JPH0249408A - Self-cooled stationary electromagnetic induction apparatus - Google Patents

Self-cooled stationary electromagnetic induction apparatus

Info

Publication number
JPH0249408A
JPH0249408A JP63200802A JP20080288A JPH0249408A JP H0249408 A JPH0249408 A JP H0249408A JP 63200802 A JP63200802 A JP 63200802A JP 20080288 A JP20080288 A JP 20080288A JP H0249408 A JPH0249408 A JP H0249408A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
secondary winding
winding
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63200802A
Other languages
Japanese (ja)
Inventor
Tsuneo Nishitani
西谷 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63200802A priority Critical patent/JPH0249408A/en
Publication of JPH0249408A publication Critical patent/JPH0249408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PURPOSE:To improve the cooling capacity of windings as well as to increase the current density of the windings by a method wherein a plurality of independent refrigerant passages, having at least either of a refrigerant inlet provided at the lower part of the winding and a refrigerant outlet provided at the upper part of the winding, are provided. CONSTITUTION:A winding 2, which is wound in vertical direction by providing gaps between the windings, on which a plurality of tabular coils are laminated in vertical direction through a gap, or between the turns of a helical coil 3, is provided, and each gap is utilized as a part of a plurality of independent refrigerant passages. Each of refrigerant passages 44 and 45 has at least either of the refrigerant inlets 40a and 41a provided at the lower part of each winding 2, and also either of the refrigerant outlet 42a and 43a provided at the upper part of each winding 2. As a result, the cooling capacity of the winding 2 can be improved, and the current density of the winding 2 can also be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、巻線の新規な冷却構造を有する自冷式変圧
器などの自冷式静止誘導器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a self-cooled stationary inductor such as a self-cooled transformer having a novel winding cooling structure.

〔従来の技術〕[Conventional technology]

第7図〜第10図は従来の油入自冷式変圧器の一例を示
すもので、第7図は内部構造を示す断面図1第8図は二
次巻線の構成を示す断面図、第9図は同じく二次巻線の
一部を示す平面断面部分図、第10図は二次巻線の冷媒
である絶縁油(以下部という)の流れを示す断面図であ
る。これらの図において、(1)は鉄心、(2)は巻線
、本例では平角銅帯を用いて平巻として放射状に巻重ね
られた板状コイルの一種である円板コイル(3)が垂直
方向に複数個積み重ねられた低圧側の二次巻線、(4)
は二次巻線(2)の外周に円筒状に巻かれた高圧側の一
次巻線、(5)は巻線(2) I (4)の巻かれた鉄
心(1)を収容するタンク、(6)は油である。なお、
タンク(5)には放熱器が設けられているが図示を省略
している。次に第8図、第9図により二次巻線の構成の
詳細を説明する。(7)は二次巻線(2)と鉄心(1)
との間に設けられ両者間の絶縁を行うための内側絶縁筒
、(8)は二次巻線(2)と−次巻線(4)(第8図で
は図示を省略、第7図参照)との絶縁を行うための外側
絶縁筒であり、円板コイル(3)は、内側絶縁筒(7)
上に縦スペーサ(9a)を介して水平に配設され、この
円板コイル(3)が軸方向すなわち円板の平面と垂直な
方向に横スペーサαQをはさんで複数個、本例では9個
積み重ねられて二次巻線(2)を構成するとともに、二
次巻線(2)の外周には縦スペーサ(9b)を介して外
側絶縁筒(8)が設けられている。縦スペーサ(9a)
 、 (9b)、横スペーサ00は第8図IX −IX
線における断面図である第9図に示されるように二次巻
線(2)の径方向に放射状に間隔を置いて配設されてお
り、縦スペーサ(9a)による内側絶縁筒(7)と二次
巻線(2)との間の間隙(6)、縦スペーサ(9b)に
よる外側絶縁筒(8)と二次巻線(2)との間の間隙@
及び横スペーサQOによる円板コイル(3)相互の間隙
0が油の通路を形成している。なお、第7図において図
示されている一次巻線(4)は第8図では図示を省略し
ているが、第8図における外側絶縁筒(8)の外側に配
設されている。
Figures 7 to 10 show an example of a conventional oil-filled self-cooling transformer, in which Figure 7 is a cross-sectional view showing the internal structure; Figure 8 is a cross-sectional view showing the configuration of the secondary winding; FIG. 9 is a partial plane cross-sectional view showing a part of the secondary winding, and FIG. 10 is a cross-sectional view showing the flow of insulating oil (hereinafter referred to as part) which is a refrigerant in the secondary winding. In these figures, (1) is the iron core, (2) is the winding, and in this example, a disk coil (3) is a type of plate-shaped coil that is radially wound in a plane using rectangular copper strips. Multiple secondary windings on the low voltage side stacked vertically, (4)
is the primary winding on the high voltage side wound in a cylindrical shape around the outer circumference of the secondary winding (2), (5) is the tank that accommodates the iron core (1) wound with the winding (2) I (4), (6) is oil. In addition,
Although the tank (5) is provided with a heat radiator, illustration thereof is omitted. Next, details of the configuration of the secondary winding will be explained with reference to FIGS. 8 and 9. (7) is the secondary winding (2) and iron core (1)
(8) is the secondary winding (2) and the secondary winding (4) (not shown in Figure 8, see Figure 7). ) is an outer insulating tube for insulating the disc coil (3) from the inner insulating tube (7).
The disk coils (3) are arranged horizontally on top with a vertical spacer (9a) interposed therebetween, and a plurality of disk coils (3), in this example, 9 These are stacked to form a secondary winding (2), and an outer insulating cylinder (8) is provided on the outer periphery of the secondary winding (2) via a vertical spacer (9b). Vertical spacer (9a)
, (9b), horizontal spacer 00 is shown in Fig. 8 IX-IX
As shown in FIG. 9, which is a cross-sectional view of the secondary winding (2), they are arranged at intervals radially in the radial direction of the secondary winding (2), and the inner insulating cylinder (7) and the vertical spacer (9a) Gap (6) between the secondary winding (2), gap between the outer insulating cylinder (8) and the secondary winding (2) due to the vertical spacer (9b) @
A gap of 0 between the disc coils (3) and the horizontal spacer QO forms an oil passage. Although the primary winding (4) shown in FIG. 7 is not shown in FIG. 8, it is disposed outside the outer insulating cylinder (8) in FIG. 8.

