical duct 4 and the outlet side vertical duct 6 inside and outside the coil 1. Since the inlet side vertical duct 4 is inside the coil 1,
A corrugated corrugated board 9 is arranged inside the coil 1.

【0017】冷媒は冷媒入口11から入口側垂直ダクト
4へ流入し、各水平ダクト2a〜2eへ分流する。分流
した冷媒は出口側垂直ダクト6で合流し、冷媒出口12
から次の折流区の入口側垂直ダクトへ流入するという流
路を通る。そして、コイル1と絶縁筒3の間の入口側垂
直ダクト4には波形コルゲートボード9が冷媒の流れに
対して抵抗となり、水平ダクト2a〜2eへ冷媒が分流
し易くなる。これにより、偏流を抑制して水平ダクトへ
の冷媒の流量を調整し、局部過熱の発生を抑制し、変圧
器巻線の冷却効率を高めコンパクト化することができ
る。
The refrigerant flows from the refrigerant inlet 11 into the inlet-side vertical duct 4 and splits into the horizontal ducts 2a to 2e. The separated refrigerant merges in the outlet-side vertical duct 6, and the refrigerant outlet 12
Through the flow path that flows into the vertical duct on the inlet side of the next fold section. Then, the corrugated corrugated board 9 acts as a resistance against the flow of the refrigerant in the inlet-side vertical duct 4 between the coil 1 and the insulating cylinder 3, and the refrigerant is easily split into the horizontal ducts 2a to 2e. As a result, it is possible to suppress uneven flow, adjust the flow rate of the refrigerant to the horizontal duct, suppress the occurrence of local overheating, and enhance the cooling efficiency of the transformer windings to make the device compact.

【0018】図3は本発明の変圧器巻線の第1実施例の
水平ダクト2a〜2eの位置における冷媒流量を示す流
量曲線図で、図3に示すように、各水平ダクト毎の流量
は、ほぼ一定となる。
FIG. 3 is a flow rate curve diagram showing the refrigerant flow rate at the positions of the horizontal ducts 2a to 2e of the first embodiment of the transformer winding of the present invention. As shown in FIG. 3, the flow rate of each horizontal duct is , Becomes almost constant.

【0019】図4は本発明の変圧器巻線の第2実施例の
要部を示す横断面図で、コイル1と絶縁筒3の間には入
口側垂直ダクト4が、絶縁筒5との間には出口側垂直ダ
クト6が配置されている。そして、コイル1と絶縁筒3
の間には圧力調整部材としてプレスボード、FRPなど
の絶縁材料製の角型パイプ13を配置したものである。
なお、10はダクトピースである。効果は第1実施例の
波形コルゲートボードを使用した場合と同様である。
FIG. 4 is a cross-sectional view showing the essential parts of a second embodiment of the transformer winding of the present invention, in which an inlet side vertical duct 4 and an insulating cylinder 5 are provided between the coil 1 and the insulating cylinder 3. An outlet side vertical duct 6 is arranged in between. And the coil 1 and the insulating tube 3
Between them, a rectangular pipe 13 made of an insulating material such as a press board or FRP is arranged as a pressure adjusting member.
In addition, 10 is a duct piece. The effect is similar to that when the corrugated corrugated board of the first embodiment is used.

【0020】図5は本発明の変圧器巻線の第3実施例の
要部を示す横断面図で、コイル1と絶縁筒3の間には入
口側垂直ダクト4が、絶縁筒5との間には出口側垂直ダ
クト6が配置されている。そして、コイル1と絶縁筒3
の間には圧力調整部材としてプレスボード、FRPなど
の絶縁材料製の丸型パイプ14を配置したものである。
なお、10はダクトピースである。効果は第1実施例の
波形コルゲートボードを使用した場合と同様である。
FIG. 5 is a cross-sectional view showing an essential part of a third embodiment of the transformer winding of the present invention. An inlet side vertical duct 4 is provided between the coil 1 and the insulating tube 3 and an insulating tube 5 is provided. An outlet side vertical duct 6 is arranged in between. And the coil 1 and the insulating tube 3
A circular pipe 14 made of an insulating material such as a press board or FRP is arranged as a pressure adjusting member.
In addition, 10 is a duct piece. The effect is similar to that when the corrugated corrugated board of the first embodiment is used.

【0021】以上のように本発明は、変圧器巻線の入口
側垂直ダクトの圧力調整部材を設けて、入口側垂直ダク
トの圧力損失を調整することで、冷媒の水平ダクトへの
分流を良くするようにしたものであるから、入口側垂直
ダクトに配置する圧力調整部材の垂直ダクト断面積に占
める割合を、冷媒入口側から出口側へ向かって順次大き
くすれば冷媒の水平ダクトへの分流率は均一化される。
As described above, according to the present invention, by providing the pressure adjusting member for the inlet side vertical duct of the transformer winding and adjusting the pressure loss of the inlet side vertical duct, the branching of the refrigerant to the horizontal duct is improved. Therefore, if the ratio of the pressure adjusting member arranged in the inlet side vertical duct to the vertical duct cross-sectional area is gradually increased from the refrigerant inlet side to the outlet side, the flow distribution ratio of the refrigerant to the horizontal duct is increased. Are homogenized.

