JPS61150308A - Winding of electric equipment - Google Patents

Winding of electric equipment

Info

Publication number
JPS61150308A
JPS61150308A JP27181384A JP27181384A JPS61150308A JP S61150308 A JPS61150308 A JP S61150308A JP 27181384 A JP27181384 A JP 27181384A JP 27181384 A JP27181384 A JP 27181384A JP S61150308 A JPS61150308 A JP S61150308A
Authority
JP
Japan
Prior art keywords
winding
cooling
axial
cooling path
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27181384A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Azebiru
畔蒜 義行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27181384A priority Critical patent/JPS61150308A/en
Publication of JPS61150308A publication Critical patent/JPS61150308A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To improve the reduction effect of temperature rise and the cooling effect, by forming the cooling passage in the radial direction between the disk windings and setting up the blocking plate which does not block more than 1/2 of the cooling passage in a cross section. CONSTITUTION:The disk winding 3 is formed by winding a single wire between the inner insulating pipe 1 and the outer insulating pipe 2, which is stacked up several steps with the specified spacing in the axial direction and is divided into two parts in the radial direction. The cooling passages 4-7 are formed between the layers of winding, inside, outside, and along the inside axis of winding. The blocking plates 10-12 are installed periodically as they do not block more than 1/2 of the same cross section of the cooling passages 5-7 in the axial direction. Composed with the case where the insulating fluid flows zigzag in each cooling section, the higher cooling effect is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は変圧器やりアクドル巻線等の電気機器巻線に係
力、特に絶縁油などの絶縁流体を自然循環して冷却を行
う円板巻線に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a disk winding that cools the winding of electrical equipment such as a transformer or an axle winding by naturally circulating an insulating fluid such as an insulating oil. Regarding lines.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来の電気機器巻線、例えば絶縁油等の絶縁流体を巻線
の周囲に形成した冷却路内を自然循環させ冷却を行う大
型変圧器巻線や大型リアクトル巻線の冷却路構造は第4
図に示すように構成されている。即ち内側絶縁筒1と外
側絶縁筒2との間に素線導体を巻回して成る円板巻線3
を巻線の軸方向に所定の間隔をおいて複数段積み重ねる
とともに、巻線の冷却効果を向上するためにこの円板巻
線3を半径方向に複数個に分割する。このようにして巻
回された円板巻線にはこの周囲に絶縁油を流通して冷却
するために各円板巻線3の積層間には半径方向冷却路4
を形成し、かつこの半径方向冷却路4と連通して円板巻
線3の内周側と内側絶縁筒1、円板巻線3の外周側と外
側絶縁筒2および円板巻線3t−分割した箇所に夫々内
側軸方向冷却路5、外側軸方向冷却路6および巻線内軸
方向冷却路7を形成する。
The cooling path structure of conventional electrical equipment windings, such as large transformer windings and large reactor windings, in which insulating fluid such as insulating oil is cooled by natural circulation in a cooling path formed around the windings, is the fourth type.
It is configured as shown in the figure. That is, a disk winding 3 is formed by winding a wire conductor between an inner insulating cylinder 1 and an outer insulating cylinder 2.
are stacked in multiple stages at predetermined intervals in the axial direction of the winding, and the disk winding 3 is divided into a plurality of pieces in the radial direction in order to improve the cooling effect of the winding. In order to circulate insulating oil around the disc windings wound in this manner and cool them, radial cooling passages 4 are provided between the laminated layers of each disc winding 3.
and communicates with this radial direction cooling path 4 to connect the inner circumferential side of the disk winding 3 to the inner insulating tube 1, the outer circumferential side of the disk winding 3 to the outer insulating tube 2, and the disk winding 3t- An inner axial cooling path 5, an outer axial cooling path 6, and an inner winding axial cooling path 7 are formed at the divided locations, respectively.