次に動作について説明する。第10図において、二次巻
線(2)を冷却する油は間隙(11) 、 U 、 Q
3を満しており、二次巻線(2)、すなわち円板コイル
(3)に流れる電流により発生する損失により加熱され
温度上昇して比重差が発生するので二次巻線(2)の下
部から上方へ上昇し、上昇した油は放熱器(図示せず)
により冷却されて二次巻線(2)の下部へ戻される。と
ころが、円板コイル(3)は垂直方向に積み重ねられて
いるので、円板コイルの間隙(至)の油は一方向の流れ
とはならず、例えば図に矢印で示すような不規則で局部
的な流れの自然対流となり冷却能力が下り円板コイル(
3)に局所的な過熱部が生じるなどの問題点があった。
Next, the operation will be explained. In Fig. 10, the oil that cools the secondary winding (2) is distributed between the gaps (11), U, and Q.
3, and the secondary winding (2), that is, the disc coil (3), is heated by the loss generated by the current flowing through it, and the temperature rises and a difference in specific gravity occurs. The oil rises from the bottom to the top, and the rising oil is sent to a radiator (not shown)
and is returned to the lower part of the secondary winding (2). However, since the disc coils (3) are stacked vertically, the oil in the gaps between the disc coils does not flow in one direction; for example, it flows irregularly and locally as shown by the arrows in the figure. The cooling capacity decreases due to the natural convection of the flow, and the disc coil (
3) had problems such as localized overheating.

上記のような課題を解決するためになされた他の従来例
である油入自冷式変圧器を第11図〜第15図に示す。
Another conventional oil-filled self-cooling transformer designed to solve the above problems is shown in FIGS. 11 to 15.

第H図は二次巻線の油の流れを示す断面図、第丘図、第
13図は油の一方の流れを遮断して流れを一方向に誘導
する油ガイドの平面図、第14図、第15図は円板コイ
ル間に配設された油ガイドの配設状況を示す二次巻線の
平面断面部分図である。図において、(3)〜(至)は
上記従来例と同様であるので説明を省略する。これらの
図において、01) 、 @は二次巻線(2)と内側、
外側絶縁筒(7) j (8)との間に縦スペーサ(9
a) 、 (9b)により作られた間隙、(至)、αQ
は円板コイル(3)と横スペーサαQとの間に挾み込ま
れ間隙?の、(イ)中の油の上下方向の流れを遮断して
流れを水平方向に誘導する油ガイドである。
Figure H is a sectional view showing the flow of oil in the secondary winding, Figure 13 is a plan view of an oil guide that blocks one flow of oil and guides the flow in one direction, Figure 14. , FIG. 15 is a partial plan cross-sectional view of the secondary winding showing how the oil guide is arranged between the disk coils. In the figure, steps (3) to (to) are the same as in the conventional example described above, so explanations thereof will be omitted. In these figures, 01) and @ are the secondary winding (2) and the inner side,
A vertical spacer (9) is placed between the outer insulating cylinder (7) j (8).
a), the gap created by (9b), (to), αQ
is the gap inserted between the disc coil (3) and the horizontal spacer αQ? (a) This is an oil guide that blocks the vertical flow of oil inside and guides the flow horizontally.

油ガイド(至)は第丘図、第14図にその平面図を示す
ように、環状の絶縁板でありその内周部に縦スペーサ(
9a)との干渉を避けるための切り欠き(15a)を有
しており、内径は内側絶縁筒(7)の外径より若干大き
く、外径は円板コイル(3)の外径とほぼ同じ寸法に製
作されており、間隙21)を上下方向に間隙(21a)
〜(21f)に区分して油の流れを遮断し、間隙(イ)
に対しては寸法的齋こ干渉せず油の流通を妨げないよう
にされている。油ガイドMも同様に円環状の絶縁板であ
り箇月図、第す図に平面図を示すように外周部に縦スペ
ーサ(9b)との干渉を避けるための切り欠き(I6a
)が設けてあり、その外径は外側絶縁筒(8)の内径よ
り若干小さく、内径は円板コイル(3)の内径とほぼ同
じ寸法に製作されており、間隙(イ)を上下方向に間隙
(22a)〜(22e)に区分して油の流れを遮断する
ようにされている。なお、油ガイドQf9 、α・の配
設状況を示す二次巻線の平面断面部分図である第14図
、第15図は内側、外側絶縁筒(7) 、 (8)及び
縦、横スペーサ(9a) * (9b)−α0との位置
関係を模式的に表したものであり、例えば内側絶縁筒(
7)と油ガイドαυとの間に第14図のような大きな隙
間があるわけではなく、必要な箇所については油の漏洩
流が問題とならないような寸法に製作されている。つま
り、第11図に示されるように、縦方向の間隙?◇、翰
を油ガイドαυ、αQにより区分されて作られた間隙(
21a) 〜(21f) p (22a)〜(22e)
と円板コイル(3)間の間隙α葎とにより、二次巻線の
下部に設けられた開口部器と上部をこ設けられた開口部
(ハ)を連通する一個の冷媒通路(イ)が形成されてい
ること番こなる。
The oil guide (to) is an annular insulating plate with a vertical spacer (
It has a notch (15a) to avoid interference with 9a), and the inner diameter is slightly larger than the outer diameter of the inner insulating cylinder (7), and the outer diameter is almost the same as the outer diameter of the disc coil (3). The gap 21) is made to the same size as the gap 21a in the vertical direction.
~(21f) to block the oil flow, and the gap (a)
It is designed so that there is no dimensional interference with the flow of oil. The oil guide M is also an annular insulating plate, and as shown in the plan view in Fig.
), the outer diameter of which is slightly smaller than the inner diameter of the outer insulating cylinder (8), and the inner diameter of which is approximately the same as the inner diameter of the disc coil (3). It is divided into gaps (22a) to (22e) to block the flow of oil. Note that FIGS. 14 and 15, which are partial plane cross-sectional views of the secondary winding showing the arrangement of the oil guides Qf9 and α, show the inner and outer insulating tubes (7) and (8), and the vertical and horizontal spacers. (9a) * (9b) - This is a schematic representation of the positional relationship with α0, for example, the inner insulating cylinder (
7) and the oil guide αυ, as shown in FIG. 14, there is no large gap, and the necessary locations are dimensioned so that oil leakage does not become a problem. That is, as shown in FIG. 11, the vertical gap? ◇, the gap created by dividing the canopy with oil guides αυ and αQ (
21a) ~(21f) p (22a) ~(22e)
and the gap α between the disk coil (3), one refrigerant passage (A) is formed which communicates the opening provided at the lower part of the secondary winding with the opening (C) provided at the upper part. It turns out that it is formed.