【0022】この圧力調整部材の垂直ダクト断面積に占
める割合を調整する手段としては、波形コルゲートによ
る場合は波目の荒さの異なるものを用いて各垂直ダクト
の開口率を調整し、また、角型パイプ又は丸型パイプに
よる場合は、各パイプの開口率の異なるものを夫々垂直
ダクトに配置して調整することによって、更に、これら
の1又は2以上の組み合わせによって実現することがで
きる。
As a means for adjusting the ratio of the pressure adjusting member to the cross-sectional area of the vertical duct, in the case of using a corrugated corrugate, different corrugation roughness is used to adjust the opening ratio of each vertical duct. In the case of a mold pipe or a round pipe, it can be realized by arranging pipes having different opening ratios in vertical ducts and adjusting the pipes, and further by one or a combination of two or more of them.

【0023】[0023]

【発明の効果】以上のように、本発明の変圧器巻線によ
れば、 (1)折流区方式の冷却構造を有する変圧器巻線の入口
側垂直ダクトに、波形コルゲートボードまたはパイプ等
の圧力調整部材を設置して圧力損失を高めることにより
偏流を抑制して水平ダクトへの冷媒の分流を良くし、冷
媒の偏流を抑制でき、冷却効率を高めることができる。
As described above, according to the transformer winding of the present invention, (1) a corrugated corrugated board, a pipe, or the like is provided in the inlet-side vertical duct of the transformer winding having the cooling structure of the split-flow type. It is possible to suppress uneven flow by increasing the pressure loss by installing the pressure adjusting member of (3), improve the flow of the refrigerant to the horizontal duct, suppress uneven flow of the refrigerant, and improve the cooling efficiency.

【0024】(2)巻線の局部過熱の発生を抑制するこ
とができる。
(2) The occurrence of local overheating of the winding can be suppressed.

【0025】(3)これにより、コンパクトで故障の少
ない変圧器を提供することができる。
(3) As a result, it is possible to provide a compact transformer with few failures.

【0026】などの優れた効果が得られる。Excellent effects such as the above can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の変圧器巻線の第1実施例の要部縦断面
図。
FIG. 1 is a longitudinal cross-sectional view of a main part of a first embodiment of a transformer winding of the present invention.

【図2】図1のA−A部の横断面図。FIG. 2 is a cross-sectional view taken along the line AA of FIG.

【図3】本発明の変圧器巻線の第1実施例の水平ダクト
の位置における冷媒流量曲線図。
FIG. 3 is a refrigerant flow rate curve diagram at the position of the horizontal duct of the first embodiment of the transformer winding of the present invention.

【図4】本発明の変圧器巻線の第2実施例の要部横断面
図。
FIG. 4 is a transverse cross-sectional view of the essential parts of a second embodiment of the transformer winding of the present invention.

【図5】本発明の変圧器巻線の第3実施例の要部横断面
図。
FIG. 5 is a transverse cross-sectional view of the essential parts of a third embodiment of the transformer winding of the present invention.

【図6】従来の折流区方式の変圧器巻線の要部部分縦断
面図。
FIG. 6 is a partial vertical cross-sectional view of a main part of a conventional winding winding type transformer winding.

【図7】従来の折流区方式の変圧器巻線の水平ダクトの
位置における冷媒流量曲線図。
FIG. 7 is a refrigerant flow rate curve diagram at a position of a horizontal duct of a conventional winding-flow-type transformer winding.

【符号の説明】[Explanation of symbols]

