JPH07161541A - Transformer winding - Google Patents

Transformer winding

Info

Publication number
JPH07161541A
JPH07161541A JP5303745A JP30374593A JPH07161541A JP H07161541 A JPH07161541 A JP H07161541A JP 5303745 A JP5303745 A JP 5303745A JP 30374593 A JP30374593 A JP 30374593A JP H07161541 A JPH07161541 A JP H07161541A
Authority
JP
Japan
Prior art keywords
winding
duct
windings
inter
turn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5303745A
Other languages
Japanese (ja)
Inventor
Takeshi Sakamoto
健 坂元
Hideki Masuhara
秀樹 増原
Norikazu Tabata
範和 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5303745A priority Critical patent/JPH07161541A/en
Publication of JPH07161541A publication Critical patent/JPH07161541A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Transformer Cooling (AREA)

Abstract

PURPOSE:To make uniform the temperature rise distribution of a winding while reducing the overall temperature rise of the winding by making uniform the flow rate distribution of cooling medium. CONSTITUTION:A plurality of ducts 4 are provided between the turns of a winding 1 in the radial direction while shifting the position in the radial direction for each stage of the winding. Furthermore, a cooling medium supply duct 6 and a cooling medium discharge duct 8 are formed, respectively, between insulation tubes 2a, 2b and 2c, 2d. The entire winding is split into a plurality of regions by a guide member 5. A cooling medium supply port 7 is provided for the insulation tube 2b at the lower part of each region and a cooling medium discharge port 9 is provided for the insulation tube 2c at the upper part of each region in order to supply the cooling medium in parallel to respective regions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円板巻線またはヘリカ
ル巻線からなる変圧器巻線の冷却性能を向上させる構造
に係り、特に、強制循環冷却SF6 ガス絶縁変圧器の巻
線の冷却性能向上を狙った構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for improving the cooling performance of a transformer winding composed of a disk winding or a helical winding, and more particularly, to a winding of a forced circulation cooling SF 6 gas insulation transformer. A structure for improving cooling performance.

【0002】[0002]

【従来の技術】都市に設置する変圧器には防災上、不燃
化の要望が強く、また、大容量化,小形化の要求も強
い。不燃性の絶縁冷却媒体を用いた変圧器として、SF
6 ガスを絶縁冷却媒体としたガス絶縁変圧器が実用化さ
れているが、SF6 ガスは密度,比熱,熱伝導率などの
伝熱性能に関係する物性値が液状絶縁冷却媒体に比べ小
さいために冷却性能が悪く、また、絶縁耐力も小さい。
このため、変圧器巻線内の絶縁距離を大きくとる一方、
冷却媒体であるガスの体積流量を多く流している。変圧
器巻線の構造が、鉄心の周りに素線を円板状に巻いた円
板巻線あるいはら旋状に巻いたヘリカル巻線の場合は、
巻線の半径方向の内側及び外側に、絶縁筒に沿って垂直
ダクトを設け、また、切欠きが巻線の半径方向の内外に
交互に設けられた折流板を巻線の軸方向に複数枚挿入
し、冷却媒体が軸方向に流れるに従い、巻線内の半径方
向の流れの向きが折流区ごとに内外交互に変わるように
なっている。このような構造で冷却媒体の体積流量が多
く、また冷却媒体の流れる流路の断面積が大きいと、折
流区内の上方の水平ダクトへ冷却媒体が多く流れ、下方
部の水平ダクトには少なく流れる傾向になる。このた
め、巻線の温度上昇分布に大きな差が出て、巻線の平均
温度上昇に対して巻線の最高温度上昇が高くなる傾向が
ある。このようなことから、巻線内のガスの流れを改善
するために、絶縁筒に沿った垂直ダクトの他に、巻線の
半径方向の中央付近に、軸方向に貫通する垂直ダクトを
設けたり、またこのダクトの半径方向の寸法や位置を巻
線の段ごとに異ならせる方法もある(特開昭52−43937
号,特開昭53−40820号,特開昭54−34025 号公報)。
しかし、この構造では、流れの抵抗の少ない絶縁筒に沿
った垂直ダクト内をガスが多く流れ、巻線の半径方向の
中央付近の垂直ダクトや、水平ダクト内を流れるガスの
流量は相対的に少なくなり、巻線温度上昇低減の効果は
小さい。
2. Description of the Related Art For disaster prevention, there is a strong demand for non-combustible transformers installed in cities, and there is also a strong demand for larger capacity and smaller size. As a transformer using non-flammable insulating cooling medium, SF
Gas-insulated transformers using 6 gas as an insulating cooling medium have been put to practical use, but SF 6 gas has smaller physical properties related to heat transfer performance such as density, specific heat, and thermal conductivity than liquid insulating cooling medium. The cooling performance is poor and the dielectric strength is low.
Therefore, while increasing the insulation distance in the transformer winding,
The volumetric flow rate of the cooling medium gas is high. If the structure of the transformer winding is a disk winding in which the element wire is wound in a disk shape around the iron core or a helical winding in a spiral shape,
Vertical ducts are provided inside and outside the winding in the radial direction along the insulating cylinder, and a plurality of flow diverters are provided in the axial direction of the winding, in which notches are alternately provided inside and outside the winding in the radial direction. As the cooling medium flows in the axial direction by inserting one sheet, the direction of the radial flow in the winding is alternately changed between the inside and the outside for each of the fold sections. With such a structure, when the volumetric flow rate of the cooling medium is large and the cross-sectional area of the flow path through which the cooling medium flows is large, a large amount of cooling medium flows into the upper horizontal duct in the flow-divided section, and the lower horizontal duct in the lower horizontal duct. It tends to flow less. Therefore, there is a large difference in the temperature rise distribution of the winding, and the maximum temperature rise of the winding tends to be higher than the average temperature rise of the winding. Therefore, in order to improve the gas flow in the winding, in addition to the vertical duct along the insulating cylinder, a vertical duct penetrating in the axial direction may be provided near the radial center of the winding. There is also a method in which the radial dimension and position of the duct are made different for each winding step (Japanese Patent Laid-Open No. 52-43937).
No. 53-40820 and 54-34025.
However, in this structure, a large amount of gas flows in the vertical duct along the insulating cylinder with low flow resistance, and the flow rate of gas in the vertical duct near the radial center of the winding and in the horizontal duct is relatively high. The effect of reducing the winding temperature rise is small.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、変圧
器巻線内の、特に円板巻線あるいはヘリカル巻線からな
るSF6ガス絶縁変圧器の巻線内の各ダクトを流れる冷
却媒体流量を均一化し、巻線の巻線全体の温度上昇を低
減するとともに、温度上昇分布を均一化する巻線構造を
提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a cooling medium in a transformer winding, in particular in ducts in the winding of an SF 6 gas-insulated transformer consisting of a disc winding or a helical winding. It is an object of the present invention to provide a winding structure that makes the flow rate uniform, reduces the temperature rise of the entire winding, and makes the temperature rise distribution uniform.