他の従来例である油入自冷式変圧器では上記のように構
成され、間隙(21a) 〜(21f) p (22a
) 〜(22e) 、 (13を満たしている油は、二
次巻線(2)すなわち円板コイル(3)に流れる電流に
より発生する損失により加熱されて自然対流により二次
巻線(2)の下部から上部へ上昇するが、間191 (
21a) (21f)。
Another conventional example of an oil-filled self-cooling transformer is configured as described above, with gaps (21a) to (21f) p (22a
) ~(22e) , (The oil filling 13 is heated by the loss generated by the current flowing through the secondary winding (2), that is, the disc coil (3), and is heated by the secondary winding (2) by natural convection. It rises from the bottom to the top, but between 191 (
21a) (21f).

(22a)〜(22e) 、(至)は上記のように全体
で一個の冷媒通路(25)を形成しているので、油は第
n図の矢印に示されるように二次巻線の下部に設けられ
た開口部(2)から流入し、円板コイル(3)により加
熱されながら上昇し、上部に設けられた開口部(ハ)か
ら上方へ抜ける。つまり下部に設けられた開口部(2)
が油入口、上部に設けられた開口部(財)が油出口とな
っている。従って、この従来例では、円板コイル間の間
隙(至)中の油は一定方向に流れ、最初に示した従来例
の如(不規則で局部的な流れが発生しない。
(22a) to (22e) and (to) collectively form one refrigerant passage (25) as described above, so the oil flows under the secondary winding as shown by the arrow in Figure n. It flows in through the opening (2) provided at the top, rises while being heated by the disk coil (3), and exits upward through the opening (c) provided at the top. In other words, the opening (2) provided at the bottom
is the oil inlet, and the opening provided at the top is the oil outlet. Therefore, in this conventional example, the oil in the gap between the disk coils flows in a fixed direction, and unlike the first conventional example (irregular and localized flow does not occur).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような他の従来例である油入自冷式変圧器におい
ては、巻線の冷却は円板コイル(3)間の間隙(至)が
全て直列になるように構成された一個の冷媒通路を流れ
る油により行なわれる。従って冷媒回路が長いために巻
線に流れる電流による損失により加熱され温度上昇する
油の比重差による自然対流だけでは、油の流量が少ない
ために冷却能力が低く、二次巻線の電流密度を小さい値
に制限しなければならず使用導体量が増加して不経済に
なるなどの問題点があった。
In the other conventional oil-filled self-cooling transformer mentioned above, the windings are cooled using a single refrigerant arranged so that the gaps between the disc coils (3) are all in series. This is done by oil flowing through the passages. Therefore, due to the long refrigerant circuit, the current density flowing through the windings causes heat and temperature rise due to the natural convection caused by the difference in specific gravity of the oil. However, the cooling capacity is low due to the small flow rate of the oil, and the current density in the secondary winding is low. There was a problem that the value had to be limited to a small value, and the amount of conductor used increased, making it uneconomical.

この発明は上記のような問題点を解消するためになされ
たもので、冷却能力が高く巻線の電流密度を大きくとる
ことが可能で経済的な自冷式静止電磁誘導器を得ること
を目的とする。
This invention was made in order to solve the above-mentioned problems, and the purpose is to obtain an economical self-cooled static electromagnetic inductor that has a high cooling capacity and can increase the current density of the winding. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る自冷式静止電磁誘導器は、板状コイルが
間隙を介して垂直方向に複数個積み重ねられた巻線又は
螺旋状コイルのターン間に間隙を設けて垂直方向に巻回
された巻線を備え、上記各間隙を独立した複数個の冷媒
通路の一部として利用し、上記各冷媒通路が上記各巻線
の下部に設けられた冷媒入口及び上記各巻線の上部に設
けられた冷媒出口の少なくとも一方を有するようにした
ものである。
The self-cooled stationary electromagnetic induction device according to the present invention includes a plurality of plate-shaped coils stacked vertically with gaps in between, or spiral coils wound in the vertical direction with gaps between turns. a refrigerant inlet provided at the bottom of each of the windings and a refrigerant at the top of each of the windings; It has at least one outlet.

〔作用〕[Effect]

この発明における巻線の下部に設けられた冷媒入口又は
上部に設けられた冷媒出口を有する独立した複数個の冷
媒通路を設けたので巻線を冷却する冷媒の総流量が増加
し、冷却能力が向上する。
In this invention, since a plurality of independent refrigerant passages each having a refrigerant inlet provided at the lower part of the winding or a refrigerant outlet provided at the upper part are provided, the total flow rate of the refrigerant for cooling the winding is increased, and the cooling capacity is increased. improves.

