JP7255394B2 - Induction winding device - Google Patents

Induction winding device Download PDF

Info

Publication number
JP7255394B2
JP7255394B2 JP2019124219A JP2019124219A JP7255394B2 JP 7255394 B2 JP7255394 B2 JP 7255394B2 JP 2019124219 A JP2019124219 A JP 2019124219A JP 2019124219 A JP2019124219 A JP 2019124219A JP 7255394 B2 JP7255394 B2 JP 7255394B2
Authority
JP
Japan
Prior art keywords
spacer
disk
winding
shaped winding
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019124219A
Other languages
Japanese (ja)
Other versions
JP2021009969A (en
Inventor
琢視 井上
直樹 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019124219A priority Critical patent/JP7255394B2/en
Publication of JP2021009969A publication Critical patent/JP2021009969A/en
Application granted granted Critical
Publication of JP7255394B2 publication Critical patent/JP7255394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transformer Cooling (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

本発明は、内部に冷却流体が流れるようにした誘導電器巻線装置に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction winding device having a cooling fluid flowing therein.

変圧器、リアクトル等の静止誘導電器は、通常、磁束の通路となる鉄心、磁束と鎖交する電流の通路となる巻線、これらを絶縁する絶縁物およびこれらの相互位置と機械的強度を保つための締付装置などによって構成されている。このような静止誘導電器の巻線構造として一般的なものの一つに円板型巻線がある。 Stationary induction electric appliances such as transformers and reactors usually consist of an iron core that serves as a path for magnetic flux, a winding that serves as a path for current that interlinks with magnetic flux, an insulator that insulates them, and their mutual position and mechanical strength. It is composed of a tightening device etc. for One of the common winding structures for such a static induction electric machine is a disk-shaped winding.

特許文献1に示す誘導電器巻線装置では、内側絶縁筒と外側絶縁筒との間に導体を円板状に巻き回した円板型巻線が、軸方向に複数段積み重ねられている。各円板型巻線の間には、複数個の水平スペーサーが放射状に等間隔で配置されることにより、円板型巻線の半径方向に水平ダクトが形成されている。 In the induction electric winding device disclosed in Patent Document 1, disk-shaped windings in which a conductor is wound in a disk shape between an inner insulating cylinder and an outer insulating cylinder are stacked in multiple stages in the axial direction. Horizontal ducts are formed in the radial direction of the disc-shaped windings by arranging a plurality of horizontal spacers radially between the disc-shaped windings at equal intervals.

内側絶縁筒と円板型巻線の間には、内側垂直スペーサーが設けられることにより、内側垂直ダクトが形成されている。外側絶縁筒と円板型巻線の間には、外側垂直スペーサーが設けられることにより外側垂直ダクトが形成さている。 An inner vertical duct is formed by providing an inner vertical spacer between the inner insulating tube and the disk-shaped winding. An outer vertical spacer is provided between the outer insulating tube and the disc-shaped winding to form an outer vertical duct.

前記のような構造を有する誘導電器巻線装置では、下方から冷却用の流体を強制的に流入させる、または自然対流により流入させることにより外側垂直ダクト、内側垂直ダクト、水平ダクト全体に流体を流して円板型巻線を冷却する。 In the induction winding device having the structure described above, the cooling fluid is forcibly introduced from below or is caused to flow by natural convection, thereby allowing the fluid to flow throughout the outer vertical duct, the inner vertical duct, and the horizontal duct. to cool the disc-shaped winding.

特許文献2に示す従来の誘導電器巻線装置では、円板型巻線の間に配置されたスペーサーに溝を設け、溝に冷却流体を流入させて冷却効率を向上する。 In the conventional induction electric winding device disclosed in Patent Document 2, grooves are provided in spacers arranged between disk-shaped windings, and a cooling fluid is allowed to flow into the grooves to improve cooling efficiency.

特開2011-222643号公報JP 2011-222643 A 実開昭50-104915号公報Japanese Utility Model Laid-Open No. 50-104915

特許文献1に示す従来の誘導電器巻線装置では、水平スペーサーが挿入された部位の円板型巻線は直接冷却流体に接触しないため、その部位の冷却効率は悪く、円板型巻線が部分過熱する問題があった。 In the conventional induction electric winding device shown in Patent Document 1, since the disc-shaped winding in the portion where the horizontal spacer is inserted does not directly contact the cooling fluid, the cooling efficiency of that portion is poor, and the disc-shaped winding is There was a problem with partial overheating.

