JPH02148809A - Disc winding for induction device - Google Patents

Disc winding for induction device

Info

Publication number
JPH02148809A
JPH02148809A JP30245988A JP30245988A JPH02148809A JP H02148809 A JPH02148809 A JP H02148809A JP 30245988 A JP30245988 A JP 30245988A JP 30245988 A JP30245988 A JP 30245988A JP H02148809 A JPH02148809 A JP H02148809A
Authority
JP
Japan
Prior art keywords
winding
cooling
disc
vertical
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30245988A
Other languages
Japanese (ja)
Inventor
Masumi Nakatate
真澄 中楯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30245988A priority Critical patent/JPH02148809A/en
Publication of JPH02148809A publication Critical patent/JPH02148809A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce by half a passage resistance, to obtain a flow rate sufficient to cool to effectively cool and to reduce a difference between high and low temperatures by so forming inner and outer insulating cylinders as to compose peculiar vertical oil guide passages as double cylinders, and providing a plurality of inlets communicating with the top of a cooling zone and a plurality of outlets communicating with the top of the zone in the inner or outer cylinders opposing a disc winding therein. CONSTITUTION:Inner and outer closing plugs 10a and 11a are mounted at the same height positions at both sides of one disc winding 3 except the uppermost and lowermost pats along the whole circumference of the winding 3 at each plurality of stages of the winding 3 in inner and outer vertical cooling passages 8a to completely block the cooling passages of cooling zones formed of the plugs 10a, 11a. Further, inner and outer insulating cylinders 1a, 2a are so formed in double cylinders as to compose peculiar vertical oil guide passages 12, 13, and inlets 15 communicating with the bottoms of the zones and outlets 16 communicating with the tops of the zones are provided inner or outer insulating cylinders 1b, 2b opposing the winding 3.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は油などの絶縁媒体により冷却を行う誘導電器円
板巻線に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an induction electric disk winding that is cooled by an insulating medium such as oil.

(従来の技術) 従来、変圧器等の誘導電器の巻線として用いられる円板
巻線は第4図及び第5図に示すように構成されている。
(Prior Art) Conventionally, a disk winding used as a winding of an induction electric device such as a transformer is constructed as shown in FIGS. 4 and 5.

即ち、内側絶縁筒1と外側絶縁筒2との間に素線導体を
巻回して成る複数枚の円板巻線3が軸方向に等間隔に複
数段積み重ねられて、夫々の円板巻線を渡り線により電
気的に直列に接続して構成されている。各円板巻線3間
には複数個の水平間隔片4が放射状に等間隔に配置され
、各円板巻線3間に半径方向の水平冷却路5が形成され
、更に内、外側絶縁筒1および2と前記各円板巻線3と
の間には垂直間隔片6および7が前記水平間隔片に対応
する位置に設けられて、円板巻線3と内、外側絶縁筒1
,2間に水平冷却路5と連通する内側垂直冷却路8およ
び外側垂直冷却路9がそれぞれ形成されている。そして
図示しないタンク内に絶縁油と共に収納され絶縁油の自
然対流あるいは循環ポンプによる強制対流により各冷却
路内に絶縁油を流通させ巻線の冷却を行っている。
That is, a plurality of disc windings 3 each formed by winding a wire conductor between an inner insulating cylinder 1 and an outer insulating cylinder 2 are stacked in multiple stages at equal intervals in the axial direction, and each disc winding is stacked at equal intervals in the axial direction. are electrically connected in series by crossover wires. A plurality of horizontal spacing pieces 4 are arranged radially at equal intervals between each disc winding 3, and a radial horizontal cooling path 5 is formed between each disc winding 3. Furthermore, inner and outer insulating cylinders 1 and 2 and each of the disc windings 3, vertical spacing pieces 6 and 7 are provided at positions corresponding to the horizontal spacing pieces, and the disc windings 3 and the inner and outer insulating cylinders 1 are connected to each other.
, an inner vertical cooling passage 8 and an outer vertical cooling passage 9 communicating with the horizontal cooling passage 5 are formed between the two. The insulating oil is stored in a tank (not shown) together with insulating oil, and the insulating oil is circulated through each cooling path by natural convection of the insulating oil or forced convection by a circulation pump to cool the windings.