このように構成された冷却路構造において、数段の円板
巻線3で1つの冷却区域が形成されるように円板巻線3
の間に内、外側軸方向冷却路5,6を交互に閉塞するよ
うに内側閉塞板8および外側閉塞板9が夫々内、外側絶
縁筒1゜2に周期的に取付けられる。
In the cooling path structure configured in this way, the disk winding 3 is arranged so that one cooling area is formed by several stages of the disk winding 3.
Inner closing plates 8 and outer closing plates 9 are periodically attached to the inner and outer insulating tubes 1.degree.2, respectively, so as to alternately close the inner and outer axial cooling passages 5, 6 during this period.

したがって巻線内を自然循環する絶縁流体は前記内、外
側閉塞板8,9で仕切られた冷却区域毎に流入口および
流出口が反転しノグデグ状となって各円板巻線3の間に
形成されている半径方向冷却路4を下方から上方に向け
て流通し円板巻線3の冷却を行っている。
Therefore, the insulating fluid that naturally circulates within the windings has an inlet and an outlet that are reversed in each cooling area partitioned by the inner and outer blocking plates 8 and 9, forming a nog deg shape between each disc winding 3. The disk winding 3 is cooled by flowing through the formed radial cooling path 4 from below to above.

しかしながら上記構造の冷却路構造では内、床 外側閉塞J!i:″8,9とによって形成される−の冷
却区域で巻線熱流密度の低域や自然循環流量増大をはか
る目的で円板者aSt−分割して設けた踏 巻線内軸方向冷却器7の作用は内、外側閉塞栓7.8が
どの箇所においても内、外側軸方向冷却路5,6および
巻線内軸方向冷却路70合計3本の軸方向冷却路のうち
2本の軸方向冷却路を同時に閉塞しているため冷却区域
内の流体抵抗を大きくし自然循環流量を増大できず、そ
の本来の役目を充分に発揮できないものとなっている。
However, in the cooling path structure described above, the inside and outside of the floor are blocked J! i: An axial cooler inside the treadle winding, which is divided into discs for the purpose of achieving a low winding heat flow density and an increase in the natural circulation flow rate in the cooling zone formed by 8 and 9. The action of 7 is that no matter where the inner and outer blocking plugs 7.8 Since the directional cooling passages are blocked at the same time, the fluid resistance within the cooling area is increased and the natural circulation flow rate cannot be increased, making it impossible to fully perform its original role.

このため巻線内軸方向冷却路7を設けた巻線の冷却は期
待したような効果が得られず巻線温度上昇の低域効果は
不充分なものとなってしまう欠点がある。
For this reason, the cooling of the winding provided with the axial cooling path 7 within the winding does not produce the expected effect, and the low-range effect of increasing the winding temperature becomes insufficient.

〔発明の目的〕[Purpose of the invention]

高い巻線内軸方向冷却路を有する電気機器巻線を得るこ
とを目的とする。
The objective is to obtain an electrical equipment winding with a high in-winding axial cooling path.

〔発明の概要〕[Summary of the invention]

本発明は以上の目的を達成するために円板巻線間に半径
方向冷却路を形成し、この円板巻線の内、外側に配置し
た内、外側絶縁筒との間に内、外側冷却at影形成ると
ともに、円板巻線を半径方向に分割して巻線内軸方向冷
却路を形成し、これら各冷却路を連通し、軸方向冷却路
を閉塞板によ多周期的に閉塞するようにしたものにおい
て、同一断面(おける軸方向冷却路の1/2を超えて閉
塞しないように閉塞板を取り付けるようにしたことを特
徴とするものである。
In order to achieve the above object, the present invention forms a radial cooling path between the disc windings, and provides inner and outer cooling between the inner and outer insulating cylinders arranged on the inner and outer sides of the disc winding. At the same time as forming a shadow, the disk winding is divided in the radial direction to form an axial cooling path within the winding, each of these cooling paths is communicated, and the axial cooling path is periodically blocked by a blocking plate. This is characterized in that the closing plate is attached so as not to block more than 1/2 of the axial cooling path in the same cross section.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第1図に基づいて説明する。内
側絶縁筒1と外側絶縁筒2との間に素線導体を巻回して
成る円板巻線3をその軸方向に所定の間隔をおいて複数
段積み重ねるとともに円板巻線3を巻線の半径方向に2
分割する。
An embodiment of the present invention will be described below with reference to FIG. A plurality of disc windings 3 made by winding a wire conductor between an inner insulating cylinder 1 and an outer insulating cylinder 2 are stacked in multiple stages at a predetermined interval in the axial direction, and the disc windings 3 are radially 2
To divide.