【0004】[0004]

【課題を解決するための手段】巻線を構成する円板巻線
あるいはヘリカル巻線の各段の半径方向に、複数個のタ
ーン間ダクトを設け、軸方向に並ぶ上下の円板巻線ある
いはヘリカル巻線のターン間ダクトとは半径方向の位置
を異ならせ、絶縁筒に接して巻線側に設けた、従来の垂
直スペーサを省略する。ターン間ダクトは、帯状の絶縁
物、例えばプレスボードに、適正な高さの棒状スペーサ
部材を片側あるいは両側に取り付けたターン間間隙材を
素線間に巻き込んで確保する。さらに、巻線を軸方向に
複数個の領域に分割し、巻線の内外に配設する絶縁筒内
に半径方向に一層ないし複数層の軸方向のダクトを設
け、絶縁筒も高さ方向に、巻線の分割領域と対応させて
巻線に接する絶縁筒の巻線側に開口部を設け、絶縁冷却
媒体を前記絶縁筒内の軸方向ダクト内を流し、分割した
巻線各領域に並列に流す。巻線を複数の領域に分割する
部署には、巻線の半径方向幅に相当する板状の案内部材
を、支持部材により傾斜させて支持した状態で巻線間に
挿入する。巻線に接する絶縁筒には、前記傾斜した案内
部材の上方に冷却媒体流入用開口部を設け、この開口部
から絶縁冷却媒体が巻線内に流入するようにする。ま
た、巻線からの絶縁冷却媒体の出口は、前記傾斜した案
内部材の下方から、流入した側とは反対側から絶縁筒内
のダクトへ流出させる。また、水平ダクトを形成する水
平スペーサは、板状絶縁物の絶縁筒に接する端面側に直
角に絶縁物製の板を取付けた構造にし、素線を絶縁筒に
巻く際に巻き込むようにする。また、一般的に巻線の高
さ方向の発熱量分布は、漂遊損のため、上下端部が大き
いが、巻線を複数の領域に分割する際、上下端部の分割
領域内の巻線段数を中央部の領域内の巻線段数より少な
くする。
Means for Solving the Problems A plurality of inter-turn ducts are provided in the radial direction of each stage of a disk winding or a helical winding forming a winding, and upper and lower disk windings arranged in the axial direction or The conventional vertical spacer provided on the winding side in contact with the insulating cylinder is omitted by making the radial position different from the inter-turn duct of the helical winding. The inter-turn duct is secured by winding an inter-turn gap material in which a bar-shaped spacer member having an appropriate height is attached to one side or both sides of a strip-shaped insulator, for example, a press board, between the wires. Further, the winding is divided into a plurality of regions in the axial direction, and one or more layers of axial ducts are provided in the radial direction inside the insulating cylinder arranged inside and outside the winding, and the insulating cylinder is also arranged in the height direction. An opening is provided on the winding side of the insulating cylinder that is in contact with the winding corresponding to the divided area of the winding, and an insulating cooling medium is flown in the axial duct in the insulating cylinder to be parallel to each divided winding area. Shed on. In the section that divides the winding into a plurality of regions, a plate-shaped guide member corresponding to the radial width of the winding is inserted between the windings while being supported by being inclined by a supporting member. The insulating cylinder in contact with the winding is provided with a cooling medium inflow opening above the inclined guide member so that the insulating cooling medium flows into the winding through this opening. In addition, the outlet of the insulating cooling medium from the winding is made to flow from below the inclined guide member to the duct in the insulating cylinder from the side opposite to the inflow side. Further, the horizontal spacer forming the horizontal duct has a structure in which a plate made of an insulating material is attached at a right angle to the end surface side of the plate-shaped insulating material which is in contact with the insulating tube, and is wound when the wire is wound around the insulating tube. Generally, the distribution of heat generation in the height direction of the winding is large at the upper and lower ends due to stray loss, but when the winding is divided into multiple regions, the winding in the divided region at the upper and lower ends The number of stages is less than the number of winding stages in the central region.