このような円板巻線は冷却効果をより高めるため、第5
図に示すように複数段の前記円板巻線3で1つの冷却区
域が形成されるように円板巻線の複数段毎にその全周に
沿って内側閉塞栓10および外側閉塞栓11が交互に設
けられ前記各垂直冷却路8および9を内側、外側交互に
閉塞している。
In order to further enhance the cooling effect of this type of disc winding, the fifth
As shown in the figure, an inner plug 10 and an outer plug 11 are installed along the entire circumference of each of the plural stages of the disc winding so that one cooling zone is formed by the plural stages of the disc winding 3. The vertical cooling passages 8 and 9 are alternately provided and are alternately closed on the inside and outside.

従って、絶縁油は前記冷却区域毎に絶縁油の流入口及び
流出口が内側、外側に反転し、全体としてジグザグ状と
なって各円板巻線3の間を流通し、巻線全体の冷却を効
率よく行なっている。
Therefore, the insulating oil flows between each disk winding 3 in a zigzag shape, with the insulating oil inlet and outlet being reversed inward and outward in each cooling zone, thereby cooling the entire winding. are being carried out efficiently.

(発明が解決しようとする課題) しかしながら、上記構造の円板巻線においては、下部の
冷却区域を流れ、徐々に温度が上昇した絶縁油がそのま
ま上部の冷却区域に流入するため、絶縁油はジグザグ状
に反転しながら上部に行く程温度が高くなっていく。従
って良好な冷却がなされたとしても、水平冷却路5内の
油温度および円板巻線3の温度は第6図にA、Bで示す
ように階段状に上昇し、上部が最も高くなる。さらに磁
束の関係から巻線上部では発熱密度が大きくなるため、
上部の温度が特に高くなる。従って、同君 板巻線の上下温度差が大きくなってしまい、切角内側お
よび外側閉塞栓10.11を取り付けて巻線全体に絶縁
油をジグザグ状に通し、各冷却区域内で−様な冷却を行
おうとしても、上下方向には、絶縁油の温度上昇のため
、巻線温度が上部で高くなってしまい、巻線絶縁物を劣
化させ変圧器の寿命を短縮してしまう欠点がある。この
ような問題点の対策として、円板巻線3を形成している
素線導体の断面積を大きくして電流密度を下げることや
、円板巻線の最高温度上昇を基準とした巻線冷却設計を
行うことも考えられるが、いずれの場合も変圧器が大形
になるという欠点がある。
(Problem to be Solved by the Invention) However, in the disk winding having the above structure, the insulating oil flows through the lower cooling zone and the temperature gradually rises, and then flows directly into the upper cooling zone. The temperature increases as it moves in a zigzag pattern toward the top. Therefore, even if good cooling is achieved, the oil temperature in the horizontal cooling path 5 and the temperature of the disc winding 3 rise stepwise as shown at A and B in FIG. 6, with the temperature being highest at the top. Furthermore, due to magnetic flux, the heat generation density increases at the top of the winding.
The temperature at the top becomes particularly high. Therefore, the difference in temperature between the top and bottom of the same plate winding becomes large, and by installing cut-angle inner and outer plugs 10.11, insulating oil is passed through the entire winding in a zigzag pattern. Even if cooling is attempted, the winding temperature increases at the top due to the rise in the temperature of the insulating oil in the vertical direction, which has the drawback of deteriorating the winding insulation and shortening the life of the transformer. . As a countermeasure to these problems, it is possible to increase the cross-sectional area of the wire conductor forming the disc winding 3 to lower the current density, and to increase the winding based on the maximum temperature rise of the disc winding. A cooling design may be considered, but in either case, the disadvantage is that the transformer becomes large.

本発明は上記の欠点を取り除き、大形化することなく、
上部巻線l8度を下げ、全体的に効果的な冷却が行える
誘導電器円板巻線を得ることを目的とするものである。
The present invention eliminates the above-mentioned drawbacks, and without increasing the size,
The object of this invention is to lower the upper winding l8 degrees and obtain an induction electric disc winding that can be effectively cooled as a whole.