この上うKして巻回された円板巻線3にはこの周囲に絶
縁流体を流通して冷却するために各円板巻線3の積層間
には半径方向冷却器4を形成し、かつこの半径方向冷却
路4と連通して円板者m3の内周側と内側絶縁筒1、円
板者+iI3の外周側と外側絶縁筒2、および円板巻線
3を分割した箇所に夫々内側軸方向冷却路5、外側軸方
向冷却路6および巻線内軸方向冷却路7を形成する。
A radial cooler 4 is formed between the laminated layers of each disc winding 3 in order to cool the disc winding 3 by circulating an insulating fluid around the disc winding 3. In addition, in communication with this radial direction cooling path 4, the inner peripheral side of the disc member m3 and the inner insulating cylinder 1, the outer peripheral side of the disc member +iI3 and the outer insulating cylinder 2, and the parts where the disc winding 3 are divided, respectively. An inner axial cooling passage 5, an outer axial cooling passage 6, and a winding inner axial cooling passage 7 are formed.

このように形成された冷却路構造において数段の円板巻
線3で1つの冷却区域が形成されるように第1閉塞板1
0は内側軸方向冷却路5のみを閉塞するとともに巻線内
軸方向冷却路7を閉塞しないように巻線内軸方向冷却路
7の位置で分割して取付け、第2閉塞板11は巻線内軸
方向冷却路7のみを閉塞するように取付け、そして第3
閉塞板12は外側軸方向冷却路6のみを閉塞するととも
に、巻線内軸方向冷却路7を閉塞しないように巻線内軸
方向冷却路7の位置で分割して取付ける。更に第1、第
2、第3閉塞板10,11.12は巻線全体くわたって
周期的に取付けられる。即ち、同一断面における軸方向
冷却路の1/2を超えて閉塞しないように各閉塞板を取
シ付Cすている。
In the cooling path structure formed in this way, the first closing plate 1 is arranged so that one cooling area is formed by several stages of disk windings 3.
0 is installed separately at the position of the winding inner axial cooling passage 7 so as to close only the inner axial cooling passage 5 and not to block the winding inner axial cooling passage 7, and the second closing plate 11 is attached to the winding inner axial cooling passage 7. It is installed so as to close only the inner axial direction cooling path 7, and the third
The closing plate 12 closes only the outer axial cooling passage 6, and is attached separately at the position of the inner winding axial cooling passage 7 so as not to block the inner winding axial cooling passage 7. Furthermore, first, second and third closing plates 10, 11, 12 are mounted periodically throughout the winding. That is, each closing plate is mounted so as not to block more than 1/2 of the axial cooling path in the same cross section.