特許文献2に示す従来の誘導電器巻線装置では、スペーサーに溝を形成して冷却効率の向上を狙っているが、冷却流体が溝に流入しにくいため、円板型巻線を十分に冷却することができない虞があった。 In the conventional induction winding device disclosed in Patent Document 2, grooves are formed in the spacer to improve the cooling efficiency. I was afraid I wouldn't be able to do it.

本発明は、上記のような従来技術の問題点を解決するために提案されたものであり、必要な軸方向の強度を保ちながら、円板型巻線の冷却効率を高効率化した誘導電器巻線装置を提供することである。 SUMMARY OF THE INVENTION The present invention has been proposed to solve the problems of the prior art as described above. To provide a winding device.

本発明の誘導電器巻線装置は、
内側絶縁筒とその外側に同軸に配置された外側絶縁筒と、前記内側絶縁筒と前記外側絶縁筒との間に軸方向に複数段積層された円板型巻線と、前記内側絶縁筒と前記円板型巻線の内側との間で前記円板型巻線の周方向に互いに間隔をあけて複数配置され、前記軸方向にのびる内側垂直スペーサーと、前記外側絶縁筒と前記円板型巻線の外側との間で前記円板型巻線の周方向に互いに間隔をあけて複数配置され、前記軸方向にのびる外側垂直スペーサーと、前記軸方向に隣接する前記円板型巻線の間隔を保持し、前記円板型巻線の周方向に互いに間隔をあけて複数配置され、前記内側垂直スペーサーと前記外側垂直スペーサーとに接触するように形成された水平スペーサーと、隣接する前記内側垂直スペーサーの間、隣接する前記外側垂直スペーサーの間、隣接する前記水平スペーサーの間を流れる冷却流体とを備え、前記水平スペーサーは前記内側垂直スペーサーと前記外側垂直スペーサーよりも前記円板型巻線の周方向外側に前記円板型巻線の径方向に前記冷却流体が流れる流路溝を有しており、前記円板型巻線の周方向において、前記水平スペーサーは前記内側垂直スペーサーと前記外側垂直スペーサーが配置された範囲には前記流路溝を有さず、前記流路溝は、前記水平スペーサーの前記円板型巻線と接する面に設けられる、ことを特徴とする。
The induction electric winding device of the present invention is
an inner insulating tube and an outer insulating tube coaxially disposed outside the inner insulating tube; disc-shaped windings axially stacked in a plurality of stages between the inner insulating tube and the outer insulating tube; and the inner insulating tube. A plurality of inner vertical spacers arranged in the circumferential direction of the disc-shaped winding and extending in the axial direction at intervals from the inner side of the disc-shaped winding, the outer insulating cylinder and the disc-shaped winding A plurality of outer vertical spacers arranged in the circumferential direction of the disk-shaped winding and extending in the axial direction at intervals from the outside of the winding, and the disk-shaped winding adjacent in the axial direction. a plurality of horizontal spacers that maintain a gap and are arranged at intervals in the circumferential direction of the disk-shaped winding and formed to contact the inner vertical spacer and the outer vertical spacer; a cooling fluid flowing between vertical spacers, between adjacent said outer vertical spacers, and between adjacent said horizontal spacers, said horizontal spacers being closer to said disk-shaped winding than said inner vertical spacers and said outer vertical spacers. has a channel groove through which the cooling fluid flows in the radial direction of the disk-shaped winding , and in the circumferential direction of the disk-shaped winding, the horizontal spacer is the inner vertical spacer and the The flow channel groove is not provided in the range where the outer vertical spacer is arranged, and the flow channel groove is provided on the surface of the horizontal spacer contacting the disk-shaped winding.

本発明に係る誘導電器巻線装置は、水平スペーサーに内側垂直スペーサーと外側垂直スペーサーよりも円板型巻線の周方向外側に円板型巻線径方向に冷却流体が流れる流路溝を設けることで、強度を保ちながら水平面内の冷却面積を拡大し、円板型巻線の冷却性能を向上させることができる。 In the induction electric winding device according to the present invention, the horizontal spacer is provided with a channel groove through which a cooling fluid flows in the radial direction of the disk-shaped winding outside the inner vertical spacer and the outer vertical spacer in the circumferential direction of the disk-shaped winding. As a result, the cooling area in the horizontal plane can be expanded while maintaining the strength, and the cooling performance of the disk-shaped winding can be improved.