〔発明の実施例〕[Embodiments of the invention]

第1図〜第3図はこの発明の一実施例を示すも間隙α力
を設けるために上記従来例の縦スペーサ度上昇の比較を
示す温度分布図であり、図中、(3)〜(至)は上記各
従来例と同様であるので説明を省略する。曽は内側絶縁
シリンダであり従来例の内側絶縁筒(7)(第n図)罠
相当するものであるが、円板コイル(3)との間隔を上
記従来例の2倍とし、中間に内側仕切筒0◇を設けて二
次巻線(2)の下部に開口部(40a)、(41a)を
有する二つの縦方向の間隙に)。
FIGS. 1 to 3 are temperature distribution diagrams showing one embodiment of the present invention and showing a comparison of the increase in vertical spacer degree in the conventional example described above in order to provide a gap α force, and in the figures (3) to ( to) are the same as each of the above-mentioned conventional examples, so their explanation will be omitted. This is an inner insulating cylinder and corresponds to the trap of the inner insulating cylinder (7) (Fig. A partition tube 0◇ is provided in two vertical gaps having openings (40a) and (41a) at the bottom of the secondary winding (2).

0])を形成している。内側仕切筒0めは第2図に示さ
れるように、その中央部に油を通すための多数の穴(3
1a)を有している。(2)は外側絶縁シリンダであり
従来例の外側絶縁筒(8)(第11図)に相当するが、
円板コイル(3)との間隔を上記従来例の2倍とし、中
間に冷媒を通すための多数の穴(33a)を有する外筒
仕切筒■を設けて、二次巻線(2)の上部に開口部(4
2a)、(4aa)を有する二つの縦方向の間隙(6)
、(財)を形成している。なお、図示していないが、の
縦スペーサ(9b)(第U図、第迅図)と同様の縦スペ
ーサが挿入されている。円板コイル(3)の相互間にも
、図示していないが、上記従来例の横スペーサQOが挿
入されることにより、円板コイル(3)間の間隙(至)
が設けられている。に)、(ト)はそれぞれ上記他の従
来例の油ガイド(至)、αQと同様の油ガイド、α力は
二次巻線(2)の中間部に設けられた仕切板であり、第
認図、第14図に示される油ガイド(ト)と第邦図、第
す図に示される油ガイドαQとを合せた形状、すなわち
その内径は内側仕切筒0ηの外径より若干太き(、その
内周部に縦スペーサ(図示せず)その干渉を避けるため
に上記他の従来例の油ガイド(ト)の切り欠き(lsa
) (第n図)と同様の切り欠きを有し、その外径は外
側仕切筒(至)の内径より若干小さく、その外周部に縦
スペーサ(図示せず)との干渉を避けるために上記従来
例の油ガイドαQの切り欠き(16a) (第n図)と
同様の切り欠きを有しており、穴(3Xa)の下部で間
隙(ロ)を、穴(33a)の上部で間隙(6)を閉塞し
ている。(ロ)は穴(31a)の上方に設けられ間隙■
を閉塞する閉塞板、(2)は穴(33a)の下方に設け
られ間隙(財)を閉塞する閉塞板である。上記のように
各間隙■、 h])、(6)、(至)、(至)が構成さ
れることにより、下部の開口部(40a)→間隙■→二
次巻線(2)の上半分の円板コイルの間隙0で構成され
る直列回路→上部の開口部(4Za)に至る冷媒通路■
及び下部の開口部(41a)→二次巻線(2)の下半分
の円板コイルの間隙(至)で構成される直列回路→間隙
(財)→上部の開口部(43a)に至る冷媒通路(ハ)
、すなわち二つの独立した冷媒通路(ロ)。
0]). As shown in Figure 2, the inner partition tube 0 has many holes (3 holes) in the center for passing oil.
1a). (2) is an outer insulating cylinder and corresponds to the outer insulating cylinder (8) of the conventional example (Fig. 11).
The distance between the secondary winding (2) and the disk coil (3) is twice that of the conventional example, and an outer cylindrical partition tube (■) with a number of holes (33a) for passing refrigerant is provided in the middle. Opening at the top (4
two longitudinal gaps (6) with 2a), (4aa)
, (goods) are formed. Although not shown, a vertical spacer similar to the vertical spacer (9b) (Figs. U and 3) is inserted. Although not shown, the horizontal spacer QO of the above-mentioned conventional example is also inserted between the disc coils (3), thereby reducing the gap between the disc coils (3).
is provided. ) and (g) are the oil guides (to) of the other conventional examples mentioned above, oil guides similar to αQ, α force is a partition plate provided in the middle of the secondary winding (2), and The shape is a combination of the oil guide (G) shown in Fig. 14 and the oil guide αQ shown in Figs. In order to avoid interference with a vertical spacer (not shown) on its inner periphery, a notch (lsa
) (Fig. It has a notch similar to the notch (16a) of the conventional oil guide αQ (Figure n), with a gap (b) at the bottom of the hole (3Xa) and a gap (b) at the top of the hole (33a). 6) is blocked. (b) is provided above the hole (31a) with a gap ■
A closing plate (2) is provided below the hole (33a) to close the gap. By configuring the gaps ■, h]), (6), (to), and (to) as described above, the lower opening (40a) → gap ■ → the upper part of the secondary winding (2) Series circuit consisting of half disc coil gap 0 → refrigerant passage leading to upper opening (4Za)■
The refrigerant reaches the lower opening (41a) → the gap between the lower half disc coils of the secondary winding (2) → the gap → the upper opening (43a) Passage (c)
, that is, two independent refrigerant passages (b).

(ハ)が形成されている。(c) is formed.