【0005】[0005]

【作用】円板巻線あるいはヘリカル巻線の半径方向に、
複数のターン間ダクトを設けることにより、素線の冷却
面積が増加し、巻線表面の熱流束が小さくなる。このた
め、巻線素線に巻かれた絶縁紙層内の温度落差および絶
縁紙層表面と冷却媒体との温度差も小さくなり、素線の
温度を下げることができる。また、前記軸方向のターン
間ダクトの半径方向の位置が、巻線段毎に異なるため、
ターン間ダクトを流出した冷却媒体が噴流となってその
上方にある巻線素線に衝突して効果的に冷却し、さら
に、巻線内で軸方向に貫通する垂直ダクトが無いため、
水平ダクトでの半径方向の冷却媒体の流れが確保でき、
軸方向のダクト及び水平ダクト内の冷却媒体の流量分布
が均一化し、巻線素線周囲の熱伝達率が、従って巻線の
温度分布も均一化でき、局部加熱が防止できる。なお、
冷却媒体の流れが分岐合流を重ねるため、流れによる圧
力損失が大きくなる傾向となるが、巻線を複数領域への
並列流路に分けるため、巻線内の1領域内を軸方向に流
れる流量は領域数に反比例して小さくなり、流れによる
圧力損失がほぼ流量の二乗に比例することを考えると圧
力損失は小さく抑えられる。なお、巻線の各領域に流れ
る冷却媒体の流量は全流量にたいして少なくなるが、冷
却媒体の流れる水平及び軸方向のダクトの長さが短くな
るため、温度境界層の厚さは薄くなり、全体として熱伝
達率は大きくなる。また、巻線の上下端部は漂遊損のた
め発熱密度が高くなるが、巻線を複数の領域に分割する
際、上下端の領域内の巻線段数を他の領域内の巻線段数
より少なくすることにより、圧力損失が小さくなり、冷
却媒体が多く流れ、高発熱密度部の巻線素線の冷却が促
進される。
[Operation] In the radial direction of the disk winding or helical winding,
By providing a plurality of ducts between turns, the cooling area of the wire is increased and the heat flux on the winding surface is reduced. Therefore, the temperature drop in the insulating paper layer wound around the winding wire and the temperature difference between the surface of the insulating paper layer and the cooling medium are also reduced, and the temperature of the wire can be lowered. Further, since the radial position of the duct between turns in the axial direction is different for each winding stage,
The cooling medium flowing out of the inter-turn duct becomes a jet and collides with the winding wire above it for effective cooling, and furthermore, there is no vertical duct penetrating axially in the winding.
The flow of cooling medium in the radial direction in the horizontal duct can be secured,
The distribution of the flow rate of the cooling medium in the axial duct and the horizontal duct is made uniform, the heat transfer coefficient around the winding wire, and hence the temperature distribution of the winding can be made uniform, and local heating can be prevented. In addition,
Since the flow of the cooling medium overlaps and merges with each other, the pressure loss due to the flow tends to increase, but since the winding is divided into parallel flow paths to multiple regions, the flow rate in the axial direction within one region within the winding. Is reduced in inverse proportion to the number of regions, and considering that the pressure loss due to the flow is almost proportional to the square of the flow rate, the pressure loss can be suppressed to a small value. Although the flow rate of the cooling medium flowing in each region of the winding is smaller than the total flow rate, the horizontal and axial duct lengths through which the cooling medium flows become shorter, so the thickness of the temperature boundary layer becomes thinner and As a result, the heat transfer coefficient increases. Also, the upper and lower ends of the windings have a high heat generation density due to stray loss, but when the winding is divided into multiple areas, the number of winding steps in the upper and lower areas is higher than the number of winding steps in other areas. By reducing the amount, the pressure loss is reduced, a large amount of cooling medium flows, and cooling of the winding wire in the high heat density portion is promoted.

