JP2022118358A - transformer - Google Patents

transformer Download PDF

Info

Publication number
JP2022118358A
JP2022118358A JP2021014807A JP2021014807A JP2022118358A JP 2022118358 A JP2022118358 A JP 2022118358A JP 2021014807 A JP2021014807 A JP 2021014807A JP 2021014807 A JP2021014807 A JP 2021014807A JP 2022118358 A JP2022118358 A JP 2022118358A
Authority
JP
Japan
Prior art keywords
winding
cooling
transformer
upper winding
cooling ducts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021014807A
Other languages
Japanese (ja)
Inventor
大成 河村
Taisei Kawamura
誠 篠原
Makoto Shinohara
拓弥 岩崎
Takuya Iwasaki
亮佑 杉田
Ryosuke Sugita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2021014807A priority Critical patent/JP2022118358A/en
Publication of JP2022118358A publication Critical patent/JP2022118358A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a transformer capable of intensively cooling an upper winding.SOLUTION: An upper winding and a lower winding are formed by dividing a winding in the vertical direction in which a cooling medium circulates, and the cooling medium is introduced to the upper winding through an inlet formed between the upper winding and the lower winding to cool the upper winding intensively.SELECTED DRAWING: Figure 3

Description

本発明は、変圧器に関する。 The present invention relates to transformers.

配電用油入変圧器の巻線はタンク内部の絶縁油循環により冷却される。温度が高くなった絶縁油は密度が低くなり上部へ移動し、冷却された絶縁油は密度が高くなりタンク下部へ移動して巻線内に引き込まれ、巻線から熱を奪い上部に移動する。巻線はこの上下を循環する絶縁油の温度分布と同様な熱分布をもつ。また、巻線を冷却するために冷却ダクトを備えており、その数や配置により冷却が最適となるように配置される。 Windings of oil-immersed distribution transformers are cooled by circulating insulating oil inside the tank. The insulating oil whose temperature has risen becomes less dense and moves to the top, while the cooled insulating oil becomes more dense and moves to the bottom of the tank and is drawn into the winding, taking heat from the winding and moving to the top. . The winding has a heat distribution similar to the temperature distribution of the insulating oil circulating above and below. In addition, cooling ducts are provided to cool the windings, and the number and arrangement of the cooling ducts are arranged so as to optimize cooling.

一方、この一連の冷却システムの中で、巻線上部と下部の温度は常に差があり、巻線上部は下部に比べ常に高い温度で運転され熱劣化が早く起こる。これに対し、巻線上部だけを冷却するには巻線全体に対して冷却ダクトを多く配置するのが現状の技術である。これに関連する技術として、例えば、特許文献1がある。特許文献1では、通油路を設け巻線を冷却する。 On the other hand, in this series of cooling systems, there is always a temperature difference between the upper and lower parts of the winding, and the upper part of the winding is always operated at a higher temperature than the lower part, and thermal deterioration occurs quickly. On the other hand, in order to cool only the upper portion of the winding, the current technology is to arrange many cooling ducts over the entire winding. As a technique related to this, there is Patent Document 1, for example. In Patent Document 1, an oil passage is provided to cool the winding.

特開2009-2224690号公報JP 2009-2224690 A

特許文献1は、円筒の筒の半径方向に巻線を厚くしていくシリンドリカル巻線での実施は難しく、円の半径方向に巻線を厚くしていき、それを高さ方向に何層も積み重ねるディスク巻での適用例である。 In Patent Document 1, it is difficult to implement a cylindrical winding in which the winding is thickened in the radial direction of the cylindrical tube, and the winding is thickened in the radial direction of the circle, and it is stacked in many layers in the height direction. This is an application example for stacking disc windings.

特許文献1では、巻線上下の温度差を小さくし長期に渡る巻線の熱劣化を抑制することは難しく、上部巻線を重点的に冷却することは困難である。 In Patent Literature 1, it is difficult to reduce the temperature difference between the upper and lower windings to suppress thermal deterioration of the windings over a long period of time, and it is difficult to intensively cool the upper windings.

本発明の目的は、上部巻線を重点的に冷却することが可能な変圧器を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a transformer capable of preferentially cooling the upper winding.

本発明の一態様の変圧器は、鉄心と、前記鉄心に巻き回された巻線とが配置されたタンクを有し、前記タンク内は冷却媒体で満たされており、前記巻線内に前記冷却媒体を通過させて前記巻線を冷却する変圧器であって、前記巻線を前記冷却媒体の循環する上下方向に分割することにより上部巻線と下部巻線を構成し、前記上部巻線と前記下部巻線との間に形成された隙間を介して前記冷却媒体を前記上部巻線に導入して、前記上部巻線を重点的に冷却することを特徴とする。 A transformer of one aspect of the present invention includes a tank in which an iron core and a winding wound around the iron core are arranged, the tank is filled with a cooling medium, and the winding contains the A transformer that passes a cooling medium to cool the winding, wherein the winding is divided in the vertical direction in which the cooling medium circulates to form an upper winding and a lower winding, and the upper winding and the lower winding, the cooling medium is introduced into the upper winding through a gap formed between the lower winding and the lower winding to cool the upper winding.