この上うに構成された冷却路構造に絶縁流体が自然循環
すると巻線全体にわたって周期的に取付(すられた第1
、第2、WJ3の閉塞板により半径方向冷却路4の絶縁
流体の流れは積極的に誘起されるとともに内、外側軸方
向冷却路5゜6および巻線内軸方向冷却路70合計3本
の軸方向冷却路のうち同時に2本の軸方向冷却路が閉塞
されることはない。このため、従来巻線の冷却区域毎に
ジグザグ状に絶縁流体を流通させる場合と比べて熱伝達
率は低下せず、1つの冷却区域の流体抵抗を低下できる
ので自然循環流量を増大でき、巻線内絶縁流体の温度を
低くすることができ巻線温度上昇の低減をはかることが
できる。これてよう巻線温度上昇の低減効果は頭初の期
待どうシに得ることができる。
When the insulating fluid naturally circulates in the cooling path structure constructed as described above, the first
, the flow of insulating fluid in the radial cooling path 4 is actively induced by the closing plate of the second WJ 3, and a total of three inner and outer axial cooling paths 5°6 and the inner winding axial cooling path 70 are formed. Two of the axial cooling passages are never blocked at the same time. For this reason, compared to the conventional case where the insulating fluid flows in a zigzag pattern in each cooling zone of the winding, the heat transfer coefficient does not decrease, and the fluid resistance of one cooling zone can be reduced, increasing the natural circulation flow rate. The temperature of the insulating fluid within the wire can be lowered, and the rise in winding temperature can be reduced. As a result, the effect of reducing winding temperature rise can be obtained as expected for the first time.

次に本発明たよる他の実施例を第2図に基づいて説明す
る。この実施例は巻線の大容量化に伴い巻線が大型化す
る場合に適用するもので内側絶縁筒1と外側絶縁筒2と
の間に素線導体を巻回して成る円板巻線3t−巻線の軸
方向に所定の間隔をおいて複数段積み重ねるとともに円
板巻線3t−半径方向に3分割する。このようにして巻
回された円板巻線3にはこの周囲【絶縁流体を流通して
冷却するために各円板者a3の積層間には半径方向冷却
路4を形成し、かつこの半径方向冷却路4と連通して円
板者1a3の内周側と内側絶縁B1との間に内側軸方向
冷却路5、円板巻線3の外周側と外側絶縁筒2との間に
外側軸方向冷却路6そして円板巻線3を分割した箇所に
それぞれ巻線内軸方向冷却路7g、7b全形成する。
Next, another embodiment according to the present invention will be described based on FIG. 2. This embodiment is applied when the winding becomes larger due to the increase in the capacity of the winding, and is a disk winding 3t formed by winding a wire conductor between an inner insulating tube 1 and an outer insulating tube 2. - The windings are stacked in multiple stages at predetermined intervals in the axial direction, and the disc winding 3t is divided into three in the radial direction. The disk winding 3 wound in this way has a radial cooling path 4 formed between the laminated layers of each disk winding a3 for cooling by circulating an insulating fluid; An inner axial cooling path 5 is connected to the directional cooling path 4 between the inner circumferential side of the disc winding 1a3 and the inner insulation B1, and an outer axis is connected between the outer circumferential side of the disc winding 3 and the outer insulating tube 2. Directional cooling passages 6 and axial cooling passages 7g and 7b within the windings are formed at locations where the disc winding 3 is divided, respectively.

このように構成された冷却路構造において数段の円板者
MA3で1つの冷却区域が形成されるように第1閉塞板
13は内側軸方向冷却路5と巻線内軸方向冷却路7aの
み全閉塞するとともに、巻線内軸方向冷却路7bは閉塞
しないように巻線軸方向冷却路7bの位置で分割して取
付け、第2閉塞板14は外側軸方向冷却路6と巻線内軸
方向冷却路7bのみを閉塞するとともに巻線軸方向冷却
器2mは閉塞しないように巻線軸方向冷却路7aの位置
で分割して取付Cする。
In the cooling path structure configured in this manner, the first closing plate 13 is provided only with the inner axial cooling path 5 and the winding inner axial cooling path 7a so that one cooling area is formed by several stages of the disc MA3. At the same time, the winding inner axial cooling passage 7b is installed separately at the position of the winding axial cooling passage 7b so as not to be blocked. Only the cooling path 7b is closed, and the winding axial cooler 2m is divided and installed at the position of the winding axial cooling path 7a so as not to be blocked.