【0006】[0006]

【実施例】本発明による一実施例を図1及び図2により
説明する。図1は、本発明による巻線縦断面概略図、図
2は本発明による巻線内部分斜視図である。図1におい
て、1は巻線、2a,2b,2c,2dは絶縁筒で、2
a,2b間および2c,2d間には、それぞれ冷却媒体の
流入用ダクト6及び流出用ダクト8が形成される。巻線
全体は、案内部材5により高さ方向に複数の領域に分割
され、巻線1は軸方向に水平ダクト3を設けて重ねら
れ、また各段の巻線の半径方向には複数のターン間ダク
ト4が設けられ、上下段の巻線にあるターン間ダクトと
は半径方向の位置をずらしてある。絶縁筒2bには、案
内部材5により分割された領域の下方で案内部材5の上
方に冷却媒体流入口7が、また絶縁筒2cには、案内部
材5により分割された領域の上方で案内部材5の下方に
冷却媒体流出口9がそれぞれ全周に渡って設けられてい
る。また、やや詳細を図2により説明する。図2におい
て、水平ダクト3を形成するために水平スペーサ10を
巻線各段間に挿入し、また周方向には複数個配置する。
また、ターン間ダクト4を形成するためにターン間間隙
材12を巻線の半径方向に複数個配置する。また、巻線
内外の絶縁筒内には冷却媒体流路を形成するためにダク
トスペーサ14を周方向に複数本配置する。このような
構成の巻線において、冷却媒体は、絶縁筒2a,2b内
の流入用ダクト6を上昇し、絶縁筒2bに設けられた冷
却媒体流入口7から、分割された巻線の各領域の下部よ
り巻線内に流入し、巻線の半径方向に複数個設けられた
ターン間ダクト4へ分配され、各ターン間ダクトを上昇
した後、水平ダクト3へさらに分配され、その後順次上
方のターン間ダクトおよび水平ダクトを交互に流れる。
さらに、冷却媒体は、巻線の当該領域の上方の絶縁筒2
cに設けられた冷却媒体流出口9を通り、絶縁筒2c,
2d間の流出用ダクト8へ流れる。流出用ダクト8内で
は、各冷却媒体流出口9から流出した冷却媒体は合流
し、流出用ダクト8の上端部からタンク内部空間へ流出
する。巻線構成では、複数設けられたターン間ダクトに
面した面積分、巻線の冷却面積が増加し、巻線全体の発
熱量を全冷却面積で除した熱流束が小さくなり、巻線素
線に巻かれた絶縁紙層内の温度落差および絶縁紙層表面
と冷却媒体との温度差が低減できる。また、軸方向のタ
ーン間ダクトの半径方向の位置が、巻線の各段毎で異な
るため、ターン間ダクトを流出した冷却媒体が噴流とな
ってその上方にある巻線素線に衝突するため熱伝達率が
大きくなる。さらに、各水平ダクトの流路長が、従来
の、ターン間間隙の無い巻線での流路長に比べて短いの
で、水平ダクトでの温度境界層の発達が十分でなく薄く
なるため、熱伝達率が大きくなる。また、冷却媒体の流
路であるすべての水平ダクトとターン間ダクトの流路長
が同程度であり、一種の充填層内の流れに近くなり、冷
却媒体の流量分布が各ダクトで均一となる。このため、
冷却性能および冷却媒体の温度分布も均一となり、巻線
素線の温度上昇分布が均一化されるとともに、局部加熱
が防止できる。なお、図示してないが、発熱密度の大き
い巻線部を含む領域内の巻線段数を少なくすると、冷却
媒体の流れによる圧力損失が他の領域での圧力損失と同
等になるように冷却媒体が多く流れ、巻線素線の温度上
昇を均一化するように冷却できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment according to the present invention will be described with reference to FIGS. FIG. 1 is a schematic longitudinal sectional view of a winding wire according to the present invention, and FIG. 2 is a partial perspective view of a winding wire according to the present invention. In FIG. 1, 1 is a winding wire, 2a, 2b, 2c and 2d are insulating cylinders.
An inflow duct 6 and an outflow duct 8 for the cooling medium are formed between a and 2b and between 2c and 2d, respectively. The entire winding is divided into a plurality of regions in the height direction by the guide member 5, the winding 1 is overlapped by providing a horizontal duct 3 in the axial direction, and the windings of each stage are provided with a plurality of turns in the radial direction. The inter-duct 4 is provided, and its position in the radial direction is displaced from the inter-turn duct in the upper and lower windings. The insulating cylinder 2b has a cooling medium inlet 7 above the guide member 5 below the region divided by the guide member 5, and the insulating cylinder 2c has a guide member above the region divided by the guide member 5. Cooling medium outlets 9 are provided below 5 along the entire circumference. Also, a little more detail will be described with reference to FIG. In FIG. 2, in order to form the horizontal duct 3, horizontal spacers 10 are inserted between the winding stages and a plurality of horizontal spacers 10 are arranged in the circumferential direction.
Further, a plurality of inter-turn gap members 12 are arranged in the radial direction of the winding in order to form the inter-turn duct 4. Further, a plurality of duct spacers 14 are arranged in the circumferential direction in the insulating cylinder inside and outside the winding in order to form a cooling medium flow path. In the winding having such a configuration, the cooling medium rises in the inflow duct 6 in the insulating cylinders 2a and 2b, and from the cooling medium inlet 7 provided in the insulating cylinder 2b, each region of the divided windings. Flows into the winding from below and is distributed to a plurality of inter-turn ducts 4 provided in the radial direction of the winding. After each inter-turn duct is lifted, it is further distributed to the horizontal duct 3 and then sequentially upward. Alternating ducts between turns and horizontal ducts.
In addition, the cooling medium is the insulating cylinder 2 above the area of the winding.
through the cooling medium outlet 9 provided in c, the insulating cylinder 2c,
It flows into the outflow duct 8 between 2d. In the outflow duct 8, the cooling mediums flowing out from the respective cooling medium outlets 9 merge and flow out from the upper end of the outflow duct 8 into the tank internal space. In the winding configuration, the cooling area of the winding is increased by the area facing the multiple inter-turn ducts, and the heat flux obtained by dividing the heat generation amount of the entire winding by the total cooling area is reduced. It is possible to reduce the temperature difference in the insulating paper layer wound around the sheet and the temperature difference between the surface of the insulating paper layer and the cooling medium. Further, since the radial position of the duct between turns in the axial direction is different for each stage of the winding, the cooling medium flowing out from the duct between turns becomes a jet and collides with the winding wire above it. The heat transfer coefficient is increased. Furthermore, since the flow path length of each horizontal duct is shorter than the flow path length of the conventional winding with no gap between turns, the development of the temperature boundary layer in the horizontal duct is not sufficient and becomes thin. The transmission rate increases. In addition, all horizontal ducts, which are the channels of the cooling medium, and the ducts between the turns have the same channel length, which is close to a kind of flow in the packed bed, and the flow distribution of the cooling medium is uniform in each duct. . For this reason,
The cooling performance and the temperature distribution of the cooling medium also become uniform, the temperature rise distribution of the winding wire becomes uniform, and local heating can be prevented. Although not shown, if the number of winding stages in the region including the winding portion with a high heat generation density is reduced, the pressure loss due to the flow of the cooling medium becomes equal to the pressure loss in other regions. A large amount of gas flows and can be cooled so as to make the temperature rise of the winding wire uniform.