本発明の一態様の変圧器は、鉄心と、前記鉄心に巻き回された巻線とを有する変圧器であって、前記巻線を上下方向に分割することにより上部巻線と下部巻線を構成し、前記下部巻線には、第1の冷却ダクトが配置されており、前記上部巻線には、第2の冷却ダクトが配置されており、前記第2の冷却ダクトの数量が前記第1の冷却ダクトの数量よりも多くなるように前記第2の冷却ダクトを前記上部巻線に配置したことを特徴とする。 A transformer of one embodiment of the present invention is a transformer that includes an iron core and a winding wound around the iron core, wherein the winding is divided vertically to form an upper winding and a lower winding. A first cooling duct is arranged in the lower winding, a second cooling duct is arranged in the upper winding, and the number of the second cooling ducts is the second It is characterized in that the second cooling ducts are arranged in the upper winding so that the number of the cooling ducts is larger than that of one cooling duct.

本発明の一態様によれば、変圧器の上部巻線を重点的に冷却することができる。 According to one aspect of the invention, the cooling can be focused on the top winding of the transformer.

関連技術の変圧器の構成を示す斜視図である。It is a perspective view which shows the structure of the transformer of related technology. 関連技術の変圧器における絶縁油の流線を示すタンク内部の断面図である。FIG. 4 is a cross-sectional view of the inside of a tank showing the streamlines of insulating oil in a related art transformer; 実施例1の変圧器の構成を示す斜視図である。1 is a perspective view showing a configuration of a transformer of Example 1; FIG. 実施例1の変圧器における絶縁油の流線を示すタンク内部の断面図である。4 is a cross-sectional view of the inside of the tank showing the streamlines of insulating oil in the transformer of Example 1. FIG. 実施例2の変圧器における巻線の断面図であり、(a)は下部巻線であり、(b)は上部巻線である。It is sectional drawing of the winding in the transformer of Example 2, (a) is a lower winding and (b) is an upper winding. 実施例3の変圧器における巻線の断面図であり、(a)は下部巻線であり、(b)は上部巻線である。It is sectional drawing of the winding in the transformer of Example 3, (a) is a lower winding and (b) is an upper winding. 実施例4の変圧器における巻線の断面図であり、(a)は下部巻線であり、(b)は上部巻線である。It is sectional drawing of the winding in the transformer of Example 4, (a) is a lower winding and (b) is an upper winding. 実施例3、4の変圧器における絶縁油の流線を示すタンク内部の断面図である。FIG. 11 is a cross-sectional view of the inside of the tank showing the streamlines of the insulating oil in the transformers of Examples 3 and 4;

最初に、図1及び図2を参照して、関連技術の変圧器について説明する。 First, a related art transformer will be described with reference to FIGS.

図2に示すように、変圧器のタンク6内に、冷却媒体である絶縁油7が満たされている。タンク6内には、巻線5が内蔵されている。そして、冷却された絶縁油7は、流路8に示すようにタンク6内を流れる。また、図1に示すように、外鉄心1及び内鉄心2に巻線5が巻き回されている。 As shown in FIG. 2, a transformer tank 6 is filled with insulating oil 7 as a cooling medium. A winding 5 is built in the tank 6 . The cooled insulating oil 7 then flows through the tank 6 as indicated by flow paths 8 . Moreover, as shown in FIG. 1, windings 5 are wound around the outer iron core 1 and the inner iron core 2 .

なお、一般的に、絶縁油7は上に位置するほど温度が上昇していくので、絶縁油7を冷却媒体に使用している変圧器の巻線5においては、巻線5の上端に最も熱くなる部分であるホットスポット(図2の斜線部)が存在する。 In general, the temperature of the insulating oil 7 rises as it is positioned higher. There is a hot spot (shaded area in FIG. 2), which is a portion that becomes hot.

関連技術の変圧器は、絶縁油7が巻線5内を通り巻線5の全体を冷却する構造であり、巻線5のホットスポットを直接冷却することは困難である。この結果、巻線5のホットスポットの部分だけ巻線温度が高くなる。 The related art transformer has a structure in which the insulating oil 7 passes through the winding 5 to cool the entire winding 5, and it is difficult to cool the hot spots of the winding 5 directly. As a result, the winding temperature rises only at the hot spots of the winding 5 .

本発明の実施例は、巻線5のホットスポットの冷却と巻線5の全体の冷却を同時に行えるような構成を採用する。 Embodiments of the present invention employ a configuration that permits simultaneous cooling of the hot spots of the winding 5 and cooling of the entire winding 5 .