実施の形態1に係る誘導電器巻線装置の全体構成を概略的に表す断面図である。1 is a cross-sectional view schematically showing the overall configuration of an induction electric winding device according to Embodiment 1; FIG. 実施の形態1に係る誘導電器巻線装置の鉄心と巻線部分を示す斜視図である。1 is a perspective view showing an iron core and a winding portion of an induction electric winding device according to Embodiment 1; FIG. 実施の形態1に係る誘導電器巻線装置の巻線とスペーサーとの配置を示す斜視図である。2 is a perspective view showing the arrangement of windings and spacers of the induction electric winding device according to Embodiment 1. FIG. 実施の形態1に係る誘導電器巻線装置の水平スペーサーの斜視図である。4 is a perspective view of a horizontal spacer of the induction electric winding device according to Embodiment 1. FIG. 実施の形態1に係る誘導電器巻線装置の巻線部分の軸に垂直な部分断面図である。2 is a partial cross-sectional view perpendicular to the axis of the winding portion of the induction electric winding device according to Embodiment 1. FIG. 実施の形態1に係る誘導電器巻線装置の冷媒の流れ示す断面図である。4 is a cross-sectional view showing the flow of coolant in the induction electric winding device according to Embodiment 1. FIG. 実施の形態1に係る誘導電器巻線装置の巻線部分の軸に平行な部分断面図である。4 is a partial cross-sectional view parallel to the axis of the winding portion of the induction electric winding device according to Embodiment 1. FIG. 実施の形態2に係る誘導電器巻線装置の水平スペーサーの斜視図である。FIG. 8 is a perspective view of a horizontal spacer of the induction electric winding device according to Embodiment 2; 実施の形態2に係る誘導電器巻線装置の巻線部分の軸に垂直な部分断面図である。FIG. 8 is a partial cross-sectional view perpendicular to the axis of the winding portion of the induction electric winding device according to Embodiment 2; 実施の形態2に係る変形例の誘導電器巻線装置の巻線とスペーサーとの配置を示す斜視図である。FIG. 10 is a perspective view showing the arrangement of windings and spacers of an induction electric winding device of a modification according to Embodiment 2; 実施の形態2に係る変形例の誘導電器巻線装置の巻線部分の軸に平行な部分断面図である。FIG. 11 is a partial cross-sectional view parallel to the axis of the winding portion of the induction electric winding device of the modification according to Embodiment 2; 実施の形態3に係る誘導電器巻線装置の巻線部分の軸に垂直な部分断面図である。FIG. 10 is a partial cross-sectional view perpendicular to the axis of the winding portion of the induction electric winding device according to Embodiment 3; 実施の形態3に係る誘導電器巻線装置の水平スペーサーの斜視図である。FIG. 11 is a perspective view of a horizontal spacer of an induction electric winding device according to Embodiment 3; 実施の形態3に係る誘導電器巻線装置の冷媒の流れ示す断面図である。FIG. 10 is a cross-sectional view showing the flow of coolant in the induction electric winding device according to Embodiment 3;

以下、本発明を実施するための各形態例について、図面を参照して説明する。 Hereinafter, each embodiment for carrying out the present invention will be described with reference to the drawings.

実施の形態1.
図1は実施の形態1の誘導電器巻線装置としての油入自冷式内鉄形変圧器の全体構成を概略的に示す断面図である。図2は、実施の形態1に係る誘導電器巻線装の鉄心と巻線部分を示す斜視図である。図1において、実施の形態1の油入自冷式内鉄形変圧器はタンク12、鉄心13、絶縁筒14、低圧巻線15、高圧巻線16、配管17、放熱器18を有している。図2に示すように低圧巻線15と高圧巻線16とは鉄心13の脚部を囲むように鉄心13に取り付けられている。鉄心13および低圧巻線15、高圧巻線16は、絶縁兼冷却用の流体媒体である絶縁油もしくはSF6ガスと共にタンク内に収容され、冷却流体19に冷却される。またタンクには放熱器が連結されており、変圧器内で発生した熱は冷却媒体の循環によって放熱器に運ばれ、そこで外気に放出される。
Embodiment 1.
FIG. 1 is a cross-sectional view schematically showing the overall configuration of an oil-filled self-cooling core transformer as an induction winding device according to Embodiment 1. In FIG. FIG. 2 is a perspective view showing a core and a winding portion of the induction electric winding device according to Embodiment 1. FIG. In FIG. 1, the oil-filled self-cooling core transformer of Embodiment 1 has a tank 12, an iron core 13, an insulating tube 14, a low-voltage winding 15, a high-voltage winding 16, a pipe 17, and a radiator 18. there is As shown in FIG. 2, the low-voltage winding 15 and the high-voltage winding 16 are attached to the iron core 13 so as to surround the legs of the iron core 13 . The iron core 13 , the low-voltage winding 15 and the high-voltage winding 16 are housed in a tank together with insulating oil or SF6 gas, which is a fluid medium for insulation and cooling, and cooled by a cooling fluid 19 . A radiator is connected to the tank, and the heat generated in the transformer is carried to the radiator by circulation of the cooling medium, where it is released to the outside air.