上記のように構成された油入自冷式変圧器において、油
は間隙(ト)、(財)、(6)、(ト)、(至)を満た
しており、二次巻線(2)、すなわち板状コイル(3)
を流れる電流により発生する損失により暖められて自然
対流を発生するが、油は、第1図の矢印に示されるよう
に下部の開口部(40a)から流入し、間隙−を経て板
状コイル(3)の間を通過しながら二次巻線(2)の上
半分の板状コイル(3)を冷却しく油は暖められて)、
上部の開口部(42a)から流出する冷媒通路■及び下
部の開口部(41a)から二次巻線(2)の下半分の板
状コイル(3)の間を通過しながら板状コイル(3)を
冷却し間隙−を経て上部の開口部(43a)から流出す
る冷媒通路に)、すなわち、下部の開口部(40a)、
(41a)を油入口、上部の開口部(42a)、(43
a)を油出口とする冷媒通路■、(ハ)を油が流れる。
In the oil-filled self-cooling transformer configured as described above, oil fills the gaps (g), (z), (6), (g), and (to), and the secondary winding (2) , that is, plate-shaped coil (3)
The oil flows through the opening (40a) at the bottom as shown by the arrow in Figure 1, passes through the gap, and flows into the plate-shaped coil (40a). 3), the oil is heated to cool the plate-shaped coil (3) in the upper half of the secondary winding (2).
The refrigerant passes through the refrigerant passage ■ flowing out from the upper opening (42a) and the plate coil (3) in the lower half of the secondary winding (2) from the lower opening (41a). ) into the refrigerant passage which cools the refrigerant and flows out from the upper opening (43a) through the gap, i.e., the lower opening (40a),
(41a) is the oil inlet, the upper opening (42a), (43
Oil flows through the refrigerant passages (2) and (3) with a) as the oil outlet.

なお、上部の開口部(42a) 、 (43a)から流
出した油はさらに上昇し\図示していないが、タンク(
5)(第7図)の外部に設けられた放熱器により放熱、
冷却されて再びタンク下部へ戻される。つまり、他の従
来例(第11図)においては、円板コイル(3)の間隙
α撞が全て直列に接続された一個の冷媒通路(イ)で構
成されていたのに対し、この発明の一実施例においては
二つの独立した冷媒通路■、(ハ)を設けたので、つま
り二つの並列通路に油が流れるようにしたので、上記他
の従来例に比し二次巻線(2)を冷却する油の総流量が
増加している。
Note that the oil flowing out from the upper openings (42a) and (43a) rises further and reaches the tank (not shown).
5) Heat dissipation by the external heat radiator (Fig. 7),
It is cooled and returned to the bottom of the tank. In other words, in other conventional examples (Fig. 11), the gap α of the disc coil (3) was composed of one refrigerant passage (A) that was connected in series, whereas in the present invention In one embodiment, since two independent refrigerant passages (2) and (3) are provided, that is, oil flows through two parallel passages, the secondary winding (2) is different from the other conventional examples mentioned above. The total flow rate of cooling oil is increasing.

第U図あるいは第1図において矢印で示されるような円
板コイル(3)の間隙(至)を流れる油の流量は、円板
コイルの寸法、冷媒通路に発生する損失(これは冷媒通
路中に存在する円板コイルの損失の和に相当する)など
により変化するが、この発明における一実施例の場合、
実験的に次の近似式が得られている。すなわち、 Q = VXS : k泊−−−−−−−・−(gココ
で、Q:円板コイルの間隙を通過する油の流量〔rrL
3/S〕 ■:円板コイルの間隙を通過する油の流速(−/偏〕 S:円板コイルの間隙の油の通過断面積Cm”3 に:定数 W:冷媒通路に発生する損失〔W〕 従って、上記他の従来例(第11図)において、冷媒通
路は一個(全ての間隙α1が直列接続)であるから二次
巻線(2)に発生する損失をWlとすると、冷媒通路に
発生する損失はw : W、となり冷媒通路を流れる油
の流ff1Q、は上記(1)式によりQt=に1   
 ・・曲・曲間(2)次に、この発明の一実施例におい
ては、二次巻線(2)を二つの並列の冷媒通路に油を流
すことにより冷却するのであるから、上記(1)式にお
ける冷媒通路に発生する損失(1通路に発生する損失)
は半分になるので、冷媒通路■、(ハ)におのおの流れ
る油の流量Q!は上記(1)式にW=Wl/2を代入し
て(他の条件は上記他の従来例と同じであるから)Qt
=kV盟乃=o、sQ、 +++++++曲曲<3)冷
曲間路は独立して二個あるので全体の油の流量Q2tは Q、t ” 2 Qt〜1.6Q、   ・・・・・・
・・・・・・・・・(4)となり、二次巻線(2)に発
生する損失が同一のときに、全体の油の流量は上記(4
)式に示されるように1.6倍となる。従って油の流量
の増加に対応して二次巻線(2)(円板コイル(3))
を冷却する冷却能力は増加して二次巻線の温度上昇は小
さくなるが、この関係を上記他の従来例と対比して示し
たのが第3図である。この図において、toは巻線の下
部の温度、tlは他の従来例における巻線の上部の温度
、ttはこの一実施例における巻線の中間及び上部(冷
媒出口部)の温度であり、二次巻線゛(2)に発生する
損失、すなわち二次巻線(2)の電流密度を同じ値にし
た場合、二次巻線の最高温度が低くなる。逆に言えば、
二次巻線の最高温度を従来例と同じとするなら冷却能力
が増加した分だけ二次巻線の電流密度を高くすることが
できる。
The flow rate of oil flowing through the gap (to) of the disc coil (3) as shown by the arrow in Figure U or Figure 1 is determined by the size of the disc coil and the loss occurring in the refrigerant passage (this is due to the loss in the refrigerant passage). (equivalent to the sum of the losses of the disc coils existing in
The following approximate formula has been obtained experimentally. That is, Q = VXS: k night---------- (g here, Q: flow rate of oil passing through the gap of the disc coil [rrL
3/S] ■: Flow rate of oil passing through the gap between the disc coils (-/biased) S: Cross-sectional area of oil passing through the gap between the disc coils Cm"3: Constant W: Loss occurring in the refrigerant passage [ W] Therefore, in the above-mentioned other conventional example (Fig. 11), since there is only one refrigerant passage (all gaps α1 are connected in series), if the loss occurring in the secondary winding (2) is Wl, then the refrigerant passage The loss occurring in w : W, and the oil flow ff1Q flowing through the refrigerant passage is calculated as Qt=1 by the above equation (1).
...Song/song interval (2) Next, in one embodiment of the present invention, since the secondary winding (2) is cooled by flowing oil through two parallel refrigerant passages, the above (1) ) loss occurring in the refrigerant passage (loss occurring in one passage)
is halved, so the flow rate of oil flowing in each of the refrigerant passages ■ and (c) is Q! By substituting W=Wl/2 into the above equation (1) (other conditions are the same as the other conventional examples above), Qt
= kV = o, sQ, +++++++++ curve <3) Since there are two independent cold curve passages, the total oil flow rate Q2t is Q, t '' 2 Qt ~ 1.6Q, ...・
......(4), and when the loss occurring in the secondary winding (2) is the same, the total oil flow rate is the above (4).
) is 1.6 times as shown in the formula. Therefore, in response to the increase in oil flow rate, the secondary winding (2) (disc coil (3))
Although the cooling capacity for cooling the secondary winding increases and the temperature rise of the secondary winding decreases, this relationship is shown in comparison with the other conventional example described above. In this figure, to is the temperature at the bottom of the winding, tl is the temperature at the top of the winding in another conventional example, and tt is the temperature at the middle and top (refrigerant outlet) of the winding in this example. When the loss occurring in the secondary winding (2), that is, the current density of the secondary winding (2), is set to the same value, the maximum temperature of the secondary winding becomes lower. Conversely,
If the maximum temperature of the secondary winding is kept the same as in the conventional example, the current density of the secondary winding can be increased by the increased cooling capacity.