更に第1およびW、2閉塞板13.14は巻線全体にわ
たって交互に取付けられる。
Furthermore, the first and W, second closure plates 13,14 are mounted alternately throughout the winding.

このように構成された冷却路構造に8縁流体が自然循環
すると巻線全体にわたって交互に取付けられた第1およ
び第2閉塞板13.14により半径方向冷却路4の絶縁
流体の流れは積極的に誘起されるとともに内、外側軸方
向冷却路5.6および巻線内軸方向冷却路7a、7bの
合計4本の軸方向冷却路のうち同時に閉塞されるのは2
本だけであり、第1図に示した実施例の場合と同様の効
果t−得ることができる。
When the eight-edge fluid naturally circulates in the cooling passage structure configured in this way, the flow of the insulating fluid in the radial cooling passage 4 is actively caused by the first and second blocking plates 13, 14 installed alternately throughout the winding. At the same time, only two of the four axial cooling passages, the inner and outer axial cooling passages 5.6 and the winding inner axial cooling passages 7a and 7b, are blocked at the same time.
With only a book, the same effects as in the embodiment shown in FIG. 1 can be obtained.

更に、本発明の他の実施例を第3図に示す。Furthermore, another embodiment of the present invention is shown in FIG.

この実施例は第2図に示した実施例の変形例であシ、第
1閉塞板15は内、外側軸方向冷却路5.6のみを閉塞
するように分割して取付け、第2閉塞板16は巻線内軸
方向冷却路7m、7bのみを閉塞するように取付ける。
This embodiment is a modification of the embodiment shown in FIG. 16 is attached so as to close only the inner winding axial cooling passages 7m and 7b.

このようにして巻線全体にわたシ冷却区域を構成しても
第2図に示した実施例の場合と同様の効果を期待できる
Even if the wadding cooling area is constructed over the entire winding in this way, the same effects as in the embodiment shown in FIG. 2 can be expected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、内、外側軸方向冷
却路に加えて円板@線ヲ半径方向に分割して巻線内軸方
向冷却路を形成したものにおいて、同一断面における軸
方向冷却路の1/2を超えて閉塞しないように閉塞板を
取9付けるようにしたので、巻線の冷却効果が良好で冷
却効果が高く、この結果自然冷却方式の電気機器の適用
容量拡大をはかることができ、安価な電気機器巻線を提
供することができる。
As explained above, according to the present invention, in addition to the inner and outer axial cooling passages, the disk @ wire is divided in the radial direction to form the inner winding axial cooling passage. Since 9 blocking plates are installed to prevent more than 1/2 of the cooling path from being blocked, the cooling effect of the windings is good and the cooling effect is high.As a result, the applicable capacity of natural cooling type electrical equipment can be expanded. It is possible to provide winding wires for electrical equipment that are easy to measure and are inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す変圧器巻線の軸方向部
分断面図、第2図および第3図は本発明による他の実施
例を示す変圧器巻線の軸方向部分断面図、第4図は従来
の変圧器巻線の冷却路構造を示す巻線軸方向部分断面図
である。 1・・・内側絶縁筒、2・・・外側絶縁筒、3・・・円
板巻線、4・・・半径方向冷却路、5・・・内側軸方向
冷却路、6・・・外側軸方向冷却路、7+7a、7b・
・・巻線内軸方向冷却路、10,13.15・・・第1
閉塞板、11.14.16・・・第2閉塞板、12・・
・第3閉塞板。 出願人代理人  弁理士 鈴 江 武 彦第1図 第20 第4図 第3図
FIG. 1 is a partial axial cross-sectional view of a transformer winding showing one embodiment of the present invention, and FIGS. 2 and 3 are partial axial cross-sectional views of a transformer winding showing other embodiments of the present invention. , FIG. 4 is a partial cross-sectional view in the axial direction of the winding, showing the cooling path structure of a conventional transformer winding. DESCRIPTION OF SYMBOLS 1... Inner insulating tube, 2... Outer insulating tube, 3... Disc winding, 4... Radial cooling path, 5... Inner axial cooling path, 6... Outer shaft Directional cooling path, 7+7a, 7b・
...Inner winding axial cooling path, 10, 13.15...1st
Closure plate, 11.14.16...Second closure plate, 12...
-Third occlusion plate. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 20 Figure 4 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 内側および外側絶縁筒間に円板巻線を複数段配置すると
ともに、この円板巻線の積層間に半径方向冷却路を形成
し、前記内、外側絶縁筒と円板巻線との間に夫々内、外
側軸方向冷却路を形成し、且つ円板巻線を半径方向に分
割して巻線内軸方向冷却路を形成し、これら各冷却路を
連通するとともに軸方向冷却路を閉塞板により周期的に
閉塞するようにした電気機器巻線において、同一断面に
おける軸方向冷却路の1/2を超えて閉塞しないように
閉塞板を取り付けるようにしたことを特徴とする電気機
器巻線。
A plurality of stages of disc windings are arranged between the inner and outer insulating cylinders, a radial cooling path is formed between the laminated layers of the disc windings, and a cooling path is formed between the inner and outer insulating cylinders and the disc windings. Inner and outer axial cooling passages are formed respectively, and the disc winding is divided in the radial direction to form an inner winding axial cooling passage, and these cooling passages are communicated with each other, and the axial cooling passage is closed by a closing plate. 1. An electrical equipment winding, characterized in that the electrical equipment winding is periodically closed by a closing plate so as not to block more than 1/2 of the axial cooling path in the same cross section.
JP27181384A 1984-12-25 1984-12-25 Winding of electric equipment Pending JPS61150308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27181384A JPS61150308A (en) 1984-12-25 1984-12-25 Winding of electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27181384A JPS61150308A (en) 1984-12-25 1984-12-25 Winding of electric equipment