油入自冷式内鉄形変圧器では、図5に示すように、円板型巻線1の内側と内側絶縁筒2とで内側垂直ダクト8が形成される。円板型巻線1の外側と外側絶縁筒3と外側垂直ダクト9が形成される。 In the oil-filled self-cooling core transformer, an inner vertical duct 8 is formed by the inner side of the disk-shaped winding 1 and the inner insulating cylinder 2, as shown in FIG. An outer side of the disk-shaped winding 1, an outer insulating tube 3 and an outer vertical duct 9 are formed.

円板型巻線1は円板の内側に穴が開いた円環形状である。円板型巻線1は低圧巻線15、高圧巻線16などの導体を円板状に巻き回して円環形状とされている。円環形状の外側の円の径は外側絶縁筒3の径よりも小さく、円環形状の内側の円、つまり穴の径は内側絶縁筒2の径よりも大きい。誘導電器巻線装置は内側絶縁筒2と外側絶縁筒3との間に複数の円板型巻線1が軸方向に間隔をあけて積み重ねられて、図2に示されるような円柱状の構造を有している。 The disk-shaped winding 1 has an annular shape with a hole inside the disk. The disc-shaped winding 1 is formed in an annular shape by winding conductors such as a low-voltage winding 15 and a high-voltage winding 16 in a disc shape. The diameter of the outer circle of the annular shape is smaller than the diameter of the outer insulating cylinder 3 , and the diameter of the inner circle of the annular shape, that is, the diameter of the hole is larger than the diameter of the inner insulating cylinder 2 . The induction electric winding device has a columnar structure as shown in FIG. have.

内側絶縁筒2と円板型巻線1の内側との間には内側垂直スペーサー6が周方向に間隔をあけて複数配置され、内側垂直ダクト8の間隔を保持している。外側絶縁筒3と円板型巻線1の外側との間には外側垂直スペーサー7が周方向に間隔をあけて複数配置され、外側垂直ダクト9の間隔を保持している。内側垂直スペーサー6、外側垂直スペーサー7は絶縁性の材料で作成される。なお、本発明において、ダクトとはスペーサーの間隙によって形成された冷却流体19が流れる流路を意味し、冷却流体が流れる流路をダクトと称して説明する。 A plurality of inner vertical spacers 6 are arranged at intervals in the circumferential direction between the inner insulating tube 2 and the inner side of the disk-shaped winding 1 to maintain the intervals of the inner vertical ducts 8 . A plurality of outer vertical spacers 7 are arranged at intervals in the circumferential direction between the outer insulating cylinder 3 and the outer side of the disk-shaped winding 1 to maintain the outer vertical duct 9 at intervals. The inner vertical spacer 6 and the outer vertical spacer 7 are made of insulating material. In the present invention, a duct means a flow path formed by a gap between spacers through which the cooling fluid 19 flows, and the flow path through which the cooling fluid flows is referred to as a duct.

図3は、実施の形態1に係る誘導電器巻線装置の円板型巻線1、水平スペーサー4、内側垂直スペーサー6、外側垂直スペーサー7の一部を切り取った斜視図であり、内側方向からみたときの斜視図である。また、図3は円板型巻線1の内側、外側を直線的に描画し図面を単純化してあり、図の左右方向が円板型巻線1の周方向である。図4は実施の形態1に係る誘導電器巻線装置の水平スペーサー4の斜視図である。水平スペーサー4は軸方向に積層される円板型巻線1の間隔を保つものであり、円板型巻線1ごとに周方向に間隔をあけて複数個配置される。このように円板型巻線1には冷却流体19が円板型巻線1の円板面に沿って流れる流路が形成される。以下では軸方向に積み重ねられて隣接する円板型巻線1の間隙に形成された流路を水平ダクト10と称して説明する。水平ダクト10は内側垂直ダクト8と外側垂直ダクト9との間をつなぐように形成されている。水平スペーサー4は軸方向に隣接する円板型巻線1の間で、水平ダクト10の軸方向間隔を保持する。 FIG. 3 is a perspective view of the disk-shaped winding 1, the horizontal spacer 4, the inner vertical spacer 6, and the outer vertical spacer 7 of the induction electric winding device according to Embodiment 1, and is viewed from the inside. It is a perspective view when viewed. 3, the inside and outside of the disk-shaped winding 1 are linearly drawn to simplify the drawing, and the horizontal direction in the drawing is the circumferential direction of the disk-shaped winding 1. As shown in FIG. FIG. 4 is a perspective view of the horizontal spacer 4 of the induction electric winding device according to Embodiment 1. FIG. A plurality of horizontal spacers 4 are arranged to keep intervals between the disc-shaped windings 1 stacked in the axial direction, and are spaced apart in the circumferential direction for each disc-shaped winding 1 . In this manner, the disk-shaped winding 1 is formed with a flow path through which the cooling fluid 19 flows along the disk surface of the disk-shaped winding 1 . In the following description, the flow path formed between adjacent disk-shaped windings 1 stacked in the axial direction will be referred to as a horizontal duct 10 . A horizontal duct 10 is formed to connect between the inner vertical duct 8 and the outer vertical duct 9 . Horizontal spacers 4 maintain axial spacing of horizontal ducts 10 between axially adjacent disk-shaped windings 1 .