上記構成を採用することにより、巻線5のホットスポットを重点的に冷却することが可能になる。具体的には、巻線5のホットスポットの冷却と巻線5内に絶縁油7を通し巻線5の全体の冷却を同時に行う。
以下、図面を用いて実施例について説明する。
By adopting the above configuration, it becomes possible to intensively cool the hot spots of the windings 5 . Specifically, the cooling of the hot spots of the winding 5 and the cooling of the entire winding 5 by passing the insulating oil 7 through the winding 5 are simultaneously performed.
An embodiment will be described below with reference to the drawings.

図3及び図4を参照して、実施例1の変圧器について説明する。 The transformer of Example 1 will be described with reference to FIGS. 3 and 4. FIG.

図3に示すように、実施例1の変圧器は、図1に示す変圧器の巻線5を絶縁油7の循環する上下方向に分割することにより上部巻線3と下部巻線4を構成する。そして、外鉄心1及び内鉄心2に上部巻線3と下部巻線4が巻き回されている。 As shown in FIG. 3, the transformer of Example 1 comprises an upper winding 3 and a lower winding 4 by dividing the winding 5 of the transformer shown in FIG. do. An upper winding 3 and a lower winding 4 are wound around the outer iron core 1 and the inner iron core 2 .

図4に示すように、上部巻線3と下部巻線4との間に形成された隙間(空間)には、絶縁階級に応じた絶縁物10が挿入される。絶縁物10の材質としては、例えばプレスボードなどの絶縁物10を配置して絶縁距離を確保する。そして、その空間で冷却を行う絶縁油7を上部巻線3に導入する入口を形成する。この絶縁距離は、例えば数mm程度の厚さのプレスボードを配置することにより達成する。 As shown in FIG. 4 , an insulator 10 corresponding to the insulation class is inserted into a gap (space) formed between the upper winding 3 and the lower winding 4 . As for the material of the insulator 10, for example, the insulator 10 such as a press board is arranged to secure an insulation distance. Then, an inlet for introducing the insulating oil 7 for cooling in the space into the upper winding 3 is formed. This insulation distance is achieved, for example, by arranging a pressboard with a thickness of several millimeters.

このようにして、実施例1では、上部巻線3と下部巻線4との間に形成された隙間である入口を介して、絶縁油7を上部巻線3に導入して、上部巻線3を重点的に冷却する。 In this manner, in the first embodiment, the insulating oil 7 is introduced into the upper winding 3 through the inlet, which is the gap formed between the upper winding 3 and the lower winding 4, so that the upper winding 3 is intensively cooled.

図5を参照して、実施例2の変圧器について説明する。(a)は下部巻線4の断面図であり、(b)は上部巻線3の断面図である。
実施例2の変圧器の構成は、図3及び図4に示す実施例1の変圧器の構成とほぼ同じなのでその説明は省略する。
A transformer of Example 2 will be described with reference to FIG. (a) is a cross-sectional view of the lower winding 4, and (b) is a cross-sectional view of the upper winding 3. FIG.
The configuration of the transformer of Example 2 is substantially the same as the configuration of the transformer of Example 1 shown in FIGS. 3 and 4, so the description thereof will be omitted.

巻線上下の差により熱劣化の傾向が異なるが、巻線上部を考慮して冷却ダクトを多く入れる場合、変圧器全体の容積が増大し効果的でなかった。実施例2では、巻線を上下に分割し、冷却ダクトの厚さと数量を上下で変更することで巻線上下の温度差を均一にする。 The tendency of heat deterioration differs depending on the difference between the top and bottom of the winding, but when many cooling ducts are installed considering the top of the winding, the volume of the entire transformer increases and it is not effective. In the second embodiment, the winding is divided into upper and lower parts, and the thickness and number of cooling ducts are changed between the upper and lower parts to equalize the temperature difference between the upper and lower parts of the winding.

実施例2の変圧器では、冷却ダクトの数量と厚さが上部巻線3と下部巻線4とで異なるように配置した。 In the transformer of Example 2, the number and thickness of the cooling ducts are arranged differently between the upper winding 3 and the lower winding 4 .

上部巻線3は、下部巻線4に使用する冷却ダクト11に対して、例えば、厚さが半分の冷却ダクト12を巻線の層に対して2倍配置する。これにより、巻線の外形を合わせることで、上部巻線3と下部巻線4の断面積を一致させる。これにより、上部巻線3と下部巻線4を並列接続で使用する設計時の上下不平衡による電気特性への影響を最小化する。 The upper winding 3 has cooling ducts 11 that are used for the lower winding 4, for example, with half the thickness of the cooling ducts 12 arranged twice as many layers of the winding. As a result, the cross-sectional areas of the upper winding 3 and the lower winding 4 are matched by matching the outer shape of the windings. This minimizes the influence on the electrical characteristics due to the imbalance between the upper and lower windings when the upper winding 3 and the lower winding 4 are connected in parallel.

実施例2の変圧器では、図5(a)に示すように、下部巻線4には、冷却ダクト11が配置されている。また、図5(b)に示すように、上部巻線3には、冷却ダクト12が配置されている。 In the transformer of Example 2, a cooling duct 11 is arranged in the lower winding 4 as shown in FIG. 5(a). A cooling duct 12 is arranged in the upper winding 3, as shown in FIG. 5(b).

下部巻線4の外形の断面積は、上部巻線3の外形の断面積と等しい。そして、上部巻線3の冷却ダクト12の数量は、下部巻線4の冷却ダクト11の数量よりも多い。さらに、上部巻線3の冷却ダクト12の厚さは、下部巻線4の冷却ダクト11の厚さよりも薄い。 The cross-sectional area of the contour of the lower winding 4 is equal to the cross-sectional area of the contour of the upper winding 3 . The number of cooling ducts 12 in the upper winding 3 is greater than the number of cooling ducts 11 in the lower winding 4 . Furthermore, the thickness of the cooling duct 12 of the upper winding 3 is less than the thickness of the cooling duct 11 of the lower winding 4 .

図6を参照して、実施例3の変圧器について説明する。(a)は下部巻線4の断面図であり、(b)は上部巻線3の断面図である。 A transformer of Example 3 will be described with reference to FIG. (a) is a cross-sectional view of the lower winding 4, and (b) is a cross-sectional view of the upper winding 3. FIG.

実施例3の変圧器の構成は、図3に示す実施例1の変圧器の構成とほぼ同じなのでその説明は省略する。 Since the configuration of the transformer of Example 3 is substantially the same as that of the transformer of Example 1 shown in FIG. 3, the description thereof will be omitted.

実施例3の変圧器では、冷却ダクトの数量が上部巻線3と下部巻線4とで異なるように配置した。 In the transformer of Example 3, the numbers of cooling ducts are arranged differently between the upper winding 3 and the lower winding 4 .

図6(a)に示すように、下部巻線4では、窓内(図6の斜線部)の方向の長さはAであり、窓内を除く辺の長さはBである。また、図6(b)に示すように、上部巻線3では、窓内方向の長さはAであり、窓内を除く辺の長さはBである。 As shown in FIG. 6A, the lower winding 4 has a length of A1 in the direction of the inside of the window (hatched area in FIG. 6) and a length of B1 on the side excluding the inside of the window. As shown in FIG. 6(b), the upper winding 3 has a length of A2 in the window inner direction and a side length of B2 excluding the window inner side .

ここで、下部巻線4の窓内方向の長さAは、上部巻線3の窓内方向の長さAと等しい。また、上部巻線3の窓内を除く辺の長さBは、下部巻線4の窓内を除く辺の長さBよりも大きい。 Here, the length A1 of the lower winding 4 in the in-window direction is equal to the length A2 of the upper winding 3 in the in-window direction. In addition, the length B2 of the side of the upper winding 3 excluding the inside of the window is longer than the length B1 of the side of the lower winding 4 excluding the inside of the window.

図6(a)に示すように、下部巻線4には、冷却ダクト11が配置されている。また、図6(b)に示すように、上部巻線3には、冷却ダクト11が配置されている。ここで、上部巻線3の冷却ダクト11の数は、下部巻線4の冷却ダクト11の数よりも多く、上部巻線3の冷却ダクト11の厚さは、下部巻線4の冷却ダクト11の厚さと同じである。 As shown in FIG. 6( a ), a cooling duct 11 is arranged in the lower winding 4 . A cooling duct 11 is arranged in the upper winding 3, as shown in FIG. 6(b). Here, the number of cooling ducts 11 of the upper winding 3 is greater than the number of cooling ducts 11 of the lower winding 4, and the thickness of the cooling ducts 11 of the upper winding 3 is equal to that of the cooling ducts 11 of the lower winding 4. is the same as the thickness of

上部巻線3に下部巻線4と同じ厚さの冷却ダクト11を多く配置することにより、巻線(電線)が冷却の絶縁油7に触れる面積を増やす。窓内方向A、Aは鉄心外形が大きくなるため、上部巻線3の窓内を除く2辺Bにおいて冷却ダクト11を多く配置する。 By arranging many cooling ducts 11 having the same thickness as the lower winding 4 in the upper winding 3, the area of the winding (electrical wire) in contact with the insulating oil 7 for cooling is increased. Since the outer shape of the core becomes large in the window inward directions A 1 and A 2 , more cooling ducts 11 are arranged on the two sides B 2 of the upper winding 3 excluding the inside of the window.

このように、実施例3の変圧器では、上部巻線3と下部巻線4の冷却ダクト数が異なり、上部巻線3の2辺の外形Bが下部巻線4の外形Bよりも大きくなる。 Thus, in the transformer of Example 3, the number of cooling ducts is different between the upper winding 3 and the lower winding 4, and the outer shape B2 of the two sides of the upper winding 3 is larger than the outer shape B1 of the lower winding 4. growing.

図8に示すように、外形が大きい外側の巻線(電線)は、下から導入される絶縁油7は上部巻線3と下部巻線4との間の隙間からでなく、絶縁油7の流線9を介して直接下側から導入される。なお、上部巻線3と下部巻線4を直列接続する場合は、上部巻線3と下部巻線4の外形が異なっても電気特性への影響は少ない。 As shown in FIG. 8, in the outer winding (electric wire) having a large outer diameter, the insulating oil 7 introduced from below does not flow through the gap between the upper winding 3 and the lower winding 4, but rather flows through the insulating oil 7. It is introduced directly from below via the streamline 9 . When the upper winding 3 and the lower winding 4 are connected in series, even if the upper winding 3 and the lower winding 4 have different outer shapes, the electrical characteristics are hardly affected.

なお、外周部にある巻線(電線)の冷却ダクト11は、直接絶縁油7に冷却されやすいため数量を同じとし厚さを薄くしても良い。そして、上部巻線3と下部巻線4との間の隙間を経由して導入される内側の巻線(電線)は、冷却ダクト11の厚さを同じとし数量を増やすことで冷えにくい内側を冷却するようにしても良い。 The cooling ducts 11 for windings (electric wires) on the outer periphery are easily cooled directly by the insulating oil 7, so the number of the cooling ducts 11 may be the same and the thickness may be reduced. The inner windings (electric wires) introduced through the gap between the upper winding 3 and the lower winding 4 are made to have the same thickness as the cooling duct 11, and the number of the windings is increased to increase the number of inner windings that are difficult to cool. You may make it cool.

実施例3では、外形寸法の増大を抑制しながら冷却効果を維持することができる。窓内方向A、Aについては、上部巻線3の外形を下側巻線4の外形と合わせ、鉄心寸法の増大を抑制する。 In Example 3, the cooling effect can be maintained while suppressing an increase in external dimensions. As for the in-window directions A 1 and A 2 , the outer shape of the upper winding 3 is matched with the outer shape of the lower winding 4 to suppress an increase in core size.

図7を参照して、実施例4の変圧器について説明する。(a)は下部巻線4の断面図であり、(b)は上部巻線3の断面図である。 A transformer of Example 4 will be described with reference to FIG. (a) is a cross-sectional view of the lower winding 4, and (b) is a cross-sectional view of the upper winding 3. FIG.

実施例4の変圧器の構成は、図3に示す実施例1の変圧器の構成とほぼ同じなのでその説明は省略する。 The configuration of the transformer of Example 4 is substantially the same as the configuration of the transformer of Example 1 shown in FIG. 3, so the description thereof will be omitted.

実施例4の変圧器では、冷却ダクトの数量が上部巻線3と下部巻線4とで異なるように配置した。 In the transformer of Example 4, the numbers of cooling ducts are arranged differently between the upper winding 3 and the lower winding 4 .

図7(a)に示すように、下部巻線4では、窓内(図7の斜線部)の方向の長さはAであり、窓内を除く辺の長さはBである。また、図7(b)に示すように、上部巻線3では、窓内方向の長さはAであり、窓内を除く辺の長さはBである。 As shown in FIG. 7A, the lower winding 4 has a length of A1 in the direction of the inside of the window (hatched area in FIG. 7), and a length of B1 on the side excluding the inside of the window. As shown in FIG. 7(b), the upper winding 3 has a length of A2 in the window inner direction and a side length of B2 excluding the inside of the window.

ここで、上部巻線3の窓内方向の長さはAは、下部巻線4の窓内方向の長さAよりも大きい。また、上部巻線3の窓内を除く辺の長さはBは、下部巻線4の窓内を除く辺の長さはBよりも大きい。 Here, the length A2 of the upper winding 3 in the in-window direction is greater than the length A1 of the lower winding 4 in the in-window direction. In addition, the length of the side of the upper winding 3 excluding the inside of the window is B2, and the length of the side of the lower winding 4 excluding the inside of the window is longer than B1 .

図7(a)に示すように、下部巻線4には、冷却ダクト11が配置されている。また、図7(b)に示すように、上部巻線3には、冷却ダクト11が配置されている。ここで、上部巻線3の冷却ダクト11の数量は、下部巻線4の冷却ダクト11の数量よりも多く、上部巻線3の冷却ダクト11の厚さは、下部巻線4の冷却ダクト11の厚さと同じである。 As shown in FIG. 7( a ), a cooling duct 11 is arranged in the lower winding 4 . A cooling duct 11 is arranged in the upper winding 3, as shown in FIG. 7(b). Here, the number of cooling ducts 11 of the upper winding 3 is greater than the number of cooling ducts 11 of the lower winding 4, and the thickness of the cooling ducts 11 of the upper winding 3 is equal to that of the cooling ducts 11 of the lower winding 4. is the same as the thickness of

上部巻線3に下部巻線4と同じ厚さの冷却ダクト11を多く配置することで巻線(電線)が冷却の絶縁油7に触れる面積を増やす。鉄心外形が大きい窓内方向A、A及び鉄心外形が大きい窓内を除く2辺B、Bにおいて、上部巻線3に冷却ダクト11を多く配置する。 By arranging many cooling ducts 11 having the same thickness as that of the lower winding 4 in the upper winding 3, the area of the winding (electrical wire) in contact with the insulating oil 7 for cooling is increased. A large number of cooling ducts 11 are arranged in the upper winding 3 on the two sides B 1 and B 2 excluding the inner direction A 1 and A 2 of the window where the core outer shape is large and the inside of the window where the core outer shape is large.

このように、実施例4では、上部巻線3と下部巻線4の冷却ダクト数が異なり、上部巻線3の2辺の外形Aが下部巻線4の外形Aよりも大きくなる。さらに、上部巻線3の2辺の外形Bが下部巻線4の外形Bよりも大きくなる。 Thus, in Example 4, the numbers of cooling ducts are different between the upper winding 3 and the lower winding 4, and the outline A2 of two sides of the upper winding 3 is larger than the outline A1 of the lower winding 4. FIG. Furthermore, the outer shape B2 of two sides of the upper winding 3 is larger than the outer shape B1 of the lower winding 4 .

図8に示すように、上部巻線3と下部巻線4との間の隙間に、上部巻線3に絶縁油7を導入し隙間を埋める冷却ダクト13を配置する。具体的には、図7に示すように、下部巻線4の全周に渡り台紙に長方形などの絶縁材(図示せず)を貼り付けた冷却ダクト13を配置する。 As shown in FIG. 8, a cooling duct 13 is arranged in the gap between the upper winding 3 and the lower winding 4 to fill the gap by introducing insulating oil 7 into the upper winding 3 . Specifically, as shown in FIG. 7 , a cooling duct 13 is arranged over the entire circumference of the lower winding 4 by attaching an insulating material (not shown) such as a rectangle to a backing paper.

実施例4では、図8に示すように、外形が大きい外側の巻線(電線)では、下から導入される絶縁油7は上部巻線3と下部巻線4との間の隙間からでなく、冷却ダクト13内を流れる絶縁油7の流線9を介して直接下側から導入される。
また、上部巻線3と下部巻線4を直列接続する場合は、上部巻線3と下部巻線4の外形が異なっても電気特性への影響が少ない。
In the fourth embodiment, as shown in FIG. 8, in the outer winding (electric wire) having a large outer diameter, the insulating oil 7 introduced from below is not introduced from the gap between the upper winding 3 and the lower winding 4. , directly from below via streamlines 9 of the insulating oil 7 flowing in the cooling duct 13 .
Moreover, when the upper winding 3 and the lower winding 4 are connected in series, even if the outer shape of the upper winding 3 and the lower winding 4 are different, the electrical characteristics are hardly affected.

上記実施例では、油入変圧器の巻線構造において、巻線を上下方向に分割し、その空間から絶縁油を導入し、巻線上下の冷却ダクトの配置により上部巻線を積極的に冷却する。このように、巻線を上下に分割し、冷却ダクトの厚さと数量を上下で変更することにより巻線上下の温度差を均一にすることができる。 In the above embodiment, in the winding structure of the oil-immersed transformer, the winding is divided vertically, insulating oil is introduced from the space, and the upper winding is actively cooled by arranging cooling ducts above and below the winding. do. In this way, by dividing the winding into upper and lower parts and changing the thickness and number of cooling ducts in the upper and lower parts, the temperature difference between the upper and lower parts of the winding can be made uniform.

さらに、上部巻線の温度を下げることで巻線の平均温度を下げて均一化を図ることで熱劣化の不平衡を解消する。また、上部の高い温度を下げることにより、タンクや絶縁油などの冷却機構全体を圧縮する。これにより、コンパクトな変圧器が提供可能になる。 Furthermore, by lowering the temperature of the upper winding, the average temperature of the winding is lowered and uniformed, thereby eliminating the imbalance of thermal deterioration. Also, by lowering the high temperature of the upper part, the entire cooling mechanism such as the tank and insulating oil is compressed. This allows a compact transformer to be provided.

このように、上記実施例では、巻線上下の温度差を小さくし長期に渡る巻線の熱劣化を抑制することができる。また、変圧器自身を例えば耐熱クラスを上げるなどの高温化を図る場合に、巻線上部の温度を下げ極力安価な絶縁材を採用できるようにして変圧器をコンパクトにすることができる。 Thus, in the above-described embodiment, the temperature difference between the upper and lower sides of the winding can be reduced to suppress thermal deterioration of the winding over a long period of time. In addition, when the temperature of the transformer itself is raised, for example, by raising the heat resistance class, the temperature of the upper part of the winding can be lowered and the transformer can be made compact by using an inexpensive insulating material.

1 外鉄心
2 内鉄心
3 上部巻線
4 下部巻線
5 巻線
6 タンク
7 絶縁油
8 絶縁油の流線
9 絶縁油の流線
10 絶縁物
11 冷却ダクト(下部巻線)
12 冷却ダクト(上部巻線)
13 冷却ダクト(外周)
1 Outer core 2 Inner core 3 Upper winding 4 Lower winding 5 Winding 6 Tank 7 Insulating oil 8 Insulating oil flow line 9 Insulating oil flow line 10 Insulator 11 Cooling duct (lower winding)
12 cooling duct (upper winding)
13 Cooling duct (periphery)

Claims (12)

鉄心と、前記鉄心に巻き回された巻線とが配置されたタンクを有し、前記タンク内は冷却媒体で満たされており、前記巻線内に前記冷却媒体を通過させて前記巻線を冷却する変圧器であって、
前記巻線を前記冷却媒体の循環する上下方向に分割することにより上部巻線と下部巻線を構成し、
前記上部巻線と前記下部巻線との間に形成された隙間を介して前記冷却媒体を前記上部巻線に導入して、前記上部巻線を重点的に冷却することを特徴とする変圧器。
It has a tank in which an iron core and a winding wound around the iron core are arranged, the inside of the tank is filled with a cooling medium, and the cooling medium is passed through the winding to cool the winding. A cooling transformer,
An upper winding and a lower winding are configured by dividing the winding in the vertical direction in which the cooling medium circulates,
A transformer characterized in that the cooling medium is introduced into the upper winding through a gap formed between the upper winding and the lower winding to cool the upper winding intensively. .
前記上部巻線と前記下部巻線との間には、絶縁物が配置されており、
前記絶縁物は、所定の絶縁距離を確保することにより前記冷却媒体を前記上部巻線に導入する前記隙間を構成することを特徴とする請求項1に記載の変圧器。
An insulator is arranged between the upper winding and the lower winding,
2. A transformer as claimed in claim 1, wherein the insulator forms the gap introducing the cooling medium into the upper winding by ensuring a predetermined insulation distance.
前記下部巻線には、第1の冷却ダクトが配置されており、
前記上部巻線には、第2の冷却ダクトが配置されており、
前記第2の冷却ダクトの数量が前記第1の冷却ダクトの数量よりも多くなるように前記第2の冷却ダクトを前記上部巻線に配置したことを特徴とする請求項1に記載の変圧器。
A first cooling duct is arranged in the lower winding,
A second cooling duct is arranged in the upper winding,
2. The transformer according to claim 1, wherein said second cooling ducts are arranged in said upper winding such that the number of said second cooling ducts is greater than the number of said first cooling ducts. .
前記上部巻線の外形は、前記下部巻線の外形と同じであり、
前記第2の冷却ダクトの厚さは、前記第1の冷却ダクトの厚さよりも薄いことを特徴とする請求項3に記載の変圧器。
the outer shape of the upper winding is the same as the outer shape of the lower winding,
4. The transformer of claim 3, wherein the thickness of said second cooling duct is less than the thickness of said first cooling duct.
前記下部巻線と前記上部巻線を、断面水平方向の外形が互いに等しく、かつ断面垂直方向の外形が前記下部巻線よりも前記上部巻線の方が大きくなるように構成し、
前記断面垂直方向の外形を有する部分において、前記第2の冷却ダクトの数量が前記第1の冷却ダクトの数量よりも多くなるように前記第2の冷却ダクトを配置したことを特徴とする請求項3に記載の変圧器。
the lower winding and the upper winding are configured so that their horizontal cross-sectional profiles are equal to each other and the upper winding has a larger cross-sectional profile in the vertical direction than the lower winding;
3. The second cooling ducts are arranged such that the number of the second cooling ducts is greater than the number of the first cooling ducts in the portion having the outer shape in the vertical direction of the cross section. 3. The transformer according to 3.
前記下部巻線と前記上部巻線を、断面水平方向及び断面垂直方向の外形が前記下部巻線よりも前記上部巻線の方が大きくなるように構成し、
前記断面水平方向の外形を有する部分及び前記断面垂直方向の外形を有する部分において、前記第2の冷却ダクトの数量が前記第1の冷却ダクトの数量よりも多くなるように前記第2の冷却ダクトを配置したことを特徴とする請求項3に記載の変圧器。
The lower winding and the upper winding are configured such that the upper winding has a larger profile in the horizontal and vertical cross-sectional directions than the lower winding,
The second cooling ducts are arranged such that the number of the second cooling ducts is greater than the number of the first cooling ducts in the portion having the horizontal cross-sectional shape and the portion having the vertical cross-sectional shape. 4. A transformer according to claim 3, characterized in that it is arranged with
第3の冷却ダクトを更に配置し、
前記第3の冷却ダクトを介して前記上部巻線に前記冷却媒体を導入することを特徴とする請求項6に記載の変圧器。
further disposing a third cooling duct;
7. A transformer as claimed in claim 6, characterized in that the cooling medium is introduced into the upper winding via the third cooling duct.
鉄心と、前記鉄心に巻き回された巻線とを有する変圧器であって、
前記巻線を上下方向に分割することにより上部巻線と下部巻線を構成し、
前記下部巻線には、第1の冷却ダクトが配置されており、
前記上部巻線には、第2の冷却ダクトが配置されており、
前記第2の冷却ダクトの数量が前記第1の冷却ダクトの数量よりも多くなるように前記第2の冷却ダクトを前記上部巻線に配置したことを特徴とする変圧器。
A transformer having an iron core and a winding wound around the iron core,
An upper winding and a lower winding are configured by dividing the winding in the vertical direction,
A first cooling duct is arranged in the lower winding,
A second cooling duct is arranged in the upper winding,
A transformer, wherein the second cooling ducts are arranged in the upper winding so that the number of the second cooling ducts is greater than the number of the first cooling ducts.
前記上部巻線の外形は、前記下部巻線の外形と同じであり、
前記第2の冷却ダクトの厚さは、前記第1の冷却ダクトの厚さよりも薄いことを特徴とする請求項8に記載の変圧器。
the outer shape of the upper winding is the same as the outer shape of the lower winding,
9. The transformer of claim 8, wherein the thickness of said second cooling duct is less than the thickness of said first cooling duct.
前記下部巻線と前記上部巻線を、断面水平方向の外形が互いに等しく、かつ断面垂直方向の外形が前記下部巻線よりも前記上部巻線の方が大きくなるように構成し、
前記断面垂直方向の外形を有する部分において、前記第2の冷却ダクトの数量が前記第1の冷却ダクトの数量よりも多くなるように前記第2の冷却ダクトを配置したことを特徴とする請求項8に記載の変圧器。
the lower winding and the upper winding are configured so that their horizontal cross-sectional profiles are equal to each other and the upper winding has a larger cross-sectional profile in the vertical direction than the lower winding;
3. The second cooling ducts are arranged such that the number of the second cooling ducts is greater than the number of the first cooling ducts in the portion having the outer shape in the vertical direction of the cross section. 8. The transformer according to 8.
前記下部巻線と前記上部巻線を、断面水平方向及び断面垂直方向の外形が前記下部巻線よりも前記上部巻線の方が大きくなるように構成し、
前記断面水平方向の外形を有する部分及び前記断面垂直方向の外形を有する部分において、前記第2の冷却ダクトの数量が前記第1の冷却ダクトの数量よりも多くなるように前記第2の冷却ダクトを配置したことを特徴とする請求項8に記載の変圧器。
The lower winding and the upper winding are configured such that the upper winding has a larger profile in the horizontal and vertical cross-sectional directions than the lower winding,
The second cooling ducts are arranged such that the number of the second cooling ducts is greater than the number of the first cooling ducts in the portion having the horizontal cross-sectional shape and the portion having the vertical cross-sectional shape. 9. A transformer according to claim 8, characterized in that it is arranged with
第3の冷却ダクトを更に配置し、
前記第3の冷却ダクトを介して前記上部巻線に冷却媒体を導入することを特徴とする請求項8に記載の変圧器。
further disposing a third cooling duct;
9. A transformer as claimed in claim 8, characterized in that a cooling medium is introduced into the upper winding through the third cooling duct.
JP2021014807A 2021-02-02 2021-02-02 transformer Pending JP2022118358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021014807A JP2022118358A (en) 2021-02-02 2021-02-02 transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021014807A JP2022118358A (en) 2021-02-02 2021-02-02 transformer