Publications (1)

Publication Number Publication Date
JPS61150308A true JPS61150308A (en) 1986-07-09

Family

ID=17505204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27181384A Pending JPS61150308A (en) 1984-12-25 1984-12-25 Winding of electric equipment

Country Status (1)

Country Link
JP (1) JPS61150308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102486959A (en) * 2010-12-03 2012-06-06 株式会社东芝 Static sensing electrical appliance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102486959A (en) * 2010-12-03 2012-06-06 株式会社东芝 Static sensing electrical appliance

Similar Documents

Publication Publication Date Title
JPH06275443A (en) Stationary induction apparatus
US4207550A (en) Winding structure of electric devices
JPS61150308A (en) Winding of electric equipment
JP2998407B2 (en) Cooling structure of electromagnetic induction disk winding
JP2508994B2 (en) Induction electric disk winding
JPH05328704A (en) Arrangement of coil power terminals of annular linear flow electromagnetic pump
JPS6342402B2 (en)
JPS6113365B2 (en)
JPH01313913A (en) Disk winding for induction electrical equipment
JP2591050Y2 (en) Transformer winding cooling structure
JP3254914B2 (en) Transformer winding
JP2003077737A (en) Winding of electric equipment
JPS6199310A (en) Transformer winding
JPS607457Y2 (en) electrical equipment winding
JPH0864431A (en) Induced electric appliance coil
JPH0218909A (en) Disc winding for induction electric apparatus
JPH07176435A (en) Coil structure for induction equipment
JPH02148809A (en) Disc winding for induction device
JPS61136209A (en) Self-cooled, oil-filled winding of electric equipment
JP3465373B2 (en) Winding cooling structure of gas insulation equipment
JP3671778B2 (en) Transformer
JPS60227407A (en) Winding of stationary induction apparatus
JPS596492B2 (en) Stationary induction electric winding
JPS628925B2 (en)
JPS6017877Y2 (en) electrical equipment winding