第4図はこの発明の他の実施例の油の流れを示す断面図
であり、輔は外側仕切筒(至)との間に縦スペーサ(図
示せず)を介して設けられた外筒であり、外側仕切筒(
至)との間の間隙(へ)及び巻線の上部に冷媒出口(5
3a)を構成している。(財)は二次巻線(2)の中央
部近傍に設けられた冷媒入口(50a)及び二次巻線(
2)の上部に設けられた冷媒出口(52a)を有する図
示の如き冷媒通路、(至)は二次巻線(2)の下部に冷
媒入口(51a)を有するとともに上部に冷媒出口(5
3a)を有し冷媒通路(ロ)とは独立した図示の如きも
う一個の冷媒通路である。二次巻線(2)により暖めら
れ温度上昇した油は冷媒出口@a)、■a)から流出し
て上昇するので、二次巻線(2)の中央部に設けられた
冷媒入口(50a)付近の油の温度はあまりその影普を
受けず、他方の冷媒入口(51a)の油の温度と同様の
油が冷媒通路員にも流入することになる。
FIG. 4 is a cross-sectional view showing oil flow in another embodiment of the present invention, in which the holder is an outer cylinder provided with a vertical spacer (not shown) between it and the outer partition cylinder. Yes, outer partition tube (
There is a refrigerant outlet (5) in the gap between (to) and the top of the winding.
3a). (Foundation) is the refrigerant inlet (50a) provided near the center of the secondary winding (2) and the secondary winding (2).
2) has a refrigerant outlet (52a) provided at the top of the secondary winding (2), as shown in the figure;
3a), which is another refrigerant passage as shown, which is independent of the refrigerant passage (b). The oil, which has been warmed by the secondary winding (2) and whose temperature has risen, flows out from the refrigerant outlet @a) and ■a) and rises. ) The temperature of the oil near the refrigerant inlet (51a) is not affected much, and oil having the same temperature as the oil at the other refrigerant inlet (51a) also flows into the refrigerant passage member.

第5図はさらに他の実施例の油の流れを示す断面図であ
り、1はその下部、中央部、上部に冷媒を通すための多
数の穴(61a)*(61b)、(61C)を有する内
側仕切板、綱は外側絶縁シリンダ、−は冷媒を通すため
の多数の穴(63a) 、 (63b)を有する第一仕
切板、(163)は同じく多数の穴(163a)を有す
る第二仕切板であり、これらと油ガイドα0.αQ、仕
切板αカ、閉塞板(ロ)、@、ga及び円板コイル(3
)によって形成された間隙により、三つの独立した冷媒
通路υθ、σe、nが構成されている。冷媒通路−。
FIG. 5 is a cross-sectional view showing the flow of oil in yet another embodiment, and 1 has a large number of holes (61a) * (61b), (61C) for passing the refrigerant in the lower, middle, and upper parts. The inner partition plate has an outer insulating cylinder, the first partition plate (163) has a number of holes (63a), (63b) for passing the refrigerant, and the second partition plate (163) also has a number of holes (163a). It is a partition plate, and these and oil guide α0. αQ, partition plate α, occlusion plate (b), @, ga and disc coil (3
), three independent refrigerant passages υθ, σe, and n are constituted by the gaps formed by the above. Refrigerant passage.