【0007】図3には、本発明による、ターン間ダクト
を形成するためのターン間間隙材の一実施例の斜視図を
示す。ターン間間隙材12は、棒状支持材12aを絶縁
板材13にとりつけてある。ターン間ダクト4には棒状
支持材12aの厚さ分の軸方向の間隙が形成される。タ
ーン間間隙材12を巻線素線とともに巻いて巻線を製作
する。図4には、本発明によるターン間ダクトを形成す
るためのターン間間隙材の他の実施例の斜視図を示す。
この実施例では、絶縁板材13の両側に棒状支持材12
aを取付ける。この構造では、巻線素線には熱伝導率の
小さな絶縁板材13が接触することが無いため、冷却効
果が大きくなる。
FIG. 3 is a perspective view of an embodiment of an inter-turn gap material for forming an inter-turn duct according to the present invention. The inter-turn gap member 12 has a rod-shaped support member 12 a attached to an insulating plate member 13. An axial gap corresponding to the thickness of the rod-shaped support member 12a is formed in the inter-turn duct 4. The inter-turn gap material 12 is wound together with the winding wire to produce a winding. FIG. 4 shows a perspective view of another embodiment of the inter-turn gap material for forming the inter-turn duct according to the present invention.
In this embodiment, the rod-shaped support members 12 are provided on both sides of the insulating plate member 13.
Install a. In this structure, since the insulating plate material 13 having a small thermal conductivity does not come into contact with the winding wire, the cooling effect becomes large.

【0008】また、図5に本発明による冷却媒体の案内
部材の一実施例の斜視図を示す。案内部材5は巻線の全
周に渡って設けられ、絶縁板材5aと絶縁板材5aを半
径方向に傾斜させる支持部材5bと5cからなる。支持
部材5bと5cは、通常のコイル間水平スペーサと同じ
ピッチで周方向に複数個取り付けられる。案内部材5
は、円周方向に複数個に分割して製作しても良い。案内
部材5の傾斜は、冷却媒体が、巻線の半径方向に複数個
設けられたターン間ダクト4に均等に流入させる。
FIG. 5 is a perspective view of an embodiment of the cooling medium guide member according to the present invention. The guide member 5 is provided over the entire circumference of the winding and includes an insulating plate member 5a and supporting members 5b and 5c for inclining the insulating plate member 5a in the radial direction. A plurality of support members 5b and 5c are attached in the circumferential direction at the same pitch as the normal horizontal spacer between coils. Guide member 5
May be manufactured by being divided into a plurality of pieces in the circumferential direction. The inclination of the guide member 5 allows the cooling medium to uniformly flow into the inter-turn ducts 4 provided in plural in the radial direction of the winding.