[発明の構成] (課題を解決するための手段) 本発明は以上の目的を達成するために、内側、外側垂直
冷却路に円板巻線の全周に沿って閉塞栓を設けた誘導電
器円板巻線において、前記閉塞栓を最上、下部を除いて
内側、外側共同じ高さの位d 置に設け、各冷却区域の内側及び外側垂直冷却路を完全
に閉塞するとともに、内側および外側絶縁筒をそれぞれ
独自の垂直導油路を構成するように二重円筒とし、その
うちの円板巻線に面した内側あるいは外側絶縁筒に各冷
却区域下部に通する流入口および同区域上部に通する流
出口を設け、さらに各冷却区域の流入口および流出口を
設けた側の垂直冷却路および垂直導油路に、前記円板巻
線の全周に沿って閉塞栓を設けたことを特徴とするもの
である。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above objects, the present invention provides an induction electric appliance in which plugging plugs are provided along the entire circumference of the disk winding in the inner and outer vertical cooling paths. In the disc winding, the blocking plugs are provided at the same height on both the inner and outer sides except for the top and bottom, completely blocking the inner and outer vertical cooling passages of each cooling zone, and The insulating cylinders are made into double cylinders so as to form their own vertical oil guide passages, and the inner or outer insulating cylinder facing the disk winding has an inlet that passes through the lower part of each cooling zone and an inlet that passes through the upper part of the same area. Further, the vertical cooling passage and the vertical oil guide passage on the side where the inlet and the outlet of each cooling zone are provided are provided with blocking plugs along the entire circumference of the disc winding. That is.

(作 用) これにより、巻線下部より流入した絶縁媒体が水平冷却
路をジグザグに流れる回数が半減、すなわち流路抵抗が
半減され、冷却に十分な流量が得られ、以下温度差の小
さい効果的な冷却をすることができる。
(Function) As a result, the number of times that the insulating medium flowing from the lower part of the winding flows in a zigzag pattern through the horizontal cooling path is halved, which means the flow path resistance is halved, and a sufficient flow rate for cooling can be obtained, resulting in the effect of reducing the temperature difference. cooling.

(実施例) 以下本発明の一実施例を第1図を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to FIG.

図中第5図と同一部分は同一符号で示す。In the figure, the same parts as in FIG. 5 are indicated by the same reference numerals.

本発明の円板巻線は内側絶縁筒1a’と外側絶縁筒2a
との間に素線導体を巻回して成る複数枚の円板巻線3が
軸方向に積み重ねられて、夫々円板巻線3を渡り線によ
り電気的に接続して構成されている。各円板巻線3の間
には複数個の水平間隔片が放射状に等間隔で配置され、
各円板巻線3間に半径方向の水平冷却路5を形成し、更
に、内外側絶縁筒1aおよび2aと前記円板巻線3との
各間には垂直間隔片が水平間隔片に対応する位置に設け
られて円板巻線3と内、外側絶縁筒1a、2a間に水平
冷却路5と連通する内側垂直冷却路8、および外側垂直
冷却路9が夫々形成されている。
The disc winding of the present invention has an inner insulating tube 1a' and an outer insulating tube 2a.
A plurality of disc windings 3 each formed by winding a wire conductor are stacked in the axial direction, and the disc windings 3 are electrically connected to each other by crossover wires. A plurality of horizontally spaced pieces are arranged radially at equal intervals between each disc winding 3,
A horizontal cooling path 5 in the radial direction is formed between each disc winding 3, and vertical spacing pieces correspond to the horizontal spacing pieces between the inner and outer insulating cylinders 1a and 2a and the disc winding 3. An inner vertical cooling passage 8 and an outer vertical cooling passage 9, which communicate with the horizontal cooling passage 5, are formed between the disc winding 3 and the inner and outer insulating cylinders 1a and 2a, respectively.