(ハ)、(ハ)はおのおの二次巻線(2)の下部に設け
られた冷媒入口(72a) 、 (73a) 、 (7
4a)及び共通の冷媒出口(70a)を有している。冷
媒通路における油の流れは図の矢印に示されるようにな
り、二次巻線(2)の下部に設けられた冷媒入口(72
a) 、 (73a) 、 (74a)を有する三つの
独立した冷媒通路e7fi 、 閥# ffηを設けた
ので、各通路の冷媒入口(72a)〜(74a)には常
に冷たい油が流入するとともに、油の総流量(循環量)
も二つの冷媒通路の場合よりも増加する〇第6図はさら
に他の実施例の油の流れを示す断面図であり、二次巻線
(102)の円板コイル(103)の間隙(113)を
二個並列とし、これをさらに3個直列に接続した冷媒通
路を独立して二つ設けたものである。図において、−は
内側絶縁シリンダ、いりは油を通すための多数の穴(8
1a)を有する内側仕切筒、■は冷媒出口である穴(8
3a)、(83b)を設けた外側仕切筒、−は内側絶縁
シリンダーと内側仕切筒tanとの間の間隙−を閉塞す
る閉塞板であり、これらの部材と円板コイル(103)
と(スペーサは図示していない)で図示のような独立し
た二つの冷媒通路a141.−を構成しており、図の矢
印の如く油が流れる。なお、二つの独立した冷媒通路−
2図は二次巻線(102)の下部に設けられた冷媒入口
(90a)、(91a)及び外側仕切筒に設けられた冷
媒出口(92a)、(93a)をおのおの有している。
(c), (c) are refrigerant inlets (72a), (73a), (7) provided at the bottom of the secondary winding (2), respectively.
4a) and a common refrigerant outlet (70a). The oil flow in the refrigerant passage is shown by the arrow in the figure, and the refrigerant inlet (72) provided at the bottom of the secondary winding (2)
a), (73a) and (74a) are provided, so that cold oil always flows into the refrigerant inlets (72a) to (74a) of each passage, and Total oil flow rate (circulation amount)
Fig. 6 is a sectional view showing the oil flow in yet another embodiment, and shows the gap (113) between the disc coil (103) of the secondary winding (102). ) are connected in parallel, and three refrigerant passages are connected in series to provide two independent refrigerant passages. In the figure, - is the inner insulating cylinder, and iris are the many holes (8) for passing oil.
1a), and ■ is the refrigerant outlet hole (8).
3a) and (83b) are provided, and - is a closing plate that closes the gap between the inner insulating cylinder and the inner partition tube tan, and these members and the disc coil (103)
and two independent refrigerant passages a141. (spacer not shown) as shown in the figure. -, and oil flows as shown by the arrow in the figure. In addition, two independent refrigerant passages
In FIG. 2, the secondary winding (102) has refrigerant inlets (90a), (91a) provided at the bottom and refrigerant outlets (92a), (93a) provided in the outer partition tube, respectively.

以上の各実施例では、二次巻線が円板コイルである場合
について示したが、他の巻線が円板コイルであっても良
く、また、例えば−次巻線、二次巻線とも円板コイルで
構成されたものが軸方向に交互に配設されたもの、ある
いは放射方向に多数の導体を並列に重ねて平巻きしなが
らターン間に間隙を設けて垂直方向に螺旋状に巻回され
た螺旋状コイル等であっても、この発明の主旨に沿うよ
うに冷媒通路を構成することができる。板状コイルは、
円板コイルでなくとも、方形板状コイルや丸線を巻いて
構成された円板形コイル等であっても同様の効果を奏す
る。
In each of the above embodiments, the secondary winding is a disk coil, but the other windings may be disk coils, and for example, the secondary winding and the secondary winding may also be One consisting of disc coils arranged alternately in the axial direction, or a large number of conductors stacked in parallel in the radial direction and wound flat and spirally wound vertically with gaps between turns. Even with a turned spiral coil or the like, the refrigerant passage can be constructed in accordance with the gist of the present invention. The plate coil is
Even if it is not a disk coil, a rectangular plate coil, a disk coil formed by winding a round wire, etc. can produce the same effect.

なお、冷媒通路の数、冷媒通路の構成法、冷媒通路の冷
媒入口及び冷媒出口の設は方についていくつかの例を示
したが、これらのものについてはこの発明の目的を損な
わない範囲で適宜設計すれば良い。
Although some examples have been given regarding the number of refrigerant passages, the method of configuring the refrigerant passages, and the arrangement of the refrigerant inlets and outlets of the refrigerant passages, these may be modified as appropriate without impairing the purpose of the present invention. Just design it.