【0009】また、図6に本発明による、水平スペーサ
の一実施例の斜視図を示す。水平スペーサ10は、絶縁
性板10aと支持用板10bを張り合わせて製作する。
支持用板10bは、巻線素線を絶縁筒に巻く場合に、支
持用板10bを絶縁筒に当て、あるいは貼り付け、水平
スペーサ10の位置決めを容易にする。
FIG. 6 is a perspective view of an embodiment of the horizontal spacer according to the present invention. The horizontal spacer 10 is manufactured by laminating the insulating plate 10a and the supporting plate 10b.
When the winding wire is wound around the insulating cylinder, the supporting plate 10b abuts or attaches the supporting plate 10b to the insulating cylinder to facilitate the positioning of the horizontal spacer 10.

【0010】本実施例によれば、巻線の大部分で、各段
の巻線のターン間に冷却媒体の流れる複数の軸方向のダ
クトにより、素線を冷却する伝熱面積が増加し、巻線素
線の温度を下げることができる。また、ターン間ダクト
の半径方向の位置が巻線段毎に異なるため、ターン間ダ
クトを流出した冷却媒体が噴流となってその上方にある
巻線素線に衝突して効果的に冷却し、さらに、巻線内で
軸方向に貫通する垂直ダクトが無いため、水平ダクトで
の半径方向の冷却媒体の流れが確保でき、軸方向のダク
ト及び水平ダクト内の冷却媒体の流量分布が均一化し、
巻線素線周囲の熱伝達率が、従って巻線の温度分布も均
一化でき、局部加熱が防止できる。さらに、各巻線領域
出入口に設けた半径方向に傾斜した案内部材により、半
径方向に複数個設けたターン間ダクトへ冷却媒体は均等
に配分される。また、冷却媒体の流れる水平及び軸方向
のダクトの長さが短いため、温度境界層の厚さが常に薄
くでき熱伝達率は大きくなる。また、冷却ダクトの経路
が複雑になっても、各巻線領域内の冷却媒体の流量が少
なくでき、圧力損失は小さく抑えられ、循環流量は確保
できる。また、従来構造の巻線にある絶縁筒の巻線側に
付けられている垂直スペーサを省略したが、水平スペー
サの構造として、絶縁筒に接する支持用板の存在のた
め、水平スペーサの位置決めを容易にする効果がある。
According to the present embodiment, in most of the windings, a plurality of axial ducts through which the cooling medium flows between the turns of the windings of each stage increase the heat transfer area for cooling the wire, The temperature of the winding wire can be lowered. Further, since the position of the inter-turn duct in the radial direction is different for each winding stage, the cooling medium flowing out from the inter-turn duct becomes a jet and collides with the winding wire above it for effective cooling. Since there is no vertical duct penetrating in the axial direction in the winding, the flow of the cooling medium in the radial direction can be secured in the horizontal duct, and the flow rate distribution of the cooling medium in the axial duct and the horizontal duct is made uniform.
The heat transfer coefficient around the winding wire, and hence the temperature distribution of the winding can be made uniform, and local heating can be prevented. Further, the cooling medium is evenly distributed to the plurality of inter-turn ducts provided in the radial direction by the guide member provided in each inlet / outlet of the winding region and inclined in the radial direction. Further, since the horizontal and axial ducts in which the cooling medium flows are short, the thickness of the temperature boundary layer can be constantly reduced, and the heat transfer coefficient can be increased. Further, even if the route of the cooling duct becomes complicated, the flow rate of the cooling medium in each winding region can be reduced, the pressure loss can be suppressed to be small, and the circulation flow rate can be secured. Although the vertical spacer attached to the winding side of the insulating cylinder in the winding of the conventional structure is omitted, the horizontal spacer has a structure in which the horizontal spacer is positioned due to the existence of the supporting plate in contact with the insulating cylinder. It has the effect of facilitating.

【0011】[0011]

【発明の効果】本発明によれば、変圧器巻線内の、特に
円板巻線あるいはヘリカル巻線からなるSF6ガス絶縁
変圧器の巻線内の各ダクトを流れる冷却媒体流量を均一
化し、巻線の巻線全体の温度上昇を低減するとともに、
温度上昇分布を均一化する。
According to the present invention, the flow rate of the cooling medium flowing in each duct in the transformer winding, particularly in the winding of the SF 6 gas-insulated transformer consisting of the disk winding or the helical winding is made uniform. , While reducing the temperature rise of the entire winding,
Make the temperature rise distribution uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施例を示す巻線の断面図。FIG. 1 is a sectional view of a winding showing an embodiment according to the present invention.

【図2】本発明による一実施例を示す巻線内部分の斜視
図。
FIG. 2 is a perspective view of an inner portion of a winding showing an embodiment according to the present invention.

【図3】本発明による一実施例でのターン間ダクトを形
成するためのターン間間隙材の斜視図。
FIG. 3 is a perspective view of an inter-turn gap member for forming an inter-turn duct according to an embodiment of the present invention.

【図4】本発明によるターン間ダクトを形成するための
ターン間間隙材の他の実施例を示す斜視図。
FIG. 4 is a perspective view showing another embodiment of the inter-turn gap member for forming the inter-turn duct according to the present invention.

【図5】本発明による一実施例による案内部材の斜視
図。
FIG. 5 is a perspective view of a guide member according to an exemplary embodiment of the present invention.