1…コイル 2(a〜e)…水平ダクト 3,5…絶縁筒 4…入口側垂直ダクト 6…出口側垂直ダクト 7,8…折流板 9…波形コルゲートボード 10…ダクトピース 11…冷媒入口 12…冷媒出口 13…角型パイプ 14…丸型パイプ DESCRIPTION OF SYMBOLS 1 ... Coil 2 (a-e) ... Horizontal duct 3, 5 ... Insulation cylinder 4 ... Entrance side vertical duct 6 ... Exit side vertical duct 7, 8 ... Folding plate 9 ... Corrugated corrugated board 10 ... Duct piece 11 ... Refrigerant inlet 12 ... Refrigerant outlet 13 ... Square pipe 14 ... Round pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 折流区方式の冷却構造を有する変圧器巻
線において、折流区の入口側垂直ダクトのコイルと絶縁
筒間に、絶縁材料製の圧力調整部材を設けて圧力損失を
高め、水平ダクトへの冷媒の流量を調整して巻線の局部
過熱の発生を抑制するようにしたことを特徴とする変圧
器巻線。
1. In a transformer winding having a cooling structure of a mixed flow system, a pressure adjusting member made of an insulating material is provided between the coil of the vertical duct on the inlet side of the distributed flow region and the insulating cylinder to increase the pressure loss. A transformer winding, wherein the flow rate of the refrigerant to the horizontal duct is adjusted to suppress the occurrence of local overheating of the winding.
【請求項2】 圧力調整部材は、波形コルゲート又はパ
イプ(角型又は丸型)の1又は2の組み合わせにより構
成したことを特徴とする請求項1記載の変圧器巻線。
2. The transformer winding according to claim 1, wherein the pressure adjusting member is constituted by a combination of one or two corrugated corrugated pipes or pipes (square or round).
【請求項3】 入口側垂直ダクトに配置する圧力調整部
材の垂直ダクト断面積に占める割合を、冷媒入口側から
出口側へ向かって順次大きくして冷媒の水平ダクトへの
分流率を均一化するようにしたことを特徴とする請求項
1又は2記載の変圧器巻線。
3. The ratio of the pressure adjusting member arranged in the inlet-side vertical duct to the vertical duct cross-sectional area is gradually increased from the refrigerant inlet side to the outlet side to equalize the distribution ratio of the refrigerant to the horizontal duct. The transformer winding according to claim 1 or 2, characterized in that.
【請求項4】 圧力調整部材の垂直ダクト断面積に占め
る割合の調整手段は、波形コルゲートによる場合は波目
の荒さの異なるもの、パイプによる場合はパイプの開口
率の異なるものを用いて垂直ダクトの開口部を調整する
ようにしたことを特徴とする請求項3記載の変圧器巻
線。
4. The vertical duct using a corrugated corrugation having different corrugation roughness and a pipe having different opening ratio of the pipe as a means for adjusting the ratio of the pressure adjusting member to the vertical duct cross-sectional area. 4. The transformer winding according to claim 3, wherein the opening of the transformer winding is adjusted.
JP6169102A 1994-07-21 1994-07-21 Winding wire of transformer Pending JPH0831656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6169102A JPH0831656A (en) 1994-07-21 1994-07-21 Winding wire of transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6169102A JPH0831656A (en) 1994-07-21 1994-07-21 Winding wire of transformer

Publications (1)

Publication Number Publication Date
JPH0831656A true JPH0831656A (en) 1996-02-02

Family

ID=15880349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6169102A Pending JPH0831656A (en) 1994-07-21 1994-07-21 Winding wire of transformer

Country Status (1)

Country Link
JP (1) JPH0831656A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114307A (en) * 2010-11-26 2012-06-14 Japan Ae Power Systems Corp Transformer for rectifier
WO2020045875A1 (en) * 2018-08-31 2020-03-05 엘에스산전 주식회사 Transformer having cooling structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114307A (en) * 2010-11-26 2012-06-14 Japan Ae Power Systems Corp Transformer for rectifier
WO2020045875A1 (en) * 2018-08-31 2020-03-05 엘에스산전 주식회사 Transformer having cooling structure

Similar Documents

Publication Publication Date Title
US6877552B1 (en) Static mixer-heat exchanger
CN1584482B (en) Heat exchanger
TWI373594B (en) Steam generator pipe, continuous steam generator and fabricating the same
JP2005509125A (en) Heat exchanger
RU2005126304A (en) EVAPORATIVE THERMO-FLUID HEAT EXCHANGER
US6577027B2 (en) Electrical equipment winding structure providing improved cooling fluid flow
EP1347258A2 (en) Heat exchanger flow-through tube supports
US20090050307A1 (en) Steam Generator Pipe, Associated Production Method and Continuous Steam Generator
JPH0831656A (en) Winding wire of transformer
JP3254998B2 (en) Transformer winding
KR20120004367U (en) Method for cooling a coil coil cooling system and liquid cooled coil
JP6871731B2 (en) Transformer
US6688376B2 (en) Two port coil capacity modulator
JPH06251956A (en) Transformer winding
RU2001104299A (en) ELECTRIC MACHINE STATOR
JP2000227230A (en) Heat exchange coil for air-conditioner
JPH08273945A (en) Transformer winding
JPH09162040A (en) Winding of transformer
JP3254914B2 (en) Transformer winding
JP2017110878A (en) Double-pipe heat exchanger
JP2000077236A (en) Stationary induction device
JP2013243167A (en) Stationary induction apparatus
JPH06151206A (en) Transformer winding
JPH0960763A (en) Cage for regulating valve, regulating valve, and diffuser
JPH07161541A (en) Transformer winding