このようにして構成された内側垂直冷却路8および外側
垂直冷却路9に円板巻線3の複数段毎に円板巻線3の全
周に沿って内側閉塞栓10aおよび外側閉塞栓11gを
最上部および最下部を除いて1つの円板巻線3の両側に
同じ高さ位置に取り付け、内側および外側閉塞栓10a
、llaにより形成される各冷却区域の内側および外側
垂直冷却路を完全に閉塞する。さらに、内側および外側
絶縁筒1a、2aをそれぞれ独自の垂直導油路12.1
3を構成するように二重円筒とし、そのうちの円板巻線
3に面した内側あるいは外側絶縁筒1b、2bに各冷却
区域下部に通する流入口15および同区域上部に通する
流出口16を設ける。
The inner vertical cooling passage 8 and the outer vertical cooling passage 9 configured in this manner are provided with an inner blocking plug 10a and an outer blocking plug 11g along the entire circumference of the disc winding 3 for each of multiple stages of the disc winding 3. Inner and outer blocking plugs 10a are installed at the same height on both sides of one disc winding 3 except for the top and bottom.
, lla completely block the inner and outer vertical cooling passages of each cooling zone. Furthermore, the inner and outer insulating cylinders 1a and 2a are each provided with its own vertical oil guide passage 12.1.
3, the inner or outer insulating cylinders 1b, 2b facing the disc winding 3 have an inlet 15 passing through the lower part of each cooling zone and an outlet 16 passing through the upper part of the same area. will be established.

さらに、流入口15、流出口16側の内、外側垂直冷却
路8.9および内、外側垂直導油路12゜13に円板巻
線3の全周に沿って閉塞栓14を設ける。
Further, plugs 14 are provided along the entire circumference of the disc winding 3 in the inner and outer vertical cooling passages 8.9 and the inner and outer vertical oil guide passages 12 and 13 on the inlet 15 and outlet 16 sides.

このように構成された円板巻線に絶縁流体が流れた場合
、例えば絶縁油は垂直導油路12.13を上昇し、ある
冷却区域に流入して円板巻線3を冷却しながら1回反転
し、同一垂直導油路12゜13に流出、上昇し、また別
の冷却区域に流入する。ここで、第1図の実施例では最
下部の冷却区域において、絶縁油は垂直導油路及び垂直
冷却路を通り冷却区域内に流入し、最上部の冷却区域に
おいては垂直導油路および垂直冷却路を通りタンク上部
に排出されるため、この2ケ所の冷却区域では流れ易く
なっている。これは巻線上、下端で発熱密度が大きくな
ることを考慮したものである。
When an insulating fluid flows through the disc winding constructed in this way, for example, the insulating oil rises up the vertical oil channel 12.13, flows into a certain cooling area, cools the disc winding 3, and cools the disc winding 3. The oil flows out into the same vertical oil channel 12, 13, rises, and flows into another cooling zone. Here, in the embodiment shown in FIG. 1, in the cooling zone at the bottom, the insulating oil flows into the cooling zone through the vertical oil guide path and the vertical cooling path, and in the cooling zone at the top, the insulating oil flows into the cooling zone through the vertical oil guide path and the vertical cooling zone. Since it passes through the cooling path and is discharged to the top of the tank, it flows easily in these two cooling areas. This is done in consideration of the fact that the heat generation density increases at the upper and lower ends of the winding.

また、流路抵抗が最も大きい水平冷却路を従来ではジグ
ザグ状に数回絶縁油が流れるのに対し、第1図の実施例
では半分に減り全流路抵抗はl/2に低減される。
Furthermore, whereas conventionally the insulating oil flows several times in a zigzag pattern through the horizontal cooling path where the flow path resistance is greatest, in the embodiment shown in FIG. 1 this is halved and the total flow path resistance is reduced to 1/2.

流路抵抗と流速とは、摩擦損失で (流路抵抗)閃(流速)−1 また、入口損失その他の損失で (流路抵抗)cc(流速)−2 の関係があるため、従来と比べ全流量は1.4〜2倍に
増加することになる。一つの冷却区域だけに着目すると
、従来と比べ、流量が0.7〜1倍に減少し、各冷却区
域の上下で、絶縁油および巻線の温度差が従来よりも大
きくなってしまうが、一つの垂直導油路に伝達される熱
量も半減するため、各冷却区域に流れ込む絶縁油の温度
が大幅に低下し、巻線温度および上下の温度差も低下す
ることになる。
The relationship between flow path resistance and flow speed is as follows: (flow path resistance) flash (flow speed) -1 due to friction loss, and (flow path resistance) cc (flow speed) -2 due to inlet loss and other losses. The total flow rate will increase by 1.4-2 times. If we focus on only one cooling zone, the flow rate will be reduced by 0.7 to 1 times compared to the conventional method, and the temperature difference between the insulating oil and the windings will be larger than before in the upper and lower parts of each cooling zone. Since the amount of heat transferred to one vertical oil channel is also halved, the temperature of the insulating oil flowing into each cooling zone is significantly reduced, and the winding temperature and the temperature difference between the upper and lower sides are also reduced.

第2図は、上記の悪い条件の場合、つまり各冷却区域に
流れ込む流量が従来の約0.7倍の場合の温度分布(A
:油温度、B:巻線温度)である。
Figure 2 shows the temperature distribution (A
: oil temperature, B: winding temperature).

各冷却区域では上下の温度差が従来の1.4倍程度に大
きくなるが、温度の低い絶縁油が上部の冷却区域にまで
流れ込むため、巻線全体の上下温度差は小さくおさえら
れ、特に上部で温度低下が大きいことがわかる。
In each cooling zone, the temperature difference between the top and bottom will be about 1.4 times larger than before, but because the low-temperature insulating oil flows into the upper cooling zone, the temperature difference between the top and bottom of the entire winding can be kept small, especially in the upper part. It can be seen that the temperature drop is large.

ところで、このような複数の水平冷却路および垂直冷却
路をもつ流路では、油の浮力を利用した自然循環方式と
、送油ポンプによる強制循環方式とは流れようとする力
、すなわち循環力が異なる。
By the way, in a flow path with multiple horizontal cooling channels and vertical cooling channels, the natural circulation method using the buoyancy of the oil and the forced circulation method using an oil pump are based on the flow force, that is, the circulation force. different.

強制循環方式はポンプ性能で決まるので問題はないが、
自然循環方式の場合は巻線の位置により流量が変化し、
下部の巻線を流れる量は、上部の巻線を流れる量に比べ
大きくなる。従って、上下方向の流量バランスを均一に
するには上下対称になるように閉塞栓を配置することが
必要になる。つまり、第3図に示すように最下部の冷却
区域を出た絶縁油が最上部の冷却区域に流入するように
し、下部と上部を同流量にすればよい。
There is no problem with the forced circulation method as it is determined by the pump performance, but
In the case of the natural circulation method, the flow rate changes depending on the position of the winding.
The amount flowing through the lower winding is greater than the amount flowing through the upper winding. Therefore, in order to make the flow balance in the vertical direction uniform, it is necessary to arrange the plugs vertically symmetrically. In other words, as shown in FIG. 3, the insulating oil leaving the lowermost cooling area flows into the uppermost cooling area, so that the flow rate is the same in the lower and upper parts.

また、不必要な閉塞栓14を設置した区間では二重円筒
とせず、垂直冷却路を拡大すれば、流路抵抗を減小させ
ることもできる。
In addition, the flow path resistance can be reduced by enlarging the vertical cooling path instead of using a double cylinder in the section where unnecessary plugs 14 are installed.

以上のような結果、円板巻線全体として均一な冷却効果
を得ることができ、巻線上部の温度を低くおさえ、上下
温度差の小さい円板巻線を得ることができる。これによ
り、素線導体の断面積を小さくして電流密度を上げるこ
とが可能になり、冷却効果向上と小形軽量化を計れる。
As a result of the above, it is possible to obtain a uniform cooling effect on the entire disc winding, to keep the temperature of the upper part of the winding low, and to obtain a disc winding with a small temperature difference between the upper and lower sides. This makes it possible to increase the current density by reducing the cross-sectional area of the wire conductor, thereby improving the cooling effect and reducing the size and weight.

[発明の効果] 以上のように本発明によれば、内側、外側垂直冷却路に
円板巻線の全周に沿って閉塞栓を設けた誘導電器円板巻
線において、前記閉塞栓を最上、下部を除き内側、外側
共同じ高さの位置に設け、冷却区域の内側、外側垂直冷
却路を完全に閉塞するとともに、内側および外側絶縁筒
をそれぞれ独自の垂直導油路を構成するように二重円筒
とし、そのうちの前記円板巻線に面した内側あるいは外
側絶縁筒に前記冷却区域下部に通じる複数の流入口およ
び同区域上部に通じる複数の流出口を設け、前記各冷却
区域の流入口および流出口を設置した側の垂直冷却路お
よび垂直導油路に前記円板巻線の全周に沿って閉塞栓を
設けたので、流路抵抗が半減し、冷却に十分な流量が得
られて効果的な冷却が行える上、下温度差の小さい誘導
電器円板巻線を得ることができる。
[Effects of the Invention] As described above, according to the present invention, in the induction electric disc winding in which the plugs are provided along the entire circumference of the disc winding in the inner and outer vertical cooling paths, the plugs are placed in the uppermost position. The inside and outside are located at the same height except for the lower part, and the inside and outside vertical cooling paths of the cooling area are completely blocked, and the inside and outside insulating tubes each form their own vertical oil guide path. A double cylinder is provided, and the inner or outer insulating cylinder facing the disc winding is provided with a plurality of inlets leading to the lower part of the cooling zone and a plurality of outlets leading to the upper part of the cooling zone, and the flow of each cooling zone is Blocking plugs are provided along the entire circumference of the disc winding in the vertical cooling path and vertical oil guide path on the side where the inlet and outlet are installed, so the flow path resistance is halved and a sufficient flow rate for cooling can be obtained. In addition, it is possible to obtain an induction electric disk winding with a small difference in temperature between the two sides, which allows for effective cooling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は第1
図に対応した高さと温度との関係を示す特性図、第3図
は本発明の他の実施例を示す断面図、第4図は一般の誘
導電器円板巻線を示す平面図、第5図は従来の誘導電器
円板巻線を示す第4図の1−1線に沿う矢視断面図、第
6図は第5図に対応した高さと温度の関係を示す特性図
である。 la、lb・・・内側絶縁筒、2a、2b・・・外側絶
縁筒、3・・・円板巻線、4・・・水平間隔片、5・・
・水平冷却路、6.7・・・垂直間隔片、8・・・内側
垂直冷却路、9・・・外側垂直冷却路、10.108・
・・内側閉塞栓、11.lla・・・外側閉塞栓、12
・・・流入口側垂直導油路、13・・・流出口側垂直導
油路、14・・・閉塞栓。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 第 図 第 図 第 図 第 図
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
3 is a cross-sectional view showing another embodiment of the present invention, FIG. 4 is a plan view showing a general induction electric disk winding, and FIG. This figure is a sectional view taken along the line 1--1 in FIG. 4 showing a conventional induction electric disk winding, and FIG. 6 is a characteristic diagram showing the relationship between height and temperature corresponding to FIG. 5. la, lb...inner insulating tube, 2a, 2b...outer insulating tube, 3...disc winding, 4...horizontal spacing piece, 5...
・Horizontal cooling path, 6.7... Vertical spacing piece, 8... Inner vertical cooling path, 9... Outer vertical cooling path, 10.108.
...inner obstructor, 11. lla...external obstruction plug, 12
...Inlet side vertical oil guide path, 13... Outlet side vertical oil guide path, 14... Blocking plug. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 2 Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims] 内側および外側絶縁筒間に円板巻線を複数段配置すると
共に各円板巻線間に複数個の水平間隔片を介在させて複
数の水平冷却路を形成し、前記内側、外側絶縁筒と円板
巻線との間に複数個の垂直間隔片を介在させ、前記水平
冷却路と連通する内側、外側垂直冷却路を形成し、前記
複数の水平冷却路で1つの冷却区域を構成するように内
側、外側垂直冷却路に円板巻線の全周に沿って閉塞栓を
設けてなる誘導電器円板巻線において、前記閉塞栓を最
上、下部を除き内側、外側同時に設け、前記冷却区域の
内側、外側垂直冷却路を完全に閉塞するとともに、前記
内側、外側絶縁筒をそれぞれ独自の垂直導油路を構成す
るように二重円筒とし、その内の前記円板巻線に面した
内側あるいは外側絶縁筒に前記冷却区域下部に通する複
数の流入口および同区域上部に通する複数の流出口を設
けたことを特徴とする誘導電器円板巻線。
A plurality of stages of disc windings are arranged between the inner and outer insulating cylinders, and a plurality of horizontal spacers are interposed between each disc winding to form a plurality of horizontal cooling paths, and the inner and outer insulating cylinders are connected to each other. A plurality of vertical spacing pieces are interposed between the disc winding and the inner and outer vertical cooling passages communicating with the horizontal cooling passage, and the plurality of horizontal cooling passages constitute one cooling area. In an induction electric disc winding, in which plugging plugs are provided along the entire circumference of the disc winding in the inner and outer vertical cooling paths, the plugging plugs are provided simultaneously on the inner and outer sides except for the uppermost and lower parts, and the cooling area is The inner and outer vertical cooling passages of the cylinder are completely closed, and the inner and outer insulating cylinders are made into double cylinders so as to form their own vertical oil guide passages, and the inner side facing the disc winding is Alternatively, an induction electric disk winding characterized in that the outer insulating cylinder is provided with a plurality of inlets passing through the lower part of the cooling area and a plurality of outlets passing through the upper part of the cooling area.
JP30245988A 1988-11-30 1988-11-30 Disc winding for induction device Pending JPH02148809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30245988A JPH02148809A (en) 1988-11-30 1988-11-30 Disc winding for induction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30245988A JPH02148809A (en) 1988-11-30 1988-11-30 Disc winding for induction device