【図6】本発明による一実施例による水平スペーサの斜
視図。
FIG. 6 is a perspective view of a horizontal spacer according to an exemplary embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…巻線、2a,2b,2c,2d…絶縁筒、3…水平
ダクト、4…ターン間ダクト、5…案内部材、5a…絶
縁板材、5b,5c…支持部材、6…流入用ダクト、7
…冷却媒体流入口、8…流出用ダクト、9…冷却媒体流
出口、10…水平スペーサ、10a…絶縁性板、10b
…支持用板、12…ターン間間隙材、12a…棒状支持
材、13…絶縁板材。
DESCRIPTION OF SYMBOLS 1 ... Winding, 2a, 2b, 2c, 2d ... Insulating cylinder, 3 ... Horizontal duct, 4 ... Inter-turn duct, 5 ... Guide member, 5a ... Insulating plate material, 5b, 5c ... Supporting member, 6 ... Inflow duct, 7
... Cooling medium inlet, 8 ... Outflow duct, 9 ... Cooling medium outlet, 10 ... Horizontal spacer, 10a ... Insulating plate, 10b
... Support plate, 12 ... Inter-turn gap material, 12a ... Rod-shaped support material, 13 ... Insulating plate material.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】鉄心の周りに電圧の異なる円板巻線あるい
はヘリカル巻線を絶縁筒を隔壁として同心的に配置し、
前記円板巻線あるいは前記ヘリカル巻線を水平スペーサ
により一定の間隔を置いて軸方向に積層した変圧器巻線
において、前記各円板巻線あるいは前記ヘリカル巻線の
半径方向に複数個のターン間ダクトを設け、その半径方
向の位置が、上下の前記円板巻線の前記ターン間ダクト
とは異ならせ、前記絶縁筒に接して軸方向に貫通する垂
直ダクトの無いようにしたことを特徴とする変圧器巻
線。
1. A disk winding or a helical winding having different voltages is arranged around an iron core concentrically with an insulating cylinder as a partition wall.
In a transformer winding in which the disk winding or the helical winding is axially laminated at regular intervals with a horizontal spacer, a plurality of turns are provided in the radial direction of each disk winding or the helical winding. An inter-duct is provided, and its radial position is different from the inter-turn duct of the upper and lower disc windings so that there is no vertical duct that is in contact with the insulating cylinder and penetrates in the axial direction. And transformer winding.
【請求項2】請求項1において、前記各円板巻線あるい
は前記ヘリカル巻線の半径方向に複数個のターン間ダク
トを設け、その半径方向の位置が、上下の前記円板巻線
の前記ターン間ダクトとは異なるようにし、巻線の軸方
向に一枚あるいは複数枚の案内版を挿入して複数の領域
に分割し、前記絶縁筒内に軸方向のダクトを形成させ、
巻線の分割された領域に合わせて各領域出入口に開口部
を設け、複数の領域に分割された巻線に絶縁冷却媒体を
並列に流すようにした変圧器巻線。
2. A plurality of inter-turn ducts are provided in the radial direction of each of the disk windings or the helical windings, and the radial positions thereof are the upper and lower disk windings. Different from the inter-turn duct, insert one or more guide plates in the axial direction of the winding to divide into a plurality of regions, and form an axial duct in the insulating cylinder,
A transformer winding in which openings are provided at the entrances and exits of each area according to the divided areas of the winding, and the insulating cooling medium flows in parallel to the windings divided into a plurality of areas.
【請求項3】請求項1において、前記各円板巻線あるい
は前記ヘリカル巻線の半径方向に複数個のターン間ダク
トを設け、その半径方向の位置が、上下の前記円板巻線
の前記ターン間ダクトとは異なるようにし、巻線の軸方
向に一枚あるいは複数枚の案内版を挿入して複数の領域
に分割する際の分割個所に、案内板を傾斜するように、
周方向に複数個の支持部材で支持した変圧器巻線。
3. The duct according to claim 1, wherein a plurality of inter-turn ducts are provided in a radial direction of each of the disk windings or the helical windings, and the radial positions thereof are the upper and lower disk windings. Differently from the inter-turn duct, insert the one or more guide plates in the axial direction of the winding, and incline the guide plate at the dividing points when dividing into multiple regions,
Transformer windings supported by multiple support members in the circumferential direction.
【請求項4】請求項1において、前記各円板巻線あるい
は前記ヘリカル巻線の半径方向に複数個のターン間ダク
トを設け、その半径方向の位置が、上下の前記円板巻線
のターン間ダクトとは異なるようにし、前記ターン間ダ
クトを設ける際に、帯状の絶縁物の片側あるいは両側に
棒状の絶縁物を取り付けたターン間間隙材を素線ととも
に巻いた変圧器巻線。
4. A plurality of inter-turn ducts are provided in the radial direction of each of the disk windings or the helical windings, and the radial positions thereof are the turn of the upper and lower disk windings. A transformer winding which is different from the inter-turn duct, and when the inter-turn duct is provided, the inter-turn interstitial material, in which a rod-shaped insulator is attached to one side or both sides of the band-shaped insulator, is wound together with a wire.
【請求項5】請求項1において、前記各円板巻線あるい
は前記ヘリカル巻線の半径方向に複数個のターン間ダク
トを設け、その半径方向の位置が、上下の前記円板巻線
の前記ターン間ダクトとは異なるようにし、軸方向の各
巻線間に挿入する水平スペーサの形状として、絶縁筒に
接する端面に直角に平板を付けた形状にした変圧器巻
線。
5. The duct according to claim 1, wherein a plurality of inter-turn ducts are provided in a radial direction of each of the disc windings or the helical windings, and the radial positions thereof are the upper and lower disc windings. A transformer winding that is different from the duct between turns, and has a horizontal spacer that is inserted between each winding in the axial direction and has a flat plate attached to the end face in contact with the insulating cylinder at a right angle.
【請求項6】請求項1において、前記各円板巻線あるい
は前記ヘリカル巻線の半径方向に複数個のターン間ダク
トを設け、その半径方向の位置が、上下の前記円板巻線
の前記ターン間ダクトとは異なるようにし、巻線の軸方
向に複数枚の案内版を挿入して複数の領域に分割し、か
つ、絶縁筒も複数層から形成させ、巻線の分割された領
域に合わせて各領域出入口に開口部を設け、複数の領域
に分割された巻線に絶縁冷却媒体を並列に流すようにす
るに際し、巻線の上下端部の分割領域の巻線段数を、高
さ方向の中央部の巻線段数より少なくした変圧器巻線。
6. The duct according to claim 1, wherein a plurality of inter-turn ducts are provided in a radial direction of each of the disk windings or the helical winding, and the radial positions thereof are the upper and lower disk windings. Different from the duct between turns, insert a plurality of guide plates in the axial direction of the winding to divide it into multiple regions, and also form the insulating cylinder from multiple layers, in the divided regions of the winding. In addition, when opening the inlet and outlet of each area and flowing the insulating cooling medium in parallel to the windings divided into multiple areas, set the number of winding stages Transformer windings with fewer windings in the center of the direction.
JP5303745A 1993-12-03 1993-12-03 Transformer winding Pending JPH07161541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5303745A JPH07161541A (en) 1993-12-03 1993-12-03 Transformer winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5303745A JPH07161541A (en) 1993-12-03 1993-12-03 Transformer winding