水平スペーサー4は円板型巻線1の内側から外側まで径方向にのびた板状の部材である。水平スペーサー4の周方向の幅は内側垂直スペーサー6の周方向の幅よりも大きい。積層された水平スペーサー4の内側の一部が内側垂直スペーサー6と接するようにされる。すなわち、積層された複数の水平スペーサー4は軸方向に重なり合うような位置に配置される。水平スペーサー4は内側垂直スペーサー6、外側垂直スペーサー7と同様に絶縁性の材料で作成され、たとえばプレスボード等の絶縁部材を使用するとよい。なお、ある物の周方向の幅とは、内側絶縁筒2、外側絶縁筒3の中心とする任意の半径の仮想的な円を考えた場合、そのような円とある物とが重なってできる円弧のうち、最も長い円弧の長さである。 The horizontal spacer 4 is a plate-shaped member radially extending from the inside to the outside of the disk-shaped winding 1 . The circumferential width of the horizontal spacers 4 is greater than the circumferential width of the inner vertical spacers 6 . A portion of the inner side of the stacked horizontal spacers 4 is brought into contact with the inner vertical spacers 6 . That is, the plurality of stacked horizontal spacers 4 are arranged so as to overlap each other in the axial direction. The horizontal spacers 4 are made of an insulating material like the inner vertical spacers 6 and the outer vertical spacers 7, and it is preferable to use insulating members such as pressboards. Note that the width of a certain object in the circumferential direction is defined as a virtual circle with an arbitrary radius around the centers of the inner insulating tube 2 and the outer insulating tube 3. When such a circle overlaps with the certain object, This is the length of the longest circular arc.

水平スペーサー4は、円板型巻線1と接する面に円板型巻線1の径方向に冷却流体19が流れる流路溝5を有している。この流路溝5は、内側垂直スペーサー6と外側垂直スペーサー7よりも円板型巻線の周方向外側に形成される。また、流路溝5は水平スペーサー4の周方向の端よりも内側にあり、すなわち、流路溝5よりも周方向外側に円板型巻線1の間隔を保持する部位を有している。 The horizontal spacer 4 has a channel groove 5 through which the cooling fluid 19 flows in the radial direction of the disk-shaped winding 1 on the surface in contact with the disk-shaped winding 1 . The channel groove 5 is formed circumferentially outside the disk-shaped winding relative to the inner vertical spacer 6 and the outer vertical spacer 7 . In addition, the channel groove 5 is located inside the circumferential end of the horizontal spacer 4, that is, has a portion that maintains the spacing of the disk-shaped windings 1 outside the channel groove 5 in the circumferential direction. .

図5は実施の形態1に係る誘導電器巻線装置の巻線部分の軸に垂直な部分断面図であり、円板型巻線1の上に水平スペーサー4が周方向に間隔を開けて配置されていることを示す。この図では水平スペーサー4が円板型巻線1の1/4周に等間隔で3個、つまり30度間隔で配置された例を示している。円板型巻線1の上の周方向に隣り合う水平スペーサー4の間は水平ダクト10である。周方向に隣り合う水平スペーサー4の間隔は水平スペーサー4の周方向の幅よりも大きくなるようにされて水平ダクト10の断面積が大きくなるようにされている。なお、水平スペーサー4の配置される数、間隔は任意に変更可能である。 FIG. 5 is a partial cross-sectional view perpendicular to the axis of the winding portion of the induction electric winding device according to Embodiment 1, in which horizontal spacers 4 are arranged on the disk-shaped winding 1 at intervals in the circumferential direction. Indicates that This figure shows an example in which three horizontal spacers 4 are arranged at regular intervals around the circumference of the disk-shaped winding 1, that is, at intervals of 30 degrees. A horizontal duct 10 is provided between the circumferentially adjacent horizontