JPH0864431A - Induced electric appliance coil - Google Patents

Induced electric appliance coil

Info

Publication number
JPH0864431A
JPH0864431A JP19335094A JP19335094A JPH0864431A JP H0864431 A JPH0864431 A JP H0864431A JP 19335094 A JP19335094 A JP 19335094A JP 19335094 A JP19335094 A JP 19335094A JP H0864431 A JPH0864431 A JP H0864431A
Authority
JP
Japan
Prior art keywords
cooling
winding
horizontal
closing plate
vertical cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19335094A
Other languages
Japanese (ja)
Inventor
Masumi Nakatate
真澄 中楯
Kazunori Suda
和憲 須田
Chinatsu Nakagawa
千夏 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19335094A priority Critical patent/JPH0864431A/en
Publication of JPH0864431A publication Critical patent/JPH0864431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE: To provide a small-sized induced electric appliance coil that the speed of a running fluid in a horizontal cooling path near an inflow port in a cooling region is increased and an attempt is made to uniformize a distribution of the speed of a running fluid among a plurality of horizontal cooling paths and the coil is excellent in cooling efficiency. CONSTITUTION: Discoid coils 3 having a plurality of steps are laminated and arranged between an inside insulation cylinder 1 and an outer insulation cylinder 2. A plurality of horizontal cooling paths are radially arranged among respective neighboring discoid coils 3. A plurality of inside vertical cooling paths 8 and a plurality of outer vertical cooling paths 9 respectively communicating with the plurality of horizontal cooling paths 5 are formed between the inside insulation cylinder 1 and discoid coil 3 and between the outer insulation cylinder 2 and discoid coil 3. An insulation fluid flows from inwardly to outwardly in the horizontal cooling path 5 of cooling regions 21, 23. The relationship between a space dimension S1 between the inside insulation cylinder 1 of the inside vertical cooling path 8 and the discoid coil 3; and a space dimension SO between the outer insulation cylinder 2 of the outer vertical cooling path 9 and the discoid coil 3 is constructed to be SI>SO.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、SF6 ガスなどの絶縁
流体を冷媒として冷却を行う誘導電器巻線に係り、特
に、その冷却構造の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction electric winding for cooling using an insulating fluid such as SF 6 gas as a refrigerant, and more particularly to improvement of its cooling structure.

【0002】[0002]

【従来の技術】変圧器やリアクトルなどの誘導電器に使
用される巻線は、運転時における発熱量が大きい。その
ため、一般的に、巻線周辺に冷却路を形成し、この冷却
路に、SF6 ガス、絶縁油、パーフロロカーボンなどの
絶縁流体を冷媒として流し、巻線の冷却を行っている。
図9は、このような冷却構造を有する従来の変圧器の巻
線の一例を示す平面図、図10は、図9のY矢視断面図
である。まず、図9に示すように、同軸状に配置された
内側絶縁筒1と外側絶縁筒2との間に、素線導体を巻回
してなる円板巻線3が同軸状に配置されている。この円
板巻線3は、図10に示すように、絶縁筒1,2の軸方
向に複数段積み重ねられている。
2. Description of the Related Art Windings used in induction electric appliances such as transformers and reactors generate a large amount of heat during operation. Therefore, generally, a cooling passage is formed around the winding, and an insulating fluid such as SF 6 gas, insulating oil, or perfluorocarbon is made to flow in this cooling passage as a refrigerant to cool the winding.
FIG. 9 is a plan view showing an example of windings of a conventional transformer having such a cooling structure, and FIG. 10 is a sectional view taken along the arrow Y in FIG. First, as shown in FIG. 9, a disk winding 3 formed by winding a wire conductor is coaxially arranged between an inner insulating cylinder 1 and an outer insulating cylinder 2 which are coaxially arranged. . As shown in FIG. 10, the disk windings 3 are stacked in multiple stages in the axial direction of the insulating cylinders 1 and 2.

【0003】また、図9に示すように、各隣接する2つ
の円板巻線3間には、複数個の水平間隔片4が放射状に
等間隔で配置されており、これによって、円板巻線3の
半径方向に向かって複数の扇状の水平冷却路5が放射状
に形成されている。さらに、内側絶縁筒1と円板巻線3
との間、および外側絶縁筒2と円板巻線3との間には、
複数個の垂直間隔片6および複数個の垂直間隔片7が、
円板巻線3の水平間隔片4の配置部分の内外周上に配置
されている。これにより、円板巻線3の内側と外側に
は、複数の円板巻線3に亘ってその軸方向に伸びる複数
の直線状の内側垂直冷却路8、および複数の直線状の外
側垂直冷却路9がそれぞれ形成されている。すなわち、
この複数の内側垂直冷却路8と複数の外側垂直冷却路9
は、複数の水平冷却路5を連通するように形成されてい
る。
Further, as shown in FIG. 9, a plurality of horizontal spacing pieces 4 are radially arranged at equal intervals between each two adjacent disc windings 3, whereby the disc winding is performed. A plurality of fan-shaped horizontal cooling paths 5 are radially formed in the radial direction of the line 3. Furthermore, the inner insulating cylinder 1 and the disk winding 3
Between the outer insulating cylinder 2 and the disk winding 3,
A plurality of vertical spacing pieces 6 and a plurality of vertical spacing pieces 7;
The disk windings 3 are arranged on the inner and outer circumferences of the arrangement portion of the horizontal spacing pieces 4. As a result, on the inner side and the outer side of the disk winding 3, a plurality of linear inner vertical cooling paths 8 extending in the axial direction over the plurality of disk windings 3, and a plurality of linear outer vertical cooling paths. The paths 9 are formed respectively. That is,
The plurality of inner vertical cooling passages 8 and the plurality of outer vertical cooling passages 9
Are formed to connect the plurality of horizontal cooling paths 5.

【0004】そしてまた、図10に示すように、円板巻
線3の複数段毎に、内側垂直冷却路8を閉塞してこの内
側垂直冷却路8から水平冷却路5に亘って伸びる内側閉
塞板10、および、外側垂直冷却路9を閉塞してこの外
側垂直冷却路9から水平冷却路5に亘って伸びる外側閉
塞板11が、交互に、かつ、円板巻線3の全周に亘って
設けられている。そして、このように円板巻線3の複数
段毎に、内側閉塞板10と外側閉塞板11を交互に配置
したことにより、内側垂直冷却路8および外側垂直冷却
路9を交互に閉塞して、水平冷却路5における絶縁流体
の流入口および流出口の位置を逆転させ、水平冷却路5
内における絶縁流体の流れ方向を逆転させるように構成
されている。すなわち、内側閉塞板10と外側閉塞板1
1によって区分される冷却区域毎に、絶縁流体の流れ方
向が逆転することになる。
Further, as shown in FIG. 10, the inner vertical cooling passage 8 is closed for each plurality of stages of the disk winding 3, and the inner closing is extended from the inner vertical cooling passage 8 to the horizontal cooling passage 5. The plates 10 and the outer closing plates 11 that close the outer vertical cooling passages 9 and extend from the outer vertical cooling passages 9 to the horizontal cooling passages 5 are arranged alternately and over the entire circumference of the disc winding 3. Is provided. In this way, the inner closing plates 10 and the outer closing plates 11 are alternately arranged for each of the plurality of stages of the disk winding 3, so that the inner vertical cooling passages 8 and the outer vertical cooling passages 9 are alternately closed. , The positions of the inlet and the outlet of the insulating fluid in the horizontal cooling passage 5 are reversed,
It is configured to reverse the flow direction of the insulating fluid inside. That is, the inner closing plate 10 and the outer closing plate 1
For each cooling zone divided by 1, the flow direction of the insulating fluid will be reversed.

【0005】この場合、図10においては、下から上に
向かって、4つの冷却区域21〜24が示されている
が、絶縁流体は、第1の冷却区域21では内側から外側
に向かって流れ、内側閉塞板10によって逆転し、第2
の冷却区域22では外側から内側に向かって流れる。さ
らに、絶縁流体は、外側閉塞板11によって逆転し、第
3の冷却区域23では内側から外側に向かって流れ、続
いて、内側閉塞板10によって逆転し、第4の冷却区域
24では外側から内側に向かって流れる。このように、
絶縁流体は、冷却区域21〜24毎に流れ方向を逆転
し、内側絶縁筒1と外側絶縁筒2の間をジグザグ状に流
れる形で各円板巻線3の間を流れ、巻線全体の冷却を行
うことになる。
In this case, in FIG. 10, four cooling zones 21 to 24 are shown from the bottom to the top, but the insulating fluid flows from the inside to the outside in the first cooling zone 21. , The inner blocking plate 10 reverses the rotation, and the second
In the cooling area 22 of, the flow is from the outside to the inside. Furthermore, the insulating fluid is reversed by the outer closure plate 11, flows from the inner side to the outer side in the third cooling zone 23, and subsequently is reversed by the inner closure plate 10, and in the fourth cooling zone 24 from the outer side to the inner side. Flowing toward. in this way,
The insulating fluid reverses the flow direction in each of the cooling sections 21 to 24 and flows in a zigzag manner between the inner insulating cylinder 1 and the outer insulating cylinder 2 between the respective disk windings 3 to thereby It will be cooled.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、以上の
ような構成を有する従来の変圧器の巻線には、次のよう
な問題点がある。すなわち、図10の巻線の、内側閉塞
板10と外側閉塞板11とによって形成された各冷却区
域21〜24内において、各水平冷却路5に分流する絶
縁流体の流速は、流出口付近となる上部で大きく流入口
付近となる下部で小さくなる傾向がある。
However, the windings of the conventional transformer having the above-mentioned structure have the following problems. That is, in each of the cooling sections 21 to 24 of the winding of FIG. 10 formed by the inner blocking plate 10 and the outer blocking plate 11, the flow velocity of the insulating fluid branched to each horizontal cooling passage 5 is the same as that near the outlet. It tends to be large at the upper part and small at the lower part near the inlet.

【0007】特に、この傾向は、内外の垂直冷却路8,
9と水平冷却路5の断面積比に大きく依存し、垂直冷却
路5の断面積が小さいほど顕著に現れる。すなわち、絶
縁流体が円板巻線3の外側から内側に向かって流れる場
合に対して、絶縁流体が円板巻線3の内側から外側に向
かって流れる場合の方が、水平冷却路5内の流速分布が
より不均一になり易い。
In particular, this tendency is caused by the vertical cooling passages 8 inside and outside,
9 and the horizontal cooling passage 5 have a large cross-sectional area ratio, and the smaller the cross-sectional area of the vertical cooling passage 5, the more remarkable it appears. That is, as compared with the case where the insulating fluid flows from the outside to the inside of the disk winding 3, the case where the insulating fluid flows from the inside to the outside of the disk winding 3 is more The flow velocity distribution tends to be more uneven.

【0008】そのため、図10の巻線の、各冷却区域2
1〜24内において、各水平冷却路5の流速分布20
は、図10中に破線の矢印で示されるような状態とな
る。この場合、破線の長さの比は、流速の大きさの比を
示している。
Therefore, each cooling area 2 of the winding of FIG.
Within 1 to 24, the flow velocity distribution 20 of each horizontal cooling passage 5
Is in a state as shown by a dashed arrow in FIG. In this case, the ratio of the lengths of the broken lines indicates the ratio of the magnitudes of the flow velocity.

【0009】したがって、各冷却区域21〜24内にお
いて、絶縁流体の流出口付近となる上部に配置される円
板巻線3に比べて、絶縁流体の流入口となる下部に配置
される円板巻線3の冷却が十分に行われないという問題
がある。特に、絶縁流体が円板巻線3の外側から内側に
向かって流れる冷却区域22,24内の流入口付近とな
る下部に配置される円板巻線3に比べて、絶縁流体が内
側から外側に向かって流れる冷却区域21,23の流入
口付近となる下部に配置される円板巻線3の冷却が十分
に行われないという問題がある。
Therefore, in each of the cooling zones 21 to 24, as compared with the disk winding 3 arranged in the upper part near the outlet of the insulating fluid, the disk arranged in the lower part serving as the inlet of the insulating fluid. There is a problem that the winding 3 is not sufficiently cooled. In particular, the insulating fluid flows from the inside to the outside as compared with the disk winding 3 which is arranged in the lower portion near the inlet in the cooling sections 22 and 24 where the insulating fluid flows from the outside to the inside of the disk winding 3. There is a problem that the disk winding 3 arranged in the lower part, which is near the inlet of the cooling sections 21 and 23 flowing toward, is not sufficiently cooled.

【0010】そのため、内側閉塞板10および外側閉塞
板11を取り付けて、巻線に絶縁流体をジグザグ状に流
すように構成したにも関わらず、期待される各円板巻線
3の一様な冷却効果は得られず、巻線の温度上昇を均一
化することができず、冷却効率が低くなる。また、各冷
却区域21〜24内の流入口付近となる下部において局
部的に過度な温度上昇が発生し、巻線に使用されている
絶縁物を劣化させ、変圧器の寿命を短縮してしまうなど
の問題が生ずる。特に、絶縁流体が円板巻線3の内側か
ら外側に向かって流れる冷却区域21,23内におい
て、このような局部的な過度の温度上昇は顕著であり、
問題はより深刻である。
Therefore, even though the inner closing plate 10 and the outer closing plate 11 are attached so that the insulating fluid is made to flow in a zigzag shape in the winding, the expected uniform winding of each disk winding 3 is obtained. The cooling effect cannot be obtained, the temperature rise of the winding cannot be made uniform, and the cooling efficiency becomes low. In addition, an excessive temperature rise locally occurs in the lower part near the inlet in each cooling zone 21 to 24, which deteriorates the insulator used for the winding and shortens the life of the transformer. Problems such as occur. Particularly, in the cooling sections 21 and 23 where the insulating fluid flows from the inner side to the outer side of the disc winding 3, such a local excessive temperature rise is remarkable,
The problem is more serious.

【0011】このような問題の対策として、円板巻線3
を形成している素線導体の断面積を大きくして電流密度
を下げることや、絶縁流体の水平冷却路5内の最小流速
を基準とした巻線冷却設計を行うことが考えられるが、
いずれの場合も、巻線を大型化させてしまう欠点があ
る。また、内側閉塞板10および外側閉塞板11の取り
付けピッチを小さくして水平冷却路5の流速を大きくす
ることも考えられるが、この場合は、流れの抵抗が増大
するのに伴って流量が減少してしまい、巻線上部の温度
が結果的に高くなってしまう欠点がある。なお、以上の
ような問題点は、変圧器の巻線に限らず、同様の構造を
有するリアクトルなどの誘電電器の巻線一般に存在して
いる。
As a measure against such a problem, the disk winding 3
It is conceivable to increase the cross-sectional area of the wire conductor forming the wire to reduce the current density and to design the winding cooling based on the minimum flow velocity of the insulating fluid in the horizontal cooling path 5.
In either case, there is a drawback that the winding is enlarged. It is also conceivable to reduce the mounting pitch of the inner closing plate 10 and the outer closing plate 11 to increase the flow velocity of the horizontal cooling passage 5, but in this case, the flow rate decreases as the flow resistance increases. However, there is a drawback that the temperature of the upper part of the winding becomes high as a result. The above-mentioned problems are not limited to the windings of the transformer, but are generally present in the windings of dielectric electric appliances such as reactors having the same structure.

【0012】本発明は、以上のような従来技術の問題点
を解決するために提案されたものであり、その目的は、
冷却区域内における流入口付近の水平冷却路の流速を増
大させて、複数の水平冷却路間の流速分布の均一化を図
り、冷却効率に優れた小型の誘導電器巻線を提供するこ
とである。
The present invention has been proposed in order to solve the above problems of the prior art, and its purpose is to:
(EN) It is intended to increase the flow velocity of a horizontal cooling passage near an inflow port in a cooling area to make the flow velocity distribution among a plurality of horizontal cooling passages uniform and to provide a small induction electric winding with excellent cooling efficiency. .

【0013】より具体的に、請求項1記載の発明の目的
は、絶縁流体を円板巻線の内側から外側に向かって流す
冷却区域内において、最も絶縁流体が流れにくい下部の
水平冷却路の流速を増大させることにより、複数の水平
冷却路間の流速分布を均一化することである。請求項2
記載の発明の目的は、各冷却区域内において、最も絶縁
流体が流れやすい上部の水平冷却路の流速を低減させる
とともに、最も絶縁流体が流れにくい下部の水平冷却路
の流速を増大させることにより、複数の水平冷却路間の
流速分布を均一化することである。請求項3記載の発明
の目的は、複数の冷却区域間における流れの抵抗を低減
して、巻線内を流れる絶縁流体の全流量を増大させるこ
とにより、閉塞板の取り付けピッチを小さくして水平冷
却路の最低流速を増大させ、それによって、複数の水平
冷却路間の流速分布を均一化することである。請求項4
記載の発明の目的は、閉塞板の連通部を規格化し、その
断面積を容易に設定・変更可能とすることにより、設計
の自由度を向上することである。請求項5記載の発明の
目的は、閉塞板の連通部の断面積を適切に設定すること
により、この連通部の機能をより向上することである。
More specifically, an object of the present invention is to provide a lower horizontal cooling passage in which the insulating fluid is the most difficult to flow in a cooling zone in which the insulating fluid flows from the inside to the outside of the disk winding. By increasing the flow velocity, the flow velocity distribution among a plurality of horizontal cooling channels is made uniform. Claim 2
The purpose of the invention described is to reduce the flow velocity of the upper horizontal cooling passage in which the insulating fluid is most likely to flow and increase the flow velocity of the lower horizontal cooling passage in which the insulating fluid is most difficult to flow, in each cooling zone. It is to make the flow velocity distribution among a plurality of horizontal cooling paths uniform. An object of the invention according to claim 3 is to reduce the flow resistance between a plurality of cooling zones and increase the total flow rate of the insulating fluid flowing in the windings, thereby reducing the mounting pitch of the closing plate and making it horizontal. The goal is to increase the minimum flow velocity in the cooling passages, thereby homogenizing the flow velocity distribution among the horizontal cooling passages. Claim 4
An object of the described invention is to improve the degree of freedom in design by standardizing the communicating portion of the closing plate and allowing the cross-sectional area to be easily set and changed. An object of the invention described in claim 5 is to further improve the function of the communicating portion by appropriately setting the cross-sectional area of the communicating portion of the closing plate.

【0014】[0014]

【課題を解決するための手段】本発明による誘導電器巻
線は、内側絶縁筒と外側絶縁筒との間に複数段の円板巻
線を積み重ねて配置すると共に、各隣接する円板巻線間
に複数個の水平間隔片を介在させて複数の水平冷却路を
放射状に形成し、内側絶縁筒と円板巻線との間および外
側絶縁筒と円板巻線との間に複数個の垂直間隔片をそれ
ぞれ介在させて複数の水平冷却路をそれぞれ連通する複
数の内側垂直冷却路と複数の外側垂直冷却路を形成した
誘導電器巻線において、その冷却路が次のように構成さ
れたことを特徴とするものである。
In the induction winding according to the present invention, a plurality of stages of disk windings are stacked and arranged between an inner insulating cylinder and an outer insulating cylinder, and each adjacent disk winding is arranged. A plurality of horizontal cooling passages are radially formed with a plurality of horizontal spacing pieces interposed therebetween, and a plurality of horizontal cooling paths are formed between the inner insulating cylinder and the disk winding and between the outer insulating cylinder and the disk winding. In an induction coil winding having a plurality of inner vertical cooling passages and a plurality of outer vertical cooling passages that respectively communicate a plurality of horizontal cooling passages with vertical spacing pieces interposed, the cooling passages are configured as follows. It is characterized by that.

【0015】すなわち、まず、請求項1記載の発明は、
複数の水平冷却路の少なくとも一部の水平冷却路につい
ては、絶縁流体を円板巻線の内側から外側に向かって流
すように構成した誘導電器巻線において、内側垂直冷却
路の内側絶縁筒と円板巻線との間の間隔寸法SI と、外
側垂直冷却路の外側絶縁筒と円板巻線との間の間隔寸法
O との関係がSI >SO となるように構成されたこと
を特徴としている。
That is, first, the invention according to claim 1 is
At least a part of the horizontal cooling channels of the plurality of horizontal cooling channels is an induction motor winding configured so that the insulating fluid flows from the inside to the outside of the disc winding, and with the inner insulating tube of the inner vertical cooling channel. The relationship between the space dimension S I between the disk winding and the space dimension S O between the outer insulating cylinder of the outer vertical cooling path and the disk winding is S I > S O. It is characterized by that.

【0016】次に、請求項2および3記載の発明は、円
板巻線の複数段毎に、内側垂直冷却路を閉塞してこの内
側垂直冷却路から水平冷却路に亘って伸びる内側閉塞
板、および、外側垂直冷却路を閉塞してこの外側垂直冷
却路から水平冷却路に亘って伸びる外側閉塞板を、交互
に、かつ、円板巻線の全周に亘って設けて、この内側閉
塞板と外側閉塞板によって複数の冷却区域を形成し、各
冷却区域毎に流れ方向を逆転する形で絶縁流体をジグザ
グに流すように構成した誘導電器巻線において、垂直冷
却路の断面積を絞る第2の内側閉塞板および第2の外側
閉塞板が新たに設けられるか、あるいはまた、内側閉塞
板および外側閉塞板が垂直冷却路の一部を連通するよう
に構成されたことを特徴としている。
Next, the invention according to claims 2 and 3 closes the inner vertical cooling passage for each plurality of stages of the disk winding, and extends from the inner vertical cooling passage to the horizontal cooling passage. , And outer closing plates that extend from the outer vertical cooling path to the horizontal cooling path by closing the outer vertical cooling path and alternately and around the entire circumference of the disc winding. The cooling area is narrowed in the induction coil winding that is configured to form a plurality of cooling zones by the plate and the outer closing plate and to flow the insulating fluid in a zigzag manner by reversing the flow direction in each cooling zone. The second inner closing plate and the second outer closing plate are newly provided, or alternatively, the inner closing plate and the outer closing plate are configured to communicate with a part of the vertical cooling passage. .

【0017】すなわち、請求項2記載の発明において
は、内側閉塞板の下部に位置する冷却区域内に、内側垂
直冷却路から水平冷却路に亘って伸びる第2の内側閉塞
板が設けられる。この第2の内側閉塞板は、内側垂直冷
却路の一部を連通させる連通部を有し、この連通部以外
の部分で内側垂直冷却路を閉塞するように構成される。
そして、外側閉塞板の下部に位置する冷却区域内に、外
側垂直冷却路から水平冷却路に亘って伸びる第2の外側
閉塞板が設けられる。この第2の外側閉塞板は、外側垂
直冷却路の一部を連通させる連通部を有し、この連通部
以外の部分で外側垂直冷却路を閉塞するように構成され
る。
That is, according to the second aspect of the present invention, the second inner closing plate extending from the inner vertical cooling passage to the horizontal cooling passage is provided in the cooling area located under the inner closing plate. The second inner closing plate has a communicating portion that communicates a part of the inner vertical cooling passage, and is configured to close the inner vertical cooling passage at a portion other than this communicating portion.
Then, a second outer closing plate extending from the outer vertical cooling passage to the horizontal cooling passage is provided in the cooling area located under the outer closing plate. The second outer closing plate has a communicating portion that allows a part of the outer vertical cooling passage to communicate with each other, and is configured to close the outer vertical cooling passage at a portion other than this communicating portion.

【0018】また、請求項3記載の発明において、内側
閉塞板は、内側垂直冷却路の一部を連通させる連通部を
有し、この連通部以外の部分で内側垂直冷却路を閉塞す
るように構成される。そして、外側閉塞板は、外側垂直
冷却路の一部を連通させる連通部を有し、この連通部以
外の部分で外側垂直冷却路を閉塞するように構成され
る。
Further, in the invention according to claim 3, the inner closing plate has a communicating portion for communicating a part of the inner vertical cooling passage, and the inner vertical cooling passage is closed by a portion other than this communicating portion. Composed. The outer closing plate has a communicating portion that allows a part of the outer vertical cooling passage to communicate with each other, and is configured to close the outer vertical cooling passage at a portion other than this communicating portion.

【0019】さらに、請求項4および5記載の発明にお
いては、請求項2または3記載の発明の構成において、
さらに、第2の内側閉塞板または第2の外側閉塞板の連
通部、あるいは、内側閉塞板または外側閉塞板の連通部
が次のように構成されたことを特徴としている。すなわ
ち、請求項4記載の発明において、連通部は、内側垂直
冷却路または外側垂直冷却路を横切る部分に設けられた
等価な断面積を有する複数個の孔である。また、請求項
5記載の発明において、連通部の断面積は、内側垂直冷
却路または外側垂直冷却路の断面積の10%〜50%の
範囲である。
Further, in the invention described in claims 4 and 5, in the configuration of the invention described in claim 2 or 3,
Further, it is characterized in that the communicating portion of the second inner closing plate or the second outer closing plate, or the communicating portion of the inner closing plate or the outer closing plate is configured as follows. That is, in the invention as set forth in claim 4, the communicating portion is a plurality of holes having an equivalent cross-sectional area and provided in a portion crossing the inner vertical cooling passage or the outer vertical cooling passage. Further, in the invention according to claim 5, the cross-sectional area of the communicating portion is in the range of 10% to 50% of the cross-sectional area of the inner vertical cooling passage or the outer vertical cooling passage.

【0020】[0020]

【作用】以上のような構成を有する本発明によれば、冷
却路の構成を改良したことにより、冷却区域内における
流入口付近となる下部の水平冷却路の流速を増大させる
ことができる。すなわち、請求項1記載の発明によれ
ば、内側垂直冷却路の内側絶縁筒と円板巻線との間の間
隔寸法SI と、外側垂直冷却路の外側絶縁筒と円板巻線
との間の間隔寸法SO との関係がSI >SO となるよう
に構成することにより、円板巻線の内径と外径の差に応
じた内側垂直冷却路と外側垂直冷却路の周方向寸法の差
を補償して、内側垂直冷却路の断面積を大きくすること
ができる。したがって、絶縁流体を円板巻線の内側から
外側に向かって流す冷却区域内において、SI =SO
した場合には最も絶縁流体が流れにくい部分となる下部
の水平冷却路の流速を、SI >SO とすることによって
増大させることができる。
According to the present invention having the above-mentioned structure, by improving the structure of the cooling passage, the flow velocity of the lower horizontal cooling passage near the inflow port in the cooling zone can be increased. That is, according to the first aspect of the invention, the space dimension S I between the inner insulating cylinder of the inner vertical cooling passage and the disk winding and the outer insulating cylinder of the outer vertical cooling passage and the disk winding are By configuring so that the relationship with the space dimension S O between them becomes S I > S O , the circumferential direction of the inner vertical cooling passage and the outer vertical cooling passage according to the difference between the inner diameter and the outer diameter of the disk winding. The cross-sectional area of the inner vertical cooling channel can be increased by compensating for the dimensional difference. Therefore, in the cooling zone in which the insulating fluid flows from the inner side to the outer side of the disk winding, when S I = S O , the flow velocity of the lower horizontal cooling passage, which is the portion where the insulating fluid hardly flows, is It can be increased by setting S I > S O.

【0021】請求項2記載の発明によれば、第2の内側
閉塞板および第2の外側閉塞板によって、各冷却区域内
の垂直冷却路の断面積を絞ることになり、この垂直冷却
路の上部に絶縁流体が流れにくくなる。したがって、1
つの冷却区域内において、第2の閉塞板を設けない場合
には最も絶縁流体が流れやすい部分となる上部の水平冷
却路の流速を、第2の閉塞板を設けることによって低減
させることができるとともに、第2の閉塞板を設けない
場合には最も絶縁流体が流れにくい部分となる下部の水
平冷却路の流速を、第2の閉塞板を設けることによって
増大させることができる。
According to the second aspect of the present invention, the second inner closing plate and the second outer closing plate reduce the cross-sectional area of the vertical cooling passages in each cooling zone. It becomes difficult for the insulating fluid to flow to the upper part. Therefore, 1
In the two cooling zones, the flow velocity of the upper horizontal cooling passage, which is the portion where the insulating fluid flows most easily when the second closing plate is not provided, can be reduced by providing the second closing plate. In the case where the second closing plate is not provided, the flow velocity of the lower horizontal cooling passage, which is the portion where the insulating fluid hardly flows, can be increased by providing the second closing plate.

【0022】請求項3記載の発明によれば、内側閉塞板
および外側閉塞板により、複数の冷却区域間における垂
直冷却路の断面積を絞ることになり、この閉塞板部分に
おいて、絶縁流体は水平冷却路に流れるが、絶縁流体の
一部は連通部を介して垂直冷却路をそのまま上昇するこ
とになる。そして、このように上昇する流量に応じて冷
却区域間における流れの抵抗が低減されるため、その結
果、巻線内を流れる絶縁流体の全流量を増大させること
ができる。したがって、巻線全体の流れの抵抗を増大さ
せることなしに、閉塞板の取り付けピッチを小さくして
水平冷却路の最低流速を増大させることができる。
According to the third aspect of the invention, the cross-sectional area of the vertical cooling path between the plurality of cooling areas is reduced by the inner closing plate and the outer closing plate, and the insulating fluid is horizontal in the closing plate portion. Although flowing in the cooling passage, a part of the insulating fluid will rise in the vertical cooling passage as it is through the communicating portion. The flow resistance between the cooling zones is reduced in accordance with the rising flow rate, and as a result, the total flow rate of the insulating fluid flowing in the winding can be increased. Therefore, it is possible to increase the minimum flow velocity of the horizontal cooling path by reducing the mounting pitch of the closing plate without increasing the flow resistance of the entire winding.

【0023】請求項4記載の発明によれば、閉塞板の連
通部を、等価な断面積を有する複数個の孔によって構成
したことにより、孔の断面積と数を適宜設定するだけ
で、連通部の断面積を容易に設定・変更することができ
る。また、請求項5記載の発明によれば、閉塞板の連通
部の断面積を、垂直冷却路の断面積の10%〜50%の
範囲に限定することにより、閉塞板の上部に流れる流量
と水平冷却路に流れる流量を適切に制御することができ
る。
According to the fourth aspect of the present invention, the communication portion of the closing plate is constituted by a plurality of holes having an equivalent cross-sectional area. Therefore, the communication can be achieved simply by setting the cross-sectional area and the number of the holes appropriately. The cross-sectional area of the part can be easily set and changed. Further, according to the invention of claim 5, by limiting the cross-sectional area of the communicating portion of the closing plate to the range of 10% to 50% of the cross-sectional area of the vertical cooling passage, the flow rate to the upper part of the closing plate can be reduced. The flow rate flowing through the horizontal cooling passage can be controlled appropriately.

【0024】[0024]

【実施例】以下には、本発明による誘導電器巻線の複数
の実施例について、図1〜図7を参照して具体的に説明
する。なお、図9および図10に示す従来例と同一部分
には、同一符号を付している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A plurality of embodiments of the induction electric winding according to the present invention will be specifically described below with reference to FIGS. The same parts as those of the conventional example shown in FIGS. 9 and 10 are designated by the same reference numerals.

【0025】[1]第1実施例…図1〜図3 図1および図2は、請求項1記載の発明を変圧器の巻線
に適用した第1実施例を示す図であり、図1は、図2の
X矢視断面図、図2は平面図である。まず、図2に示す
ように、同軸状に配置された内側絶縁筒1と外側絶縁筒
2との間に、素線導体を巻回してなる円板巻線3が同軸
状に配置されている。この円板巻線3は、図1に示すよ
うに、絶縁筒1,2の軸方向に複数段積み重ねられてい
る。
[1] First Embodiment ... FIGS. 1 to 3 FIGS. 1 and 2 are views showing a first embodiment in which the invention of claim 1 is applied to a winding of a transformer. 2 is a sectional view taken along arrow X in FIG. 2, and FIG. 2 is a plan view. First, as shown in FIG. 2, a disk winding 3 formed by winding a wire conductor is coaxially arranged between an inner insulating cylinder 1 and an outer insulating cylinder 2 which are coaxially arranged. . As shown in FIG. 1, the disc windings 3 are stacked in a plurality of stages in the axial direction of the insulating cylinders 1 and 2.

【0026】また、図2に示すように、各隣接する2つ
の円板巻線3間には、複数個の水平間隔片4が放射状に
等間隔で配置されており、これによって、円板巻線3の
半径方向に向かって複数の扇状の水平冷却路5が放射状
に形成されている。さらに、内側絶縁筒1と円板巻線3
との間、および外側絶縁筒2と円板巻線3との間には、
複数個の垂直間隔片6および複数個の垂直間隔片7が、
円板巻線3の水平間隔片4の配置部分の内外周上に配置
されている。これにより、円板巻線3の内側と外側に
は、複数の円板巻線3に亘ってその軸方向に伸びる複数
の直線状の内側垂直冷却路8、および複数の直線状の外
側垂直冷却路9がそれぞれ形成されている。すなわち、
この複数の内側垂直冷却路8と複数の外側垂直冷却路9
は、複数の水平冷却路5を連通するように形成されてい
る。
Further, as shown in FIG. 2, a plurality of horizontal spacing pieces 4 are radially arranged at equal intervals between each two adjacent disc windings 3, whereby the disc winding is performed. A plurality of fan-shaped horizontal cooling paths 5 are radially formed in the radial direction of the line 3. Furthermore, the inner insulating cylinder 1 and the disk winding 3
Between the outer insulating cylinder 2 and the disk winding 3,
A plurality of vertical spacing pieces 6 and a plurality of vertical spacing pieces 7;
The disk windings 3 are arranged on the inner and outer circumferences of the arrangement portion of the horizontal spacing pieces 4. As a result, on the inner side and the outer side of the disk winding 3, a plurality of linear inner vertical cooling paths 8 extending in the axial direction over the plurality of disk windings 3, and a plurality of linear outer vertical cooling paths. The paths 9 are formed respectively. That is,
The plurality of inner vertical cooling passages 8 and the plurality of outer vertical cooling passages 9
Are formed to connect the plurality of horizontal cooling paths 5.

【0027】そしてまた、図1に示すように、円板巻線
3の複数段毎に、内側垂直冷却路8を閉塞してこの内側
垂直冷却路8から水平冷却路5に亘って伸びる内側閉塞
板10、および、外側垂直冷却路9を閉塞してこの外側
垂直冷却路9から水平冷却路5に亘って伸びる外側閉塞
板11が、交互に、かつ、円板巻線3の全周に亘って設
けられている。そして、このように円板巻線3の複数段
毎に、内側閉塞板10と外側閉塞板11を交互に配置し
たことにより、内側垂直冷却路8および外側垂直冷却路
9を交互に閉塞して、水平冷却路5における絶縁流体の
流入口および流出口の位置を逆転させ、水平冷却路5内
における絶縁流体の流れ方向を逆転させるように構成さ
れている。すなわち、内側閉塞板10と外側閉塞板11
によって区分される冷却区域毎に、絶縁流体の流れ方向
が逆転することになる。この場合、図1においては、図
10に示した従来例と同様に、下から上に向かって、4
つの冷却区域21〜24が示されている。
Further, as shown in FIG. 1, the inner vertical cooling passage 8 is closed for each plurality of stages of the disk winding 3, and the inner vertical extension extending from the inner vertical cooling passage 8 to the horizontal cooling passage 5 is closed. The plates 10 and the outer closing plates 11 that close the outer vertical cooling passages 9 and extend from the outer vertical cooling passages 9 to the horizontal cooling passages 5 are arranged alternately and over the entire circumference of the disc winding 3. Is provided. In this way, the inner closing plates 10 and the outer closing plates 11 are alternately arranged for each of the plurality of stages of the disk winding 3, so that the inner vertical cooling passages 8 and the outer vertical cooling passages 9 are alternately closed. The positions of the inflow port and the outflow port of the insulating fluid in the horizontal cooling passage 5 are reversed, and the flow direction of the insulating fluid in the horizontal cooling passage 5 is reversed. That is, the inner blocking plate 10 and the outer blocking plate 11
The flow direction of the insulating fluid will be reversed in each cooling section divided by. In this case, in FIG. 1, as in the conventional example shown in FIG.
Two cooling zones 21-24 are shown.

【0028】このような構成に加えて、さらに、本実施
例においては、図1に示すように、内側垂直冷却路8の
円板巻線3半径方向の寸法、すなわち、内側垂直冷却路
8の内側絶縁筒1と円板巻線3との間の間隔寸法S
I と、外側垂直冷却路9の円板巻線3半径方向の寸法、
すなわち、外側垂直冷却路9の外側絶縁筒2と円板巻線
3との間の間隔寸法SO との関係が、SI >SO となる
ように構成されている。このような間隔寸法の関係は、
内側絶縁筒1、外側絶縁筒2、および円板巻線3の径寸
法と、これらの間に配置される垂直間隔片6,8の寸法
によって与えられている。
In addition to the above structure, in this embodiment, as shown in FIG. 1, the dimension of the inner vertical cooling passage 8 in the radial direction of the disk winding 3, that is, the inner vertical cooling passage 8 is formed. Distance S between the inner insulating cylinder 1 and the disk winding 3
I , the dimension of the outer vertical cooling path 9 in the radial direction of the disk winding 3,
That is, the relationship between the outer insulating cylinder 2 of the outer vertical cooling passage 9 and the space dimension S O between the disc winding 3 is S I > S O. The relationship between the spacing dimensions is
It is given by the diameter dimensions of the inner insulating cylinder 1, the outer insulating cylinder 2, and the disk winding 3 and the dimensions of the vertical spacing pieces 6 and 8 arranged between them.

【0029】以上のような構成を有する本実施例の作用
は次の通りである。まず、本実施例の巻線において、絶
縁流体は、基本的に、図10に示した従来例と同様に流
れる。すなわち、図1において、絶縁流体は、第1の冷
却区域21では内側から外側に向かって流れ、内側閉塞
板10によって逆転し、第2の冷却区域22では外側か
ら内側に向かって流れる。さらに、絶縁流体は、外側閉
塞板11によって逆転し、第3の冷却区域23では内側
から外側に向かって流れ、続いて、内側閉塞板10によ
って逆転し、第4の冷却区域24では外側から内側に向
かって流れる。このように、絶縁流体は、冷却区域21
〜24毎に流れ方向を逆転し、内側絶縁筒1と外側絶縁
筒2の間をジグザグ状に流れる形で各円板巻線3の間を
流れ、巻線全体の冷却を行うことになる。
The operation of this embodiment having the above construction is as follows. First, in the winding wire of the present embodiment, the insulating fluid basically flows in the same manner as in the conventional example shown in FIG. That is, in FIG. 1, the insulating fluid flows from the inner side to the outer side in the first cooling section 21, is reversed by the inner closing plate 10, and flows from the outer side to the inner side in the second cooling section 22. Furthermore, the insulating fluid is reversed by the outer closure plate 11, flows from the inner side to the outer side in the third cooling zone 23, and subsequently is reversed by the inner closure plate 10, and in the fourth cooling zone 24 from the outer side to the inner side. Flowing toward. In this way, the insulating fluid is cooled by the cooling area 21.
The flow direction is reversed every .about.24 and flows between the disk windings 3 in a zigzag manner between the inner insulating cylinder 1 and the outer insulating cylinder 2 to cool the entire winding.

【0030】ここで、内側垂直冷却路8と外側垂直冷却
路9の周方向寸法は、円板巻線3の内径と外径の差に応
じて、外側垂直冷却路9の周方向寸法の方が格段に大き
くなっている。したがって、内側垂直冷却路8の内側絶
縁筒1と円板巻線3との間の間隔寸法SI と、外側垂直
冷却路9の外側絶縁筒2と円板巻線3との間の間隔寸法
O との関係をSI =SO とした場合には、内側垂直冷
却路8の断面積が小さくなる。この場合には、絶縁流体
が内側から外側に向かって流れる第1、第3の冷却区域
21,23における下部の水平冷却路5の流速が小さく
なり、この冷却区域21,23内の流速分布が不均一に
なってしまう。
Here, the circumferential dimension of the inner vertical cooling passage 8 and the outer vertical cooling passage 9 is the circumferential dimension of the outer vertical cooling passage 9 depending on the difference between the inner diameter and the outer diameter of the disk winding 3. Is significantly larger. Therefore, the space dimension S I between the inner insulating cylinder 1 of the inner vertical cooling passage 8 and the disk winding 3 and the space dimension between the outer insulating cylinder 2 of the outer vertical cooling passage 9 and the disk winding 3 When the relationship with S O is S I = S O , the cross-sectional area of the inner vertical cooling passage 8 becomes small. In this case, the flow velocity of the lower horizontal cooling passage 5 in the first and third cooling zones 21 and 23 in which the insulating fluid flows from the inside to the outside becomes small, and the flow velocity distribution in the cooling zones 21 and 23 becomes small. It becomes uneven.

【0031】これに対して、本実施例においては、内側
垂直冷却路8の内側絶縁筒1と円板巻線3との間の間隔
寸法SI と、外側垂直冷却路9の外側絶縁筒2と円板巻
線3との間の間隔寸法SO との関係をSI >SO とする
ことによって、内側垂直冷却路8の断面積を大きくして
いる。したがって、本実施例によれば、絶縁流体が内側
から外側に向かって流れる第1、第3の冷却区域21,
23において、その下部の水平冷却路5の流速を増大さ
せることができる。その結果、この第1、第3の冷却区
域21,23における複数の水平冷却路5の流速分布2
0は、図中破線の矢印で示されるようにかなり均一化さ
れる。
On the other hand, in this embodiment, the space dimension S I between the inner insulating cylinder 1 of the inner vertical cooling passage 8 and the disk winding 3 and the outer insulating cylinder 2 of the outer vertical cooling passage 9 are arranged. The cross-sectional area of the inner vertical cooling passage 8 is increased by setting the relationship between the space dimension S O between the disk winding 3 and the disk winding 3 to be S I > S O. Therefore, according to the present embodiment, the first and third cooling zones 21 through which the insulating fluid flows from the inner side to the outer side,
At 23, the flow velocity of the horizontal cooling passage 5 therebelow can be increased. As a result, the flow velocity distributions 2 of the plurality of horizontal cooling paths 5 in the first and third cooling areas 21 and 23
The 0s are fairly equalized as indicated by the dashed arrows in the figure.

【0032】図3は、各冷却区域21〜24内における
複数の水平冷却路5の流速分布を示すグラフである。こ
の図から明らかなように、SI =SO の場合は、内側か
ら外側へ流れる冷却区域21,23内の流速は上部で大
きく下部で小さいが、本実施例のようにSI >SO とす
ることによって、この冷却区域21,23内の流速分布
をより均一化し、外側から内側へ流れる冷却区域22,
24内の流速分布に近づけることが可能となる。
FIG. 3 is a graph showing the flow velocity distribution of the plurality of horizontal cooling passages 5 in each cooling zone 21-24. As is clear from this figure, when S I = S O , the flow velocity in the cooling sections 21 and 23 flowing from the inside to the outside is large in the upper part and small in the lower part, but as in the present embodiment, S I > S O. By this, the flow velocity distribution in the cooling sections 21 and 23 is made more uniform, and the cooling sections 22 flowing from the outside to the inside are
It is possible to approach the flow velocity distribution within 24.

【0033】以上のように、本実施例によれば、従来、
最も冷却効率が悪く、局部的な過度の温度上昇を発生し
ていたところの、絶縁流体が円板巻線3の内側から外側
に流れる冷却区域21,23において、各水平冷却路5
の流速分布20をかなり均一化して冷却効率を向上する
ことができる。したがって、冷却区域21,23内にお
ける下部の円板巻線3の温度上昇を小さく抑えることが
可能になり、従来問題となっていた局部的な過度の温度
上昇の発生を防止することができる。
As described above, according to this embodiment,
In the cooling sections 21 and 23 where the insulating fluid flows from the inner side to the outer side of the disk winding 3, where the cooling efficiency is the worst and a local excessive temperature rise occurs, the horizontal cooling paths 5
It is possible to improve the cooling efficiency by making the flow velocity distribution 20 of (1) substantially uniform. Therefore, it is possible to suppress the temperature rise of the lower disk winding 3 in the cooling areas 21 and 23, and it is possible to prevent the local excessive temperature rise which has been a problem in the past.

【0034】[2]第2実施例…図4 図4は、前記第1実施例と同様に、請求項1記載の発明
を変圧器の巻線に適用した第2実施例を示す断面図であ
る。本実施例は、前記第1実施例において円板巻線3の
複数段毎に設けられていた内側閉塞板10および外側閉
塞板11を除去したものであり、他の部分については、
前記第1実施例と全く同様に構成されている。
[2] Second Embodiment FIG. 4 FIG. 4 is a sectional view showing a second embodiment in which the invention of claim 1 is applied to the winding of a transformer, as in the case of the first embodiment. is there. In the present embodiment, the inner blocking plate 10 and the outer blocking plate 11 provided in each of the plurality of stages of the disc winding 3 in the first embodiment are removed, and other parts are
The structure is exactly the same as that of the first embodiment.

【0035】以上のように構成された本実施例の巻線に
おいては、内側閉塞板10および外側閉塞板11を設け
ていないため、絶縁流体がジグザグ状に流れることはな
く、絶縁流体は、内側垂直冷却路8内を上昇するととも
に、各水平冷却路5内に分流して内側から外側に向かっ
て流れ、外側垂直冷却路9に流入し、この外側垂直冷却
路9内を上昇する。この場合、本実施例においては、前
記第1実施例と同様、内側垂直冷却路8の内側絶縁筒1
と円板巻線3との間の間隔寸法SI と、外側垂直冷却路
9の外側絶縁筒2と円板巻線3との間の間隔寸法SO
の関係をSI >SO とすることによって、内側垂直冷却
路8の断面積を大きくしている。したがって、本実施例
によれば、巻線の下部の水平冷却路5の流速を増大させ
ることができ、巻線内に構成された複数の水平冷却路5
の流速分布20は、図中破線の矢印で示されるようにか
なり均一化される。
In the winding of the present embodiment constructed as described above, since the inner blocking plate 10 and the outer blocking plate 11 are not provided, the insulating fluid does not flow in a zigzag shape, and the insulating fluid does not flow inside. While going up in the vertical cooling passages 8, they are diverted into the horizontal cooling passages 5 and flow from the inside to the outside, flow into the outside vertical cooling passages 9, and rise inside the outside vertical cooling passages 9. In this case, in this embodiment, as in the first embodiment, the inner insulating cylinder 1 of the inner vertical cooling passage 8 is formed.
And the disc winding 3 have a spacing dimension S I and a spacing dimension S O between the outer insulating cylinder 2 of the outer vertical cooling channel 9 and the disc winding 3 have a relation of S I > S O By doing so, the cross-sectional area of the inner vertical cooling passage 8 is increased. Therefore, according to the present embodiment, it is possible to increase the flow velocity of the horizontal cooling passages 5 below the windings, and the plurality of horizontal cooling passages 5 formed in the windings.
The flow velocity distribution 20 of is substantially uniformized as shown by the dashed arrow in the figure.

【0036】以上のように、本実施例によれば、絶縁流
体が円板巻線3の内側から外側に流れる巻線において、
複数の水平冷却路5の流速分布20をかなり均一化して
冷却効率を向上することができる。したがって、下部の
円板巻線3の温度上昇を小さく抑えることが可能にな
り、従来問題となっていた局部的な過度の温度上昇の発
生を防止することができる。
As described above, according to this embodiment, in the winding in which the insulating fluid flows from the inside to the outside of the disk winding 3,
The cooling efficiency can be improved by making the flow velocity distributions 20 of the plurality of horizontal cooling paths 5 fairly uniform. Therefore, it is possible to suppress the temperature rise of the lower disc winding 3 to a small extent, and it is possible to prevent the occurrence of a local excessive temperature rise, which has been a problem in the past.

【0037】[3]第3実施例…図5 図5は、請求項2記載の発明を変圧器の巻線に適用した
第3実施例を示す断面図である。本実施例は、前記第1
実施例の構成に加えて、内側閉塞板10の下部に位置す
る冷却区域内21,23内の中央部に、第2の内側閉塞
板12を設けるとともに、外側閉塞板11の下部に位置
する冷却区域22,24内の中央部に第2の外側閉塞板
13を設けたものである。この場合、第2の内側閉塞板
12および第2の外側閉塞板13は、内側閉塞板10お
よび外側閉塞板11と同様に、基本的には、内側垂直冷
却路8および外側垂直冷却路9から水平冷却路5に亘っ
てそれぞれ伸びるように配置されているが、さらに次の
ような特徴を有する。すなわち、第2の内側閉塞板12
は、その内側垂直冷却路8を横切る部分の一部に、この
内側垂直冷却路8を連通させる連通部12aを有してお
り、この連通部12a以外の部分で内側垂直冷却路8を
閉塞するように構成されている。同様に、第2の外側閉
塞板13は、その外側垂直冷却路9を横切る部分の一部
に、この外側垂直冷却路9を連通させる連通部13aを
有しており、この連通部13a以外の部分で外側垂直冷
却路9を閉塞するように構成されている。より詳細に
は、これらの第2の内側閉塞板12および第2の外側閉
塞板13の連通部12a,13aは、第2の内側閉塞板
12と内側絶縁筒1との間に形成された隙間、および第
2の外側閉塞板13と外側絶縁筒2との間に形成された
隙間としてそれぞれ構成されている。なお、他の部分に
ついては、前記第1実施例と全く同様に構成されてい
る。
[3] Third Embodiment FIG. 5 FIG. 5 is a sectional view showing a third embodiment in which the invention according to claim 2 is applied to a winding of a transformer. In this embodiment, the first
In addition to the configuration of the embodiment, the second inner closing plate 12 is provided in the central portion of the cooling areas 21 and 23 located at the lower part of the inner closing plate 10, and the cooling located at the lower part of the outer closing plate 11 is performed. The second outer blocking plate 13 is provided in the central portion of the areas 22 and 24. In this case, the second inner closing plate 12 and the second outer closing plate 13 are basically the same as the inner closing plate 10 and the outer closing plate 11 from the inner vertical cooling passage 8 and the outer vertical cooling passage 9. Although they are arranged so as to extend over the horizontal cooling passages 5, respectively, they have the following features. That is, the second inner blocking plate 12
Has a communicating portion 12a communicating with the inner vertical cooling passage 8 in a part of the portion that crosses the inner vertical cooling passage 8, and closes the inner vertical cooling passage 8 with a portion other than the communicating portion 12a. Is configured. Similarly, the second outer blocking plate 13 has a communicating portion 13a for communicating the outer vertical cooling passage 9 in a part of the portion that crosses the outer vertical cooling passage 9, and other than the communicating portion 13a. The part is configured to close the outer vertical cooling passage 9. More specifically, the communication portions 12a, 13a of the second inner closing plate 12 and the second outer closing plate 13 are formed by a gap formed between the second inner closing plate 12 and the inner insulating cylinder 1. , And a gap formed between the second outer blocking plate 13 and the outer insulating tube 2 respectively. The other parts are constructed in exactly the same manner as in the first embodiment.

【0038】以上のように構成された本実施例の巻線に
おいては、絶縁流体は、前記第1実施例と同様にジグザ
グ状に流れる。この場合、各冷却区域21〜24内にお
いては、第2の内側閉塞板12あるいは第2の外側閉塞
板13により、内側垂直冷却路8あるいは外側垂直冷却
路9の断面積が絞られることになる。そのため、各冷却
区域21〜24内において、絶縁流体は、第2の内側閉
塞板12あるいは第2の外側閉塞板13から上部には流
れにくくなる。その結果、一つの冷却区域内において、
第2の内側閉塞板12あるいは第2の外側閉塞板13よ
り上部に位置する水平冷却路5の流速を低減させるとと
もに、第2の内側閉塞板12あるいは第2の外側閉塞板
13より下部に位置する水平冷却路5の流速を増大させ
ることができる。この場合、各冷却区域21〜24内の
複数の水平冷却路5の流速分布20は、図中破線の矢印
で示されるようにかなり均一化される。
In the winding wire of this embodiment constructed as described above, the insulating fluid flows in a zigzag shape as in the first embodiment. In this case, in each of the cooling areas 21 to 24, the cross-sectional area of the inner vertical cooling passage 8 or the outer vertical cooling passage 9 is narrowed by the second inner closing plate 12 or the second outer closing plate 13. . Therefore, in each cooling section 21-24, it becomes difficult for the insulating fluid to flow from the second inner blocking plate 12 or the second outer blocking plate 13 to the upper part. As a result, within one cooling zone,
The flow velocity of the horizontal cooling passage 5 located above the second inner closing plate 12 or the second outer closing plate 13 is reduced, and the flow rate is lower than the second inner closing plate 12 or the second outer closing plate 13. The flow velocity of the horizontal cooling passage 5 can be increased. In this case, the flow velocity distribution 20 of the plurality of horizontal cooling passages 5 in each of the cooling sections 21 to 24 is made considerably uniform as indicated by the broken line arrow in the figure.

【0039】以上のように、本実施例によれば、各冷却
区域21〜24内において、従来最も流れやすい部分で
あった上部の水平冷却路5の流速を低減させ、従来最も
流れにくい部分であった下部の水平冷却路5の流速を増
大させることが可能になる。その結果、各冷却区域21
〜24内における流速分布20をかなり均一化して冷却
効率を向上することができる。したがって、各冷却区域
21〜24内における下部の円板巻線3の温度上昇を小
さく抑えることが可能になり、従来問題となっていた局
部的な過度の温度上昇の発生を防止することができる。
As described above, according to this embodiment, in each of the cooling zones 21 to 24, the flow velocity of the upper horizontal cooling passage 5, which has been the most flowable portion in the prior art, is reduced, and the flow rate is reduced in the most difficult portion in the prior art. It is possible to increase the flow velocity of the lower horizontal cooling passage 5 which has existed. As a result, each cooling area 21
The cooling efficiency can be improved by considerably homogenizing the flow velocity distribution 20 within 24. Therefore, it is possible to suppress the temperature rise of the lower disk winding 3 in each of the cooling zones 21 to 24, and it is possible to prevent the local excessive temperature rise which has been a problem in the related art. .

【0040】[4]第4実施例…図6 図6は、請求項3記載の発明を変圧器の巻線に適用した
第4実施例を示す断面図である。本実施例は、前記第1
実施例の構成において、その内側閉塞板10および外側
閉塞板を、より細かいピッチで配置するとともに、その
内側閉塞板10および外側閉塞板11に、前記第3実施
例の第2の内側閉塞板12および第2の外側閉塞板13
と同様の、連通部10a,11aを設けたことを特徴と
している。すなわち、本実施例において、内側閉塞板1
0は、その内側垂直冷却路8を横切る部分の一部に、こ
の内側垂直冷却路8を連通させる連通部10aを有して
おり、この連通部10a以外の部分で内側垂直冷却路を
閉塞するように構成されている。同様に、外側閉塞板1
1は、その外側垂直冷却路9を横切る部分の一部に、こ
の外側垂直冷却路9を連通させる連通部11aを有して
おり、この連通部11a以外の部分で外側垂直冷却路9
を閉塞するように構成されている。より詳細には、これ
らの内側閉塞板10および外側閉塞板11の連通部10
a,11aは、内側閉塞板10と内側絶縁筒1との間に
形成された隙間、および外側閉塞板11と外側絶縁筒2
との間に形成された隙間としてそれぞれ構成されてい
る。なお、他の部分については、前記第1実施例と全く
同様に構成されている。また、図6においては、下から
上に向かって、6つの冷却区域21〜26が示されてい
る。
[4] Fourth Embodiment FIG. 6 FIG. 6 is a sectional view showing a fourth embodiment in which the invention described in claim 3 is applied to a winding of a transformer. In this embodiment, the first
In the configuration of the embodiment, the inner closing plate 10 and the outer closing plate are arranged at a finer pitch, and the inner closing plate 10 and the outer closing plate 11 have the second inner closing plate 12 of the third embodiment. And the second outer closing plate 13
It is characterized in that the same communication parts 10a and 11a are provided. That is, in this embodiment, the inner blocking plate 1
The reference numeral 0 has a communicating portion 10a which communicates with the inner vertical cooling passage 8 in a part of the portion that crosses the inner vertical cooling passage 8, and the inner vertical cooling passage is closed with a portion other than the communicating portion 10a. Is configured. Similarly, the outer closure plate 1
1 has a communicating portion 11a communicating with the outer vertical cooling passage 9 at a part of a portion that crosses the outer vertical cooling passage 9, and the outer vertical cooling passage 9 is provided at a portion other than the communicating portion 11a.
Is configured to close. More specifically, the communication portion 10 between the inner closing plate 10 and the outer closing plate 11
a and 11a are a gap formed between the inner blocking plate 10 and the inner insulating tube 1, and the outer blocking plate 11 and the outer insulating tube 2.
And a gap formed between the two. The other parts are constructed in exactly the same manner as in the first embodiment. Further, in FIG. 6, six cooling zones 21 to 26 are shown from the bottom to the top.

【0041】以上のように構成された本実施例の巻線に
絶縁流体を流した場合、この絶縁流体は、前記第1実施
例と同様にジグザグ状に流れるが、隣接する冷却区域間
では、内側閉塞板10あるいは外側閉塞板11により、
内側垂直冷却路8あるいは外側垂直冷却路9の断面積が
絞られることになる。そのため、各垂直冷却路8,9を
上昇する絶縁流体は、内側閉塞板10あるいは外側閉塞
板11により、水平冷却路5に流れるが、絶縁流体の一
部は内側閉塞板10あるいは外側閉塞板11の連通部1
0a,11aを介して垂直冷却路8,9をそのまま上昇
することになる。すなわち、各垂直冷却路8,9を上昇
する絶縁流体は、内側閉塞板10あるいは外側閉塞板1
1により、水平冷却路5に分流する絶縁流体とそのまま
垂直冷却路8,9を上昇する絶縁流体とに分かれること
になる。
When an insulating fluid is caused to flow through the winding wire of the present embodiment having the above-described structure, the insulating fluid flows in a zigzag shape as in the first embodiment, but between the adjacent cooling zones, With the inner closing plate 10 or the outer closing plate 11,
The cross-sectional area of the inner vertical cooling passage 8 or the outer vertical cooling passage 9 is reduced. Therefore, the insulating fluid rising in the vertical cooling passages 8 and 9 flows to the horizontal cooling passage 5 by the inner closing plate 10 or the outer closing plate 11, but a part of the insulating fluid is inside the closing plate 10 or the outer closing plate 11. Communication part 1
The vertical cooling passages 8 and 9 ascend as they are through 0a and 11a. That is, the insulating fluid that rises in the vertical cooling passages 8 and 9 is supplied to the inner closing plate 10 or the outer closing plate 1.
By 1, the insulating fluid is split into the horizontal cooling passage 5 and the insulating fluid rising in the vertical cooling passages 8 and 9 as it is.

【0042】ところで、本実施例の各冷却区域21〜2
6内において、複数の水平冷却路5の流速は、上部で大
きく下部で小さくなるが、このような流速の差は、巻線
内の全流量に対する水平冷却路5の流量割合に応じて相
似で小さくなる。したがって、下部の水平冷却路5の最
低流量を増大させるためには、内側閉塞板10および外
側閉塞板11の取り付けピッチを小さくして、水平冷却
路5の流量割合を増大させる必要が生じる。この場合、
単に、取り付けピッチを小さくした場合には、流れの抵
抗が増大するのに伴って巻線内を流れる全流量が減少し
てしまう。
By the way, the respective cooling areas 21 to 2 of this embodiment
In FIG. 6, the flow velocities of the plurality of horizontal cooling passages 5 are large in the upper portion and small in the lower portion, but such a difference in the flow velocities is similar depending on the flow rate ratio of the horizontal cooling passages 5 to the total flow rate in the winding. Get smaller. Therefore, in order to increase the minimum flow rate of the lower horizontal cooling passage 5, it is necessary to reduce the mounting pitch of the inner closing plate 10 and the outer closing plate 11 to increase the flow rate ratio of the horizontal cooling passage 5. in this case,
If the mounting pitch is simply reduced, the total flow rate in the winding decreases as the flow resistance increases.

【0043】これに対して、本実施例のように、内側閉
塞板10と外側閉塞板11に連通部10a,11aを設
けた場合には、前述したように、絶縁流体の一部がこの
連通部10a,11aを介してそのまま垂直冷却路8,
9を上昇することになる。そして、このように、水平冷
却路5を通らずにそのまま垂直冷却路8,9を上昇する
流量割合が大きいほど流れの抵抗が小さくなり、その結
果、巻線内を流れる全流量は増大することになる。した
がって、本実施例によれば、巻線全体の流れの抵抗を増
大させることなしに、内側閉塞板10と外側閉塞板11
の取り付けピッチを小さくして、水平冷却路5の最低流
速を増大させることができる。
On the other hand, in the case where the inner closing plate 10 and the outer closing plate 11 are provided with the communicating portions 10a, 11a as in the present embodiment, as described above, a part of the insulating fluid is communicated. The vertical cooling passages 8, as they are, via the portions 10a, 11a.
9 will be raised. As described above, the larger the flow rate ratio that goes up the vertical cooling paths 8 and 9 without passing through the horizontal cooling path 5, the smaller the flow resistance becomes, and as a result, the total flow rate flowing in the windings increases. become. Therefore, according to the present embodiment, the inner blocking plate 10 and the outer blocking plate 11 can be provided without increasing the flow resistance of the entire winding.
It is possible to increase the minimum flow velocity of the horizontal cooling passage 5 by reducing the mounting pitch of the.

【0044】つまり、内側および外側閉塞板の、内側お
よび外側垂直冷却路に相当する位置に隙間を設け、絶縁
流体の一部を上部に逃がすようにしたことにより、巻線
全体の流れの抵抗を増やさずに、前記内側および外側閉
塞板の取り付けピッチを細かくして水平冷却路内の最低
流量を増大させることができる。この場合、各冷却区域
21〜26内の複数の水平冷却路5の流速分布20は、
図中破線の矢印で示されるようにかなり均一化される。
That is, by providing a gap in the inner and outer blocking plates at positions corresponding to the inner and outer vertical cooling passages and allowing a part of the insulating fluid to escape to the upper part, the flow resistance of the entire winding is reduced. Without increasing, the mounting pitch of the inner and outer closing plates can be made smaller to increase the minimum flow rate in the horizontal cooling passage. In this case, the flow velocity distribution 20 of the plurality of horizontal cooling paths 5 in each cooling area 21 to 26 is
As shown by the dashed arrow in the figure, it is considerably uniformized.

【0045】以上のように、本実施例によれば、各冷却
区域21〜26内において、従来最も流れやすい部分で
あった上部の水平冷却路5の流速を低減させ、従来最も
流れにくい部分であった下部の水平冷却路5の流速を増
大させることが可能になる。その結果、各冷却区域21
〜26内における流速分布20をかなり均一化して冷却
効率を向上することができる。したがって、各冷却区域
21〜26内における下部の円板巻線3の温度上昇を小
さく抑えることが可能になり、従来問題となっていた局
部的な過度の温度上昇の発生を防止することができる。
As described above, according to this embodiment, in each of the cooling zones 21 to 26, the flow velocity of the upper horizontal cooling passage 5, which has been the most flowable portion in the prior art, is reduced, and the flow rate is reduced in the most difficult portion in the prior art. It is possible to increase the flow velocity of the lower horizontal cooling passage 5 which has existed. As a result, each cooling area 21
The cooling efficiency can be improved by making the flow velocity distribution 20 within ~ 26 substantially uniform. Therefore, it is possible to suppress the temperature rise of the lower disk winding 3 in each of the cooling zones 21 to 26, and it is possible to prevent a local excessive temperature rise which has been a problem in the past. .

【0046】[5]第5実施例…図7 図7は、請求項4記載の発明を変圧器の巻線に適用した
第5実施例を示す断面斜視図である。本実施例は、前記
第3実施例の第2の外側閉塞板13、または、前記第4
実施例の外側閉塞板11として使用される外側閉塞板1
4の構成の一例である。すなわち、この外側閉塞板14
の連通部14aは、外側垂直冷却路9を横切る部分に設
けられた等価な断面積を有する複数個の孔として構成さ
れている。
[5] Fifth Embodiment FIG. 7 FIG. 7 is a sectional perspective view showing a fifth embodiment in which the invention according to claim 4 is applied to a winding of a transformer. In this embodiment, the second outer blocking plate 13 of the third embodiment or the fourth outer blocking plate 13 of the third embodiment is used.
Outer closure plate 1 used as outer closure plate 11 of the embodiment
4 is an example of the configuration of FIG. That is, this outer blocking plate 14
The communicating portion 14a of is configured as a plurality of holes having an equivalent cross-sectional area provided in a portion that crosses the outer vertical cooling passage 9.

【0047】以上のような構成を有する本実施例の外側
閉塞板14によれば、前記第3実施例の第2の外側閉塞
板13または前記第4実施例の外側閉塞板11と全く同
様の作用と効果が得られる。特に、本実施例において
は、外側閉塞板14の連通部14aを等価な断面積を有
する複数個の孔として構成したことにより、孔の断面積
と数を適宜設定するだけで、連通部14aの断面積を容
易に設定・変更することができる。したがって、外側閉
塞板14の連通部14aを規格化し、設計の自由度を向
上することができる。
According to the outer closing plate 14 of the present embodiment having the above-mentioned structure, it is exactly the same as the second outer closing plate 13 of the third embodiment or the outer closing plate 11 of the fourth embodiment. The action and effect are obtained. In particular, in this embodiment, since the communicating portion 14a of the outer blocking plate 14 is configured as a plurality of holes having an equivalent cross-sectional area, the communicating portion 14a can be formed simply by appropriately setting the cross-sectional area and the number of the holes. The cross-sectional area can be easily set and changed. Therefore, the communication portion 14a of the outer blocking plate 14 can be standardized, and the degree of freedom in design can be improved.

【0048】[6]他の実施例 なお、本発明は、前記各実施例に限定されるものではな
く、他にも多種多様な変形例を実施可能である。例え
ば、前記第1〜第4実施例における内側閉塞板10と外
側閉塞板11の具体的な取り付けピッチや、第3実施例
における第2の内側閉塞板12と第2の外側閉塞板13
の具体的な取り付けピッチなどは適宜選択可能である。
例えば、前記第3実施例においては、第2の内側閉塞板
12と第2の外側閉塞板13を、各冷却区域21〜24
内の中央部に設けたが、各冷却区域21〜24内の上部
側または下部側に設ける構成も可能である。また、各冷
却区域21〜24内に、このような連通部12a,13
aを有する第2の内側閉塞板12と第2の外側閉塞板1
3を複数設ける構成も可能である。
[6] Other Embodiments The present invention is not limited to the above-described embodiments, and various other modified examples can be implemented. For example, the specific mounting pitch of the inner closing plate 10 and the outer closing plate 11 in the first to fourth embodiments, and the second inner closing plate 12 and the second outer closing plate 13 in the third embodiment.
The specific mounting pitch and the like can be appropriately selected.
For example, in the third embodiment, the second inner closing plate 12 and the second outer closing plate 13 are arranged in the respective cooling sections 21 to 24.
Although it is provided at the central portion of the inside, it is also possible to provide it at the upper side or the lower side in each of the cooling sections 21 to 24. In addition, in the cooling areas 21 to 24, such communication portions 12a, 13
a second inner closure plate 12 and a second outer closure plate 1 having a
A configuration in which a plurality of 3 are provided is also possible.

【0049】さらに、前記第5実施例においては、外側
閉塞板14の連通部14aを等価な断面積を有する複数
個の孔として構成したが、内側閉塞板の連通部を同様に
構成することも可能である。また、連通部の構成の異な
る閉塞板を組み合わせて構成することも可能である。そ
してまた、前記各実施例においては、いずれも変圧器の
巻線に適用した例を示したが、本発明は、変圧器の巻線
に限定されるものではなく、リアクトルの巻線など、同
様に円板巻線を積み重ねてなる誘導電器巻線一般に適用
可能であり、同様に優れた効果を得ることができる。
Furthermore, in the fifth embodiment, the communicating portion 14a of the outer closing plate 14 is formed as a plurality of holes having an equivalent cross-sectional area, but the communicating portion of the inner closing plate may be formed in the same manner. It is possible. Further, it is also possible to configure by combining closing plates having different configurations of the communication portion. In addition, in each of the above-mentioned embodiments, an example in which they are applied to the windings of the transformer is shown, but the present invention is not limited to the windings of the transformer, and the windings of the reactor are similar. It can be generally applied to an induction electric winding formed by stacking disc windings on the above, and similarly excellent effects can be obtained.

【0050】一方、図8は、閉塞板の連通部の断面積と
垂直冷却路を上昇する流量の関係を示すグラフである。
この図8に示すように、前記第3実施例における第2の
内外の閉塞坂12,13、あるいは、前記第4実施例に
おける内外の閉塞坂10,11の連通部の断面積が、垂
直冷却路8,9の断面積の10%に満たない場合には、
絶縁流体が水平冷却路5に流れ過ぎてしまい、垂直冷却
路8,9の上部に流れにくくなる。逆に、閉塞板の連通
部の断面積が、垂直冷却路8,9の断面積の50%を越
えた場合には、絶縁流体が垂直冷却路5の上部に流れ過
ぎてしまい、水平冷却路5に流れにくくなる。そのた
め、いずれの場合も、垂直冷却路8,9の上部に流れる
流量と水平冷却路5に流れる流量を適切に制御すること
ができなくなる。したがって、この図8から、閉塞板の
連通部の断面積を、垂直冷却路8,9の断面積の10%
〜50%の範囲に限定することにより、閉塞板の上部に
流れる流量と水平冷却路に流れる流量を適切に制御でき
ることがわかる。
On the other hand, FIG. 8 is a graph showing the relationship between the cross-sectional area of the communicating portion of the closing plate and the flow rate rising in the vertical cooling passage.
As shown in FIG. 8, the cross-sectional area of the communicating portions of the second inner and outer closed slopes 12 and 13 in the third embodiment or the inner and outer closed slopes 10 and 11 in the fourth embodiment has a vertical cooling area. If less than 10% of the cross-sectional area of paths 8 and 9,
The insulating fluid flows too much into the horizontal cooling passages 5 and becomes difficult to flow above the vertical cooling passages 8 and 9. On the contrary, when the cross-sectional area of the communicating portion of the closing plate exceeds 50% of the cross-sectional area of the vertical cooling passages 8 and 9, the insulating fluid flows too much above the vertical cooling passages 5 and the horizontal cooling passages. It becomes difficult to flow to 5. Therefore, in either case, it becomes impossible to appropriately control the flow rates of the upper cooling channels 8 and 9 and the horizontal cooling channel 5. Therefore, from FIG. 8, the cross-sectional area of the communicating portion of the closing plate is 10% of the cross-sectional area of the vertical cooling passages 8 and 9.
It is understood that the flow rate flowing to the upper part of the closing plate and the flow rate flowing to the horizontal cooling passage can be appropriately controlled by limiting the range to 50%.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
冷却区域内における流入口付近の水平冷却路の流速を増
大させて、複数の水平冷却路間の流速分布の均一化を図
り、冷却効率に優れた小型の誘導電器巻線を提供するこ
とができる。
As described above, according to the present invention,
It is possible to increase the flow velocity of the horizontal cooling passage near the inflow port in the cooling area to make the flow velocity distribution uniform among the plurality of horizontal cooling passages, and to provide a small induction electric winding with excellent cooling efficiency. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の変圧器の巻線を示す断面
図であり、図2のX矢視断面図。
1 is a cross-sectional view showing a winding of a transformer according to a first embodiment of the present invention, which is a cross-sectional view taken along arrow X in FIG.

【図2】図1の平面図。FIG. 2 is a plan view of FIG.

【図3】図1の冷却区域21〜24内における複数の水
平冷却路5の流速分布を示すグラフ。
FIG. 3 is a graph showing a flow velocity distribution of a plurality of horizontal cooling paths 5 in the cooling areas 21 to 24 of FIG.

【図4】本発明の第2実施例の変圧器の巻線を示す断面
図。
FIG. 4 is a sectional view showing windings of a transformer according to a second embodiment of the present invention.

【図5】本発明の第3実施例の変圧器の巻線を示す断面
図。
FIG. 5 is a sectional view showing windings of a transformer according to a third embodiment of the present invention.

【図6】本発明の第4実施例の変圧器の巻線を示す断面
図。
FIG. 6 is a sectional view showing windings of a transformer according to a fourth embodiment of the present invention.

【図7】本発明の第5実施例の変圧器の巻線を示す断面
斜視図。
FIG. 7 is a sectional perspective view showing windings of a transformer according to a fifth embodiment of the present invention.

【図8】閉塞板の連通部の断面積と垂直冷却路を上昇す
る流量の関係を示すグラフ。
FIG. 8 is a graph showing the relationship between the cross-sectional area of the communicating portion of the closing plate and the flow rate rising in the vertical cooling passage.

【図9】従来の変圧器の巻線の一例を示す平面図。FIG. 9 is a plan view showing an example of windings of a conventional transformer.

【図10】図9のY矢視断面図。10 is a cross-sectional view taken along arrow Y of FIG.

【符号の説明】[Explanation of symbols]

1…内側絶縁筒 2…外側絶縁筒 3…円板巻線 4…水平間隔片 5…水平冷却路 6…内側垂直間隔片 7…外側垂直間隔片 8…内側垂直冷却路 9…外側垂直冷却路 10…内側閉塞板 10a,11a,12a,13a,14a…連通部 11,14…外側閉塞板 12…第2の内側閉塞板 13…第2の外側閉塞板 20…流速分布 21〜26…冷却区域 DESCRIPTION OF SYMBOLS 1 ... Inner insulating cylinder 2 ... Outer insulating cylinder 3 ... Disc winding 4 ... Horizontal spacing piece 5 ... Horizontal cooling passage 6 ... Inner vertical spacing piece 7 ... Outer vertical spacing piece 8 ... Inner vertical cooling passage 9 ... Outer vertical cooling passage 10 ... Inner closing plate 10a, 11a, 12a, 13a, 14a ... Communication part 11, 14 ... Outer closing plate 12 ... Second inner closing plate 13 ... Second outer closing plate 20 ... Flow velocity distribution 21-26 ... Cooling area

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 内側絶縁筒と外側絶縁筒との間に複数段
の円板巻線を積み重ねて配置すると共に、各隣接する円
板巻線間に複数個の水平間隔片を介在させて複数の水平
冷却路を放射状に形成し、前記内側絶縁筒と前記円板巻
線との間および前記外側絶縁筒と前記円板巻線との間に
複数個の垂直間隔片をそれぞれ介在させて前記複数の水
平冷却路をそれぞれ連通する複数の内側垂直冷却路と複
数の外側垂直冷却路を形成し、前記複数の水平冷却路の
少なくとも一部の水平冷却路については、絶縁流体を前
記円板巻線の内側から外側に向かって流すように構成し
た誘導電器巻線において、 前記内側垂直冷却路の前記内側絶縁筒と前記円板巻線と
の間の間隔寸法SI と、前記外側垂直冷却路の前記外側
絶縁筒と前記円板巻線との間の間隔寸法SO との関係が
I >SO となるように構成されたことを特徴とする誘
導電器巻線。
1. A plurality of disc windings are stacked and arranged between an inner insulating cylinder and an outer insulating cylinder, and a plurality of horizontal spacing pieces are interposed between adjacent disc windings. A horizontal cooling path is formed radially, and a plurality of vertical spacing pieces are respectively interposed between the inner insulating cylinder and the disk winding and between the outer insulating cylinder and the disk winding. A plurality of inner vertical cooling passages and a plurality of outer vertical cooling passages that respectively communicate the plurality of horizontal cooling passages are formed, and at least a part of the plurality of horizontal cooling passages is covered with an insulating fluid. in the configuration the induction apparatus winding to flow from the line inside toward the outside, the spacing dimension S I between the inner insulation cylinder of the inner vertical cooling path and the disc windings, the outer vertical cooling path wherein an outer insulating tube and the spacing dimension S O between the disc windings of Induction apparatus winding engagement is characterized by being configured such that S I> S O.
【請求項2】 内側絶縁筒と外側絶縁筒との間に複数段
の円板巻線を積み重ねて配置すると共に、各隣接する円
板巻線間に複数個の水平間隔片を介在させて複数の水平
冷却路を放射状に形成し、前記内側絶縁筒と前記円板巻
線との間および前記外側絶縁筒と前記円板巻線との間に
複数個の垂直間隔片をそれぞれ介在させて前記複数の水
平冷却路をそれぞれ連通する複数の内側垂直冷却路と複
数の外側垂直冷却路を形成し、 前記円板巻線の複数段毎に、前記内側垂直冷却路を閉塞
してこの内側垂直冷却路から前記水平冷却路に亘って伸
びる内側閉塞板、および、前記外側垂直冷却路を閉塞し
てこの外側垂直冷却路から前記水平冷却路に亘って伸び
る外側閉塞板を、交互に、かつ、前記円板巻線の全周に
亘って設けて、この内側閉塞板と外側閉塞板によって複
数の冷却区域を形成し、各冷却区域毎に流れ方向を逆転
する形で絶縁流体をジグザグに流すように構成した誘導
電器巻線において、 前記内側閉塞板の下部に位置する冷却区域内に、前記内
側垂直冷却路から前記水平冷却路に亘って伸びる第2の
内側閉塞板が設けられ、この第2の内側閉塞板は、前記
内側垂直冷却路の一部を連通させる連通部を有し、この
連通部以外の部分で内側垂直冷却路を閉塞するように構
成され、 前記外側閉塞板の下部に位置する冷却区域内に、前記外
側垂直冷却路から前記水平冷却路に亘って伸びる第2の
外側閉塞板が設けられ、この第2の外側閉塞板は、前記
外側垂直冷却路の一部を連通させる連通部を有し、この
連通部以外の部分で外側垂直冷却路を閉塞するように構
成されたことを特徴とする誘導電器巻線。
2. A plurality of stages of disk windings are stacked and arranged between the inner insulating cylinder and the outer insulating cylinder, and a plurality of horizontal spacing pieces are interposed between adjacent disk windings. A horizontal cooling path is formed radially, and a plurality of vertical spacing pieces are respectively interposed between the inner insulating cylinder and the disk winding and between the outer insulating cylinder and the disk winding. A plurality of inner vertical cooling passages and a plurality of outer vertical cooling passages, which communicate with the plurality of horizontal cooling passages, respectively, are formed, and the inner vertical cooling passages are closed by closing the inner vertical cooling passages for each plurality of stages of the disk winding. An inner closing plate extending from the passage to the horizontal cooling passage, and an outer closing plate closing the outer vertical cooling passage to extend from the outer vertical cooling passage to the horizontal cooling passage, alternately, and It is provided around the entire circumference of the disc winding, and this inner blocking plate and outer blocking A plurality of cooling zones are formed by, and the induction electric wire winding is configured to flow the insulating fluid in a zigzag manner in a manner that reverses the flow direction for each cooling zone, in the cooling zone located below the inner blocking plate. A second inner closing plate extending from the inner vertical cooling passage to the horizontal cooling passage, the second inner closing plate having a communicating portion for communicating a part of the inner vertical cooling passage. A second portion extending from the outer vertical cooling passage to the horizontal cooling passage in a cooling area located below the outer closing plate, the second cooling portion being configured to close the inner vertical cooling passage at a portion other than the communication portion. Outer closing plate is provided, and the second outer closing plate has a communicating portion that allows a part of the outer vertical cooling passage to communicate with each other, so that the portion other than the communicating portion closes the outer vertical cooling passage. Induction characterized by being constructed Utsuwamakisen.
【請求項3】 内側絶縁筒と外側絶縁筒との間に複数段
の円板巻線を積み重ねて配置すると共に、各隣接する円
板巻線間に複数個の水平間隔片を介在させて複数の水平
冷却路を放射状に形成し、前記内側絶縁筒と前記円板巻
線との間および前記外側絶縁筒と前記円板巻線との間に
複数個の垂直間隔片をそれぞれ介在させて前記複数の水
平冷却路をそれぞれ連通する複数の内側垂直冷却路と複
数の外側垂直冷却路を形成し、 前記円板巻線の複数段毎に、前記内側垂直冷却路を閉塞
してこの内側垂直冷却路から前記水平冷却路に亘って伸
びる内側閉塞板、および、前記外側垂直冷却路を閉塞し
てこの外側垂直冷却路から前記水平冷却路に亘って伸び
る外側閉塞板を、交互に、かつ、前記円板巻線の全周に
亘って設けて、この内側閉塞板と外側閉塞板によって複
数の冷却区域を形成し、各冷却区域毎に流れ方向を逆転
する形で絶縁流体をジグザグに流すように構成した誘導
電器巻線において、 前記内側閉塞板は、前記内側垂直冷却路の一部を連通さ
せる連通部を有し、この連通部以外の部分で内側垂直冷
却路を閉塞するように構成され、前記外側閉塞板は、前
記外側垂直冷却路の一部を連通させる連通部を有し、こ
の連通部以外の部分で外側垂直冷却路を閉塞するように
構成されたことを特徴とする誘導電器巻線。
3. A plurality of stages of disk windings are stacked and arranged between the inner insulating cylinder and the outer insulating cylinder, and a plurality of horizontal spacing pieces are interposed between adjacent disk windings. A horizontal cooling path is formed radially, and a plurality of vertical spacing pieces are respectively interposed between the inner insulating cylinder and the disk winding and between the outer insulating cylinder and the disk winding. A plurality of inner vertical cooling passages and a plurality of outer vertical cooling passages, which communicate with the plurality of horizontal cooling passages, respectively, are formed, and the inner vertical cooling passages are closed by closing the inner vertical cooling passages for each plurality of stages of the disk winding. An inner closing plate extending from the passage to the horizontal cooling passage, and an outer closing plate closing the outer vertical cooling passage to extend from the outer vertical cooling passage to the horizontal cooling passage, alternately, and It is provided around the entire circumference of the disc winding, and this inner blocking plate and outer blocking A plurality of cooling zones are formed by each of the cooling zones, and the insulating fluid is zigzagly flowed in a reverse direction in each cooling zone, wherein the inner blocking plate is one of the inner vertical cooling channels. A communication part that communicates the parts, and is configured to close the inner vertical cooling path with a part other than the communication part, and the outer closing plate has a communication part that communicates a part of the outer vertical cooling path. The induction electric winding is characterized in that the outer vertical cooling passage is closed at a portion other than the communicating portion.
【請求項4】 前記第2の内側閉塞板または前記第2の
外側閉塞板の前記連通部、あるいは、前記内側閉塞板ま
たは前記外側閉塞板の連通部は、前記内側垂直冷却路ま
たは前記外側垂直冷却路を横切る部分に設けられた等価
な断面積を有する複数個の孔であることを特徴とする請
求項2または3記載の誘導電器巻線。
4. The inner communicating plate of the second inner closing plate or the second outer closing plate, or the communicating part of the inner closing plate or the outer closing plate, the inner vertical cooling path or the outer vertical cooling path. The induction winding according to claim 2 or 3, wherein a plurality of holes having an equivalent cross-sectional area are provided in a portion that crosses the cooling passage.
【請求項5】 前記第2の内側閉塞板または前記第2の
外側閉塞板の前記連通部の断面積、あるいは、前記内側
閉塞板または前記外側閉塞板の連通部の断面積は、前記
内側垂直冷却路または前記外側垂直冷却路の断面積の1
0%〜50%の範囲であることを特徴とする請求項2ま
たは3記載の誘導電器巻線。
5. The cross-sectional area of the communication portion of the second inner blocking plate or the second outer blocking plate, or the cross-sectional area of the communication portion of the inner blocking plate or the outer blocking plate is the inner vertical direction. 1 of the cross-sectional area of the cooling channel or the outer vertical cooling channel
The induction electric wire winding according to claim 2 or 3, characterized in that it is in a range of 0% to 50%.
JP19335094A 1994-08-17 1994-08-17 Induced electric appliance coil Pending JPH0864431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19335094A JPH0864431A (en) 1994-08-17 1994-08-17 Induced electric appliance coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19335094A JPH0864431A (en) 1994-08-17 1994-08-17 Induced electric appliance coil

Publications (1)

Publication Number Publication Date
JPH0864431A true JPH0864431A (en) 1996-03-08

Family

ID=16306445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19335094A Pending JPH0864431A (en) 1994-08-17 1994-08-17 Induced electric appliance coil

Country Status (1)

Country Link
JP (1) JPH0864431A (en)

Similar Documents

Publication Publication Date Title
US4000482A (en) Transformer with improved natural circulation for cooling disc coils
US4363013A (en) Winding structure for static electrical induction apparatus
US4207550A (en) Winding structure of electric devices
JPH0864431A (en) Induced electric appliance coil
JPH09293617A (en) Guided spiral
JP2998407B2 (en) Cooling structure of electromagnetic induction disk winding
JPH11121250A (en) Winding of induction electrical apparatus
JP3671778B2 (en) Transformer
JPH088173B2 (en) Induction electric disk winding
JPS6113365B2 (en)
JPS607457Y2 (en) electrical equipment winding
JPH06267756A (en) Winding of induction apparatus
JP2508994B2 (en) Induction electric disk winding
JPH11168014A (en) Transformer
JPH01313913A (en) Disk winding for induction electrical equipment
JPH11317313A (en) Static guide equipment
JPS61150308A (en) Winding of electric equipment
JP2000077236A (en) Stationary induction device
JPH07176435A (en) Coil structure for induction equipment
JPH01313912A (en) Winding for induction electrical equipment
JPH0218909A (en) Disc winding for induction electric apparatus
JPS6017877Y2 (en) electrical equipment winding
JPH0779054B2 (en) Induction winding
JPH10106848A (en) Winding for induction electrical equipment
JPS59155110A (en) Winding for natural cooling induction electric apparatus