Publications (1)

Publication Number Publication Date
JPH07161541A true JPH07161541A (en) 1995-06-23

Family

ID=17924766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5303745A Pending JPH07161541A (en) 1993-12-03 1993-12-03 Transformer winding

Country Status (1)

Country Link
JP (1) JPH07161541A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077737A (en) * 2001-09-06 2003-03-14 Mitsubishi Electric Corp Winding of electric equipment
KR20140036596A (en) * 2012-09-17 2014-03-26 한국전력공사 Apparatus for cooling windings of transformer
CN108922737A (en) * 2018-08-29 2018-11-30 常德国力变压器有限公司 A kind of radiator being provided with oblique oil duct
JP2021193703A (en) * 2020-06-08 2021-12-23 株式会社日立産機システム Oil transformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077737A (en) * 2001-09-06 2003-03-14 Mitsubishi Electric Corp Winding of electric equipment
KR20140036596A (en) * 2012-09-17 2014-03-26 한국전력공사 Apparatus for cooling windings of transformer
CN108922737A (en) * 2018-08-29 2018-11-30 常德国力变压器有限公司 A kind of radiator being provided with oblique oil duct
CN108922737B (en) * 2018-08-29 2024-05-17 常德国力变压器有限公司 Heat abstractor provided with slant oil duct
JP2021193703A (en) * 2020-06-08 2021-12-23 株式会社日立産機システム Oil transformer

Similar Documents

Publication Publication Date Title
US4337569A (en) Method of making integrally formed transformer cooling ducts
US20160247621A1 (en) Stationary Induction Electric Apparatus
US3548354A (en) Transformer having ventilating passages
US6577027B2 (en) Electrical equipment winding structure providing improved cooling fluid flow
US3551863A (en) Transformer with heat dissipator
JPH07161541A (en) Transformer winding
JP3254998B2 (en) Transformer winding
JP3254914B2 (en) Transformer winding
KR20140005166U (en) Power transformaer
JPH0822918A (en) Transformer winding
JP2003077737A (en) Winding of electric equipment
JPH0864426A (en) Stationary induction device
JPH08213254A (en) Stationary induction electrical equipment
JP3671778B2 (en) Transformer
JPS6113365B2 (en)
JPS58151009A (en) Winding of stationary induction electric apparatus
JP2000260629A (en) Winding of stationary induction electric apparatus
JPH06251956A (en) Transformer winding
JP2000077236A (en) Stationary induction device
JP2022118358A (en) transformer
JP3465373B2 (en) Winding cooling structure of gas insulation equipment
JPH05326292A (en) Gas insulated transformer
JPH11168014A (en) Transformer
JP2000277351A (en) Stationary induction apparatus
JPS61136209A (en) Self-cooled, oil-filled winding of electric equipment