また、油入自冷式変圧器について示したが、リアクトル
、誘導電圧調整器など、他の自冷式静止電磁誘導器であ
っても良(、冷媒はフロン、六弗化硫黄、空気その他の
ものであっても同様の効果を奏する0但し、上記(1)
式は冷媒が油である場合についてのものであるので、他
の冷媒の場合は冷媒の総流量の増加の程度は上記(1)
式とはそれぞれ〔発明の効果〕 この発明は以上説明した通り、巻線の下部に設けられた
冷媒入口及び巻線の上部に設けられた冷媒出口の少なく
とも一方を有する独立した冷媒通路を複数個設けたので
、巻線を冷却する冷媒の総流量が増加し、巻線の冷却能
力が向上するので、巻線の電流密度を大きくすることが
可能となり、使用導体の量を低減することができる。
In addition, although the oil-immersed self-cooled transformer is shown, other self-cooled stationary electromagnetic induction devices such as reactors and induction voltage regulators may also be used (the refrigerant may be fluorocarbons, sulfur hexafluoride, air or other However, the above (1)
The formula is for the case where the refrigerant is oil, so in the case of other refrigerants, the degree of increase in the total flow rate of the refrigerant is as described in (1) above.
[Effects of the Invention] As explained above, the present invention has a plurality of independent refrigerant passages each having at least one of a refrigerant inlet provided at the lower part of the winding and a refrigerant outlet provided at the upper part of the winding. This increases the total flow rate of the refrigerant that cools the windings, improving the cooling capacity of the windings, making it possible to increase the current density of the windings and reducing the amount of conductors used. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はこの発明の一実施例を示すも図、第4
図はこの発明の他の実施例の油の流れを示す断面図、第
5図はさらにこの発明の他の実施例の油の流れを示す断
面図、第6図はさらに他の実施例の油の流れを示す断面
図1第7図〜第10図は従来の油入変圧器の一例を示す
もので、第7図は内部構造を示す断面図、第8図は二次
巻線の構成を示す断面図、第9図は二次巻線の平面断面
部分図、第10図は油の流れを示す断面図、第1図〜第
3図は他の従来例を示すもので、第11図は二次巻線の
油の流れを示す断面図、第り図、第13図は油ガイドの
平面図、第14図、第す図は円板コイル間に配設された
油ガイドの配設状況を示す二次巻線の平面断面部分図で
ある。 図において、(2) ) (102)は二次巻線、(3
) p (103)は円板コイル、(6)は油、(至)
、 (113)は間隙、t4oa)t(41a)、(5
0a)、(51a)*(72a) 〜(74a)、(9
0a)、(91a)は冷媒入口、(42a)、(43a
)、(sza)、(s3a)、(70a) *(92a
) 、 (93a)は冷媒出口、■、(ハ)、(財)、
開p (7G −四、(7η、(財)、−は冷媒通路で
ある。 なお、各図中同一符号は同−又は相当部分を示すO
Figures 1 to 3 show an embodiment of the present invention, and Figure 4 shows an embodiment of the present invention.
FIG. 5 is a sectional view showing the flow of oil in another embodiment of the invention, FIG. 6 is a sectional view showing the flow of oil in another embodiment of the invention, and FIG. Figures 7 to 10 show an example of a conventional oil-immersed transformer, with Figure 7 being a cross-sectional view showing the internal structure, and Figure 8 showing the configuration of the secondary winding. 9 is a partial plane sectional view of the secondary winding, FIG. 10 is a sectional view showing oil flow, FIGS. 1 to 3 show other conventional examples, and FIG. is a cross-sectional view showing the flow of oil in the secondary winding, Fig. 13 is a plan view of the oil guide, and Fig. 14 and Fig. 2 are the arrangement of the oil guide arranged between the disc coils. FIG. 3 is a partial plan cross-sectional view of the secondary winding showing the situation. In the figure, (2) ) (102) is the secondary winding, (3
) p (103) is a disk coil, (6) is oil, (to)
, (113) is the gap, t4oa)t(41a), (5
0a), (51a) * (72a) ~ (74a), (9
0a), (91a) are refrigerant inlets, (42a), (43a)
), (sza), (s3a), (70a) *(92a
), (93a) is the refrigerant outlet, ■, (c), (goods),
Open p (7G -4, (7η, Foundation), - are refrigerant passages. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  板状コイルが間隙を介して垂直方向に複数個積み重ね
られた巻線又は螺旋状コイルのターン間に間隙を設けて
垂直方向に巻回された巻線を備え上記各間隙を独立した
複数個の冷媒通路の一部として利用する自冷式静止電磁
誘導器において、上記各冷媒通路は上記各巻線の下部に
設けられた冷媒入口及び上記各巻線の上部に設けられた
冷媒出口の少なくとも一方を有することを特徴とする自
冷式静止電磁誘導器
A plurality of plate-shaped coils are stacked vertically with gaps between turns, or a spiral coil is wound vertically with gaps between turns, and each gap is separated by a plurality of independent windings. In a self-cooling stationary electromagnetic induction device used as a part of a refrigerant passage, each of the refrigerant passages has at least one of a refrigerant inlet provided at the bottom of each of the windings and a refrigerant outlet provided at the top of each of the windings. A self-cooled stationary electromagnetic inductor characterized by
JP63200802A 1988-08-10 1988-08-10 Self-cooled stationary electromagnetic induction apparatus Pending JPH0249408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63200802A JPH0249408A (en) 1988-08-10 1988-08-10 Self-cooled stationary electromagnetic induction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63200802A JPH0249408A (en) 1988-08-10 1988-08-10 Self-cooled stationary electromagnetic induction apparatus

Publications (1)

Publication Number Publication Date
JPH0249408A true JPH0249408A (en) 1990-02-19

Family

ID=16430435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63200802A Pending JPH0249408A (en) 1988-08-10 1988-08-10 Self-cooled stationary electromagnetic induction apparatus

Country Status (1)

Country Link
JP (1) JPH0249408A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296829A (en) * 1992-11-24 1994-03-22 Electric Power Research Institute, Inc. Core-form transformer with liquid coolant flow diversion bands
US5444426A (en) * 1993-03-19 1995-08-22 Mitsubishi Denki Kabushiki Kaisha Stationary induction apparatus
JP2019100142A (en) * 2017-12-07 2019-06-24 コクヨ株式会社 Movable partition device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296829A (en) * 1992-11-24 1994-03-22 Electric Power Research Institute, Inc. Core-form transformer with liquid coolant flow diversion bands
WO1994012993A1 (en) * 1992-11-24 1994-06-09 Electric Power Research Institute, Inc. Core-form transformer with liquid coolant flow diversion bands
US5444426A (en) * 1993-03-19 1995-08-22 Mitsubishi Denki Kabushiki Kaisha Stationary induction apparatus
US5448215A (en) * 1993-03-19 1995-09-05 Mitsubishi Denki Kabushiki Kaisha Stationary induction apparatus
US5508672A (en) * 1993-03-19 1996-04-16 Mitsubishi Denki Kabushiki Kaisha Stationary induction apparatus
JP2019100142A (en) * 2017-12-07 2019-06-24 コクヨ株式会社 Movable partition device

Similar Documents

Publication Publication Date Title
US4000482A (en) Transformer with improved natural circulation for cooling disc coils
EP0616341B1 (en) Stationary induction apparatus
US3902146A (en) Transformer with improved liquid cooled disc winding
EP2406798B1 (en) An electric transformer with improved cooling system
WO2008055538A1 (en) Cooling system for a dry-type air-core reactor
US3548354A (en) Transformer having ventilating passages
US3551863A (en) Transformer with heat dissipator
JPH0249408A (en) Self-cooled stationary electromagnetic induction apparatus
US4032873A (en) Flow directing means for air-cooled transformers
US1955313A (en) Ventilating means for reactance coils
US5034716A (en) Radial cooled autotransformer assembly
US4477791A (en) Spacer block pattern for electrical inductive apparatus
WO2019181152A1 (en) Stationary induction apparatus
JP6502423B2 (en) electromagnet
KR20160098627A (en) Transformer having enhacend cooling effect
JP3254914B2 (en) Transformer winding
US2846657A (en) Electrical winding
US2387947A (en) Means for cooling current limiting reactors
JP5717426B2 (en) Static induction machine
CA1056024A (en) Transformer with improved natural circulation for cooling disc coils
JPS61136209A (en) Self-cooled, oil-filled winding of electric equipment
JPH05234776A (en) Gas-insulated transformer
JP2550302Y2 (en) Gas insulated transformer
JPH11126718A (en) Transformer
JPS59155108A (en) Winding for natural cooling induction electric apparatus