Publications (1)

Publication Number Publication Date
JP2022118358A true JP2022118358A (en) 2022-08-15

Family

ID=82840160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021014807A Pending JP2022118358A (en) 2021-02-02 2021-02-02 transformer

Country Status (1)

Country Link
JP (1) JP2022118358A (en)

Similar Documents

Publication Publication Date Title
JP6463985B2 (en) Static induction machine
KR20160149594A (en) Cooling Device of Power Transformer
JP2015050451A (en) Transformer
JPH09134823A (en) Transformer for vehicle
JP2022118358A (en) transformer
KR20140005166U (en) Power transformaer
JP6833696B2 (en) Molded coil
TWI675384B (en) Static sensor
JP7204954B2 (en) stationary inductor
JP5361815B2 (en) Stationary inductor
JP6429815B2 (en) Stationary inductor
JP3995869B2 (en) Transformer
JP2003077737A (en) Winding of electric equipment
CN219457316U (en) Square vertical winding coil with air duct
JP7272999B2 (en) oil-filled transformer
CN219017410U (en) Casting dry type multi-winding coil and dry type transformer
CN217562387U (en) Dry-type transformer
CN110491640B (en) Method for accelerating oil cooling of oil-immersed self-cooling transformer
JP7368989B2 (en) High voltage coil for molded transformer and molded transformer
JPH08213254A (en) Stationary induction electrical equipment
JP2023176844A (en) stationary induction appliance
JP6351460B2 (en) Oil-filled transformer
KR20200025844A (en) Transformer having a cooling structure
JP2002083715A (en) Induction machine
JP2010206000A (en) Transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423