Publications (1)

Publication Number Publication Date
JPH02148809A true JPH02148809A (en) 1990-06-07

Family

ID=17909198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30245988A Pending JPH02148809A (en) 1988-11-30 1988-11-30 Disc winding for induction device

Country Status (1)

Country Link
JP (1) JPH02148809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114307A (en) * 2010-11-26 2012-06-14 Japan Ae Power Systems Corp Transformer for rectifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114307A (en) * 2010-11-26 2012-06-14 Japan Ae Power Systems Corp Transformer for rectifier

Similar Documents

Publication Publication Date Title
US4000482A (en) Transformer with improved natural circulation for cooling disc coils
US3902146A (en) Transformer with improved liquid cooled disc winding
US3551863A (en) Transformer with heat dissipator
US4207550A (en) Winding structure of electric devices
JPH02148809A (en) Disc winding for induction device
JPH01313913A (en) Disk winding for induction electrical equipment
TWI675384B (en) Static sensor
JP2508994B2 (en) Induction electric disk winding
JPS6113365B2 (en)
JPH0218909A (en) Disc winding for induction electric apparatus
JPS59155108A (en) Winding for natural cooling induction electric apparatus
JPH0249408A (en) Self-cooled stationary electromagnetic induction apparatus
JPS59155110A (en) Winding for natural cooling induction electric apparatus
JP3671778B2 (en) Transformer
JPH09293617A (en) Guided spiral
JPH01313912A (en) Winding for induction electrical equipment
JPH07176435A (en) Coil structure for induction equipment
JPS61150308A (en) Winding of electric equipment
JP2023176844A (en) stationary induction appliance
JPH088173B2 (en) Induction electric disk winding
JP2010153440A (en) Stationary induction electrical apparatus
CA1056024A (en) Transformer with improved natural circulation for cooling disc coils
JPS60246608A (en) Cooling method for winding of oil-immersed apparatus
JPH11317313A (en) Static guide equipment
JP2000077236A (en) Stationary induction device