JPS59155110A - Winding for natural cooling induction electric apparatus - Google Patents

Winding for natural cooling induction electric apparatus

Info

Publication number
JPS59155110A
JPS59155110A JP2970483A JP2970483A JPS59155110A JP S59155110 A JPS59155110 A JP S59155110A JP 2970483 A JP2970483 A JP 2970483A JP 2970483 A JP2970483 A JP 2970483A JP S59155110 A JPS59155110 A JP S59155110A
Authority
JP
Japan
Prior art keywords
winding
fluid path
disc
shaped
guide plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2970483A
Other languages
Japanese (ja)
Inventor
Tetsuji Yoshikawa
哲司 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2970483A priority Critical patent/JPS59155110A/en
Publication of JPS59155110A publication Critical patent/JPS59155110A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To improve the cooling efficiency of the titled electric apparatus by a method wherein, in the winding for natural cooling induction electric apparatus, the guide plate for a cooling medium is provided at the upper and lower limits of the highest temperature rising part, thereby enabling to make the temperature distribution uniform. CONSTITUTION:A horizontal fluid path 3 is formed between windings by superposing a number of disc-shaped unit windings 2 in axial direction through the intermediary of spacers, a vertical fluid path 5 is formed between an insulating cylinder and a winding by arranging an insulating cylinder 4 on the inner circumferential side of the disc-shaped unit winding and the winding for a natural cooling induction electric apparatus is constituted in such a manner that a cooling medium is flown by a natural reflux through the vertical fluid path 5 and the horizontal fluid path 3. When the upper end of the winding is set at 100, an inner guide plate 6 and an outer guide plate 7 are provided in the horizontal fluid path corresponding to the upper and the lower limit positions of the range h of 325q+13<=h<=325q+38[(q) indicates the heat flow speed (w/cm<2>) on the winding surface] thereby enabling to lessen the local temperature rise of the unit winding 2 at this part.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は自然冷却変圧器や自然冷却リアクトルなどに用
いる自然冷却誘導電器巻線に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to naturally cooled induction electric appliance windings used in naturally cooled transformers, naturally cooled reactors, and the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来誘導電器、例えば変圧器に使用される巻線としては
多数の円板状単位巻線を軸方向に積み重ねるように配設
してなる円板状巻線があシ、その冷却構造は円板状巻線
の内側部に形成された垂直流体路並びに各単位巻線の積
重間に形成された水平流体路を通して絶縁油などの冷却
媒体を温度差を利用して自然環流せしめるようになって
いる。
Conventionally, the windings used in induction electric appliances, such as transformers, are disk-shaped windings that are made up of a large number of disk-shaped unit windings stacked in the axial direction, and their cooling structure is a disk-shaped winding. Cooling medium such as insulating oil is allowed to circulate naturally through the vertical fluid passages formed inside the shaped windings and the horizontal fluid passages formed between stacks of unit windings by utilizing temperature differences. There is.

第1図および第2図はかかる円板状巻線の冷却構造を示
す断面図である。第1図および第2図に示すように円板
状巻線1は絶縁被覆された平角導体を円板状に巻回して
な“る単位巻線2を軸方向に多数積み重ねるように配設
して構成されている。この場合、各単位巻線2の積重間
には間隔Aの等しい図示しないスペーサが配設されるこ
とによって水平流体路3が形成されている。また円板状
巻線1の内側部には絶縁筒4が配設されており、円板状
巻線1の内周面と絶縁筒4との間に各単位巻線2の軸方
向(以下高さ方向と呼ぶ)に伸びる垂直流体路5が形成
されている。
FIGS. 1 and 2 are cross-sectional views showing a cooling structure for such a disc-shaped winding. As shown in FIGS. 1 and 2, the disc-shaped winding 1 is constructed by stacking a large number of unit windings 2 in the axial direction, which are formed by winding an insulated rectangular conductor into a disc shape. In this case, a horizontal fluid path 3 is formed by disposing spacers (not shown) with an equal interval A between the stacks of each unit winding 2. An insulating tube 4 is disposed inside the disk-shaped winding 1, and an axial direction (hereinafter referred to as the height direction) of each unit winding 2 is disposed between the inner peripheral surface of the disc-shaped winding 1 and the insulating tube 4. A vertical fluid path 5 is formed that extends to.

したがって、このような円板状・巻線1の冷却構造にお
いて、冷却媒体が図示矢印で示すように各単位巻線2の
高さ方向下部より上部へ垂直流体路5.水平流体路3お
よび円板状巻線1の外側部を通して自然環流することに
よシ、各単位巻線2を冷却することができる。しかるに
このような円板状巻線1の冷却構造においては垂直流体
路5および円板状巻線1の外側を上昇する冷却媒体が単
位巻線2の内外周よυ水平流体路3へ流入しようとする
ため、各単位巻線2の半径方向中央部において冷却媒体
が滞留する現象が発生する。特に円板状巻線1の高さ方
向における中央部より上方は単位巻線2の半径方向中央
部″′X″において、冷却媒体が滞留し、この部分の温
度が局部的に上昇する。
Therefore, in such a cooling structure of the disc-shaped winding 1, the cooling medium flows through the vertical fluid path 5. from the bottom to the top of each unit winding 2 in the height direction as shown by the arrows in the figure. Each unit winding 2 can be cooled by natural circulation through the horizontal fluid path 3 and the outer side of the disc-shaped winding 1. However, in such a cooling structure for the disc-shaped winding 1, the cooling medium rising in the vertical fluid passage 5 and the outside of the disc-shaped winding 1 flows from the inner and outer peripheries of the unit winding 2 into the horizontal fluid passage 3. Therefore, a phenomenon occurs in which the cooling medium stagnates in the radial center of each unit winding 2. In particular, the cooling medium remains in the radially central portion "'X" of the unit winding 2 above the central portion in the height direction of the disc-shaped winding 1, and the temperature of this portion locally increases.

これらの実験結果の一例を第3図に示す。第3図は円板
状巻線1の高さ方向における各単位巻線2の半径方向中
央部II X″の温度分布特性を示すものである。この
実験結果からも理解できるように従来の円板状巻線1は
その高さ方向の中央部よシ上方の単位巻線2の導体に局
部的に温度上昇の高い部分があることが判明した。
An example of these experimental results is shown in FIG. FIG. 3 shows the temperature distribution characteristics of the radial center section IIX'' of each unit winding 2 in the height direction of the disc-shaped winding 1. It has been found that the conductor of the unit winding 2 above the central part of the plate winding 1 in the height direction has a region where the temperature rise is locally high.

すなわち、云い換えれば、従来、円板状巻線における最
高温度上昇部分は最上部より数セクション下の単位巻線
にあるとされ、この部の温度上昇値や巻線の平均温度上
昇値を考慮して巻線冷却が行なわれていたが、上述の実
験結果により、最高温度上昇部分の高さ方向の位置がさ
ら(< に下方紗することまたその温度上昇値もきわめて高いば
かシか巻線の平均温度上昇値も高くなっていることが判
明した。従って従来の円板状巻線1においては、各巻線
単位の温度上昇に対応した冷却が十分になされていない
ので、平角導体の被覆絶縁物に早く劣化する部分ができ
たり、あるいは不必要な単位巻線部分を重点的に冷却し
たシして冷却効率が悪かった。
In other words, conventionally, the highest temperature rise in a disc-shaped winding is considered to be in the unit winding several sections below the top, and the temperature rise in this part and the average temperature rise of the winding are considered. However, the above-mentioned experimental results show that the position of the highest temperature rise part in the height direction is further down (< ), and the temperature rise value is extremely high. It was also found that the average temperature rise value of Cooling efficiency was poor because parts of the product deteriorated quickly, or unnecessary unit windings were cooled intensively.

〔発明の目的〕[Purpose of the invention]

本発明は上記の欠点を除去し、円板状巻線の高さ方向に
おける温度分布を平均化して冷却効率を向上させ全体の
巻線電流密度を高くすることのできる自然冷却誘導電器
巻線を提供しようとするものである。
The present invention eliminates the above-mentioned drawbacks and provides a naturally cooled induction electric winding that can average the temperature distribution in the height direction of the disc-shaped winding, improve cooling efficiency, and increase the overall winding current density. This is what we are trying to provide.

〔発明の概要〕[Summary of the invention]

本発明はかかる目的を達成するため、多数の円板状単位
巻線を軸方向に積み重ねるように配設するとともにその
各積重間にスペーサを配して水平流体路を形成した円板
状巻線の内周側に絶縁筒を配設してその間に垂直流体路
を形成し、これら垂直流体路および各水平流体路を通し
て自然環流により冷却媒体を流すようにした自然冷却誘
導電器巻線において、前記円板状巻線の高さ方向位置と
して、 325q+13≦h≦325 q+38(ただし、qは
巻線表面の熱流速(W〜)であり、またhは巻線上端を
100としたときの巻線高さ方向位置である。)で表わ
される範囲の上限および下限位置に対応する水平流体路
に円板状巻線の内側と外側の間で冷却媒体を案内せしめ
る内側案内板および外側案内板を設けることを特徴とし
ている。
In order to achieve such an object, the present invention provides a disk-shaped winding in which a large number of disk-shaped unit windings are stacked in the axial direction, and a spacer is arranged between each stack to form a horizontal fluid path. In a naturally cooled induction electric winding in which an insulating cylinder is arranged on the inner circumferential side of the wire to form a vertical fluid path between them, and a cooling medium is caused to flow by natural circulation through these vertical fluid paths and each horizontal fluid path, The height direction position of the disc-shaped winding is 325q+13≦h≦325q+38 (where q is the heat flow velocity (W~) on the surface of the winding, and h is the winding when the upper end of the winding is taken as 100). An inner guide plate and an outer guide plate are provided to guide the cooling medium between the inner and outer sides of the disc-shaped winding to the horizontal fluid passages corresponding to the upper and lower limit positions of the range represented by (the line height direction position). It is characterized by the provision of

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。第4
図は変圧器に使用される円板状巻線の冷却構造を示す断
面図であり、また第5図は第4図における円板状巻線の
一部を拡大して示す断面図であり、第1図および第2図
と同一部品には同一記号を付してその説明を省略し、こ
こでは異なる部分について述べる。すなわち、本実施例
では第4図及び第5図に示すように円板状巻線10を構
成する各単位巻線2において、局部的に温度上昇値が大
きくなる巻゛線高さ方向中央部よシ上方に位置する部分
の単位巻線2相互間に形成されている水平流体路3のう
ちその温度上昇値が大きくなる範囲りの上限と下限位置
に対応する水平流体路3に円板状巻線10の内側と外側
との間で冷却媒体を案内する、第6図に示すような内側
および外側油流案内板6゜7を設ける構成とするもので
ある。ここで、内側油流案内板6および外側油流案内板
7が設けられる円板状巻線10の高さ方向位置は下記(
1)式に該当する範囲の上限と下限である。
An embodiment of the present invention will be described below with reference to the drawings. Fourth
The figure is a cross-sectional view showing a cooling structure of a disk-shaped winding used in a transformer, and FIG. 5 is a cross-sectional view showing an enlarged part of the disk-shaped winding in FIG. Components that are the same as those in FIGS. 1 and 2 are given the same symbols and their explanations will be omitted, and only different parts will be described here. That is, in this embodiment, as shown in FIGS. 4 and 5, in each unit winding 2 constituting the disc-shaped winding 10, there is a central portion in the winding height direction where the temperature rise value is locally large. Among the horizontal fluid passages 3 formed between the unit windings 2 in the upper portion, a disk-shaped horizontal fluid passage 3 is formed in the horizontal fluid passage 3 corresponding to the upper and lower limit positions of the range where the temperature rise value becomes large. The structure is such that inner and outer oil flow guide plates 6.7 as shown in FIG. 6 are provided to guide the cooling medium between the inside and outside of the winding 10. Here, the height direction position of the disc-shaped winding 10 where the inner oil flow guide plate 6 and the outer oil flow guide plate 7 are provided is as follows (
1) These are the upper and lower limits of the range applicable to the formula.

325q+13≦h≦325q+38  ・・・・・・
(1)ただし、式中qは巻線表面の熱流速(可−)であ
り、hは円板状巻線10の上端を100としたときの巻
線高さ方向位置である。
325q+13≦h≦325q+38 ・・・・・・
(1) However, in the formula, q is the heat flow velocity (fair) on the surface of the winding, and h is the position in the winding height direction when the upper end of the disc-shaped winding 10 is taken as 100.

したがって、このような構成の自然冷却誘導電器巻線と
すれば、冷却媒体は図示矢印で示すように絶縁筒4によ
って円板状巻線10の内周側に形成された垂直流体路5
と各単位巻線2相互間の水平流体路3及び円板状巻線1
0の外周側を通して円板状巻線10の高さ方向下部から
上方へ流れ、さらに巻線高さ方向中央部より上方に位置
する部分、つまり温度上昇値が大きくなる範囲の下限位
置に達すると、外側油流案内板7によって円板状巻線1
0の外側流路がさえぎられるため、その内側の垂直流体
路5を通して流れていた冷却媒体は水平流体路3を通し
て円板状巻線′10の内側から外側へ流れる。そして温
度上昇値が大きくなる範囲の上限値に設けられている内
側油流案内板6の上方に達すると、冷却媒体は円板状巻
線10の内側の垂直流体路5と内側流路を通して流れる
。これにより巻線高さ方向中央部より上方に位置する単
位巻線20半径方向中央部で冷却媒体が滞留することが
なくなるので、この部位の単位巻線2の局部的な温度上
昇が緩和され、円板状巻櫛10の高さ方向における温度
分布が平均化される。
Therefore, in a naturally cooled induction electric winding having such a configuration, the cooling medium flows through the vertical fluid path 5 formed on the inner circumferential side of the disc-shaped winding 10 by the insulating cylinder 4 as shown by the arrow in the figure.
and a horizontal fluid path 3 between each unit winding 2 and a disc-shaped winding 1
0 flows upward from the lower part in the height direction of the disc-shaped winding 10 through the outer circumferential side of the winding 10, and further reaches the part located above the center part in the height direction of the winding, that is, the lower limit position of the range where the temperature rise value becomes large. , the disc-shaped winding 1 is connected by the outer oil flow guide plate 7.
Since the outer flow path of 0 is blocked, the cooling medium that was flowing through the vertical fluid path 5 inside thereof flows through the horizontal fluid path 3 from the inside to the outside of the disc-shaped winding '10. When the coolant reaches above the inner oil flow guide plate 6, which is provided at the upper limit of the range where the temperature rise value increases, the coolant flows through the vertical fluid passage 5 and the inner flow passage inside the disc-shaped winding 10. . As a result, the cooling medium does not remain in the radial center of the unit winding 20 located above the center in the winding height direction, so the local temperature rise of the unit winding 2 in this area is alleviated. The temperature distribution in the height direction of the disc-shaped winding comb 10 is averaged.

第7図は本実施例において、円板状巻線10の高さ方向
における各単位巻線2の半径方向中央部の温度分布を実
験によシ求めた特性図である。この実験結果からもわか
るように円板状巻線10は巻線高さ方向中央部より上方
において、局部的な温度上昇がなくなるので、平角導体
の被覆絶縁物の劣化を少なくすることができる。
FIG. 7 is a characteristic diagram obtained experimentally for the temperature distribution at the radial center of each unit winding 2 in the height direction of the disc-shaped winding 10 in this embodiment. As can be seen from this experimental result, since there is no local temperature rise above the center of the winding in the height direction of the disc-shaped winding 10, deterioration of the insulation covering of the rectangular conductor can be reduced.

また巻線の平均温度上昇値を低下させることが可能とな
るので、冷却効率の向上を図ることができ、全体の巻線
電流密度を高くすることができる。
Furthermore, since it is possible to reduce the average temperature rise value of the windings, it is possible to improve cooling efficiency and increase the overall winding current density.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、円板状巻線の高さ方
向における特定範囲の上限および下限位置に対応する単
位巻線相互間の水平流体路に内側案内板および外側案内
板を設ける構成としてこの部分の冷却媒体を円板状巻線
の内側と外側との間で流通せしめるようにしたので、円
板状巻線の高さ方向における温度分布を平均化して冷却
効率の向上を図ることができ、従って巻線全体の電流密
度を高くすることが可能な自然冷却誘導電器巻線が提供
できる。
As described above, according to the present invention, an inner guide plate and an outer guide plate are provided in the horizontal fluid path between unit windings corresponding to the upper and lower limit positions of a specific range in the height direction of the disc-shaped winding. The structure allows the cooling medium in this part to flow between the inside and outside of the disc-shaped winding, which averages out the temperature distribution in the height direction of the disc-shaped winding and improves cooling efficiency. Therefore, it is possible to provide a naturally cooled induction electric winding that can increase the current density of the entire winding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の自然冷却誘導電器巻線の構成を示す断面
図、第2図は第1図の一部を拡大して示す断面図、第3
図は第1図の巻線温度分布を示す特性図、第4図は本発
明の一実施例を示す断面図、第5図は第4図の一部を拡
大して示す断面図、第6図は同実施例における油流案内
板の平面図、第7図は第4図の巻線温度分布を示す特性
図である。 1.10・・・円板状巻線、2・・・単位巻線、3・・
・水平流体路、4・・・絶縁筒、5・・・垂直流体路、
6゜7・・・内側、外側油流案内板。 出願人代理人  弁理士 鈴 江 武 彦第1図 1 第2図 第3図 湯度J:J7(’C) 第4図 第5図 第6図 第7図
Figure 1 is a sectional view showing the configuration of a conventional naturally cooled induction electric appliance winding; Figure 2 is an enlarged sectional view of a part of Figure 1;
The figures are a characteristic diagram showing the winding temperature distribution of Fig. 1, Fig. 4 is a sectional view showing an embodiment of the present invention, Fig. 5 is an enlarged sectional view of a part of Fig. 4, and Fig. 6 This figure is a plan view of the oil flow guide plate in the same embodiment, and FIG. 7 is a characteristic diagram showing the winding temperature distribution of FIG. 4. 1.10...Disc-shaped winding, 2...Unit winding, 3...
・Horizontal fluid path, 4... Insulating cylinder, 5... Vertical fluid path,
6゜7...Inner and outer oil flow guide plates. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Yudo J:J7 ('C) Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 多数の円板状単位巻線を軸方向に積み重ねるように配設
するとともにその各積重間にスペーサを配して水平流体
路を形成した円板状巻線の内周側に絶縁筒を配設してそ
の間に垂直流体路を形成し、これら垂直流体路および各
水平流体路を通して自然環流により冷却媒体を流すよう
にした自然冷却誘導電器巻線において、前記円板状巻線
の高さ方向位置として、 525q+13≦h≦325 q+38(ただし、qは
巻線表面の熱流速(W/li )、hは巻線上端を10
0としたときの巻線高さ方向位置)で表わされる範囲の
上限および下限位置に対応する単位巻線相互間の水平流
体路に円板状巻線の内側と外側との間で冷却媒体を流通
案内せしめる内側案内板および外側案内板を設ける構成
としたことを特徴とする自然冷却誘導電器巻線。
[Claims] An inner periphery of a disc-shaped winding in which a large number of disc-shaped unit windings are stacked in the axial direction, and a spacer is arranged between each stack to form a horizontal fluid path. In a naturally cooled induction electric winding in which an insulating tube is disposed on the side and a vertical fluid path is formed therebetween, and a cooling medium is caused to flow by natural circulation through these vertical fluid paths and each horizontal fluid path, the disk-shaped As the height direction position of the winding, 525q+13≦h≦325q+38 (where q is the heat flow velocity on the winding surface (W/li), and h is the height of the upper end of the winding at 10
A cooling medium is supplied between the inside and outside of the disc-shaped winding in the horizontal fluid path between the unit windings corresponding to the upper and lower limit positions of the range represented by A naturally cooled induction electric appliance winding characterized by having a structure in which an inner guide plate and an outer guide plate are provided for guiding the flow.
JP2970483A 1983-02-24 1983-02-24 Winding for natural cooling induction electric apparatus Pending JPS59155110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2970483A JPS59155110A (en) 1983-02-24 1983-02-24 Winding for natural cooling induction electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2970483A JPS59155110A (en) 1983-02-24 1983-02-24 Winding for natural cooling induction electric apparatus

Publications (1)

Publication Number Publication Date
JPS59155110A true JPS59155110A (en) 1984-09-04

Family

ID=12283493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2970483A Pending JPS59155110A (en) 1983-02-24 1983-02-24 Winding for natural cooling induction electric apparatus

Country Status (1)

Country Link
JP (1) JPS59155110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116808A (en) * 1990-09-06 1992-04-17 Toshiba Corp Feeding type gas insulated transformer coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116808A (en) * 1990-09-06 1992-04-17 Toshiba Corp Feeding type gas insulated transformer coil

Similar Documents

Publication Publication Date Title
US4000482A (en) Transformer with improved natural circulation for cooling disc coils
US3902146A (en) Transformer with improved liquid cooled disc winding
EP2372728B1 (en) Transformation device
US3659239A (en) Power transformer incorporating improved heat dissipation means
US9947453B2 (en) Stationary induction electric apparatus
US3551863A (en) Transformer with heat dissipator
US3548354A (en) Transformer having ventilating passages
US4207550A (en) Winding structure of electric devices
JPS59155110A (en) Winding for natural cooling induction electric apparatus
JPS59155108A (en) Winding for natural cooling induction electric apparatus
EP0146948B1 (en) Electromagnetic induction apparatus
JPS59155109A (en) Winding for natural cooling induction electric apparatus
JP7255394B2 (en) Induction winding device
JP7499727B2 (en) Static induction equipment
JPH09293617A (en) Guided spiral
CA1056024A (en) Transformer with improved natural circulation for cooling disc coils
JPH0864426A (en) Stationary induction device
JPH04298011A (en) Core for stationary induction apparatus
JPH02148809A (en) Disc winding for induction device
JPH01313913A (en) Disk winding for induction electrical equipment
JPH04180207A (en) Disk winding for induction electric apparatus
JPH0249408A (en) Self-cooled stationary electromagnetic induction apparatus
JP2508994B2 (en) Induction electric disk winding
JPS6317222Y2 (en)
JPS59123210A (en) Winding for natural cooling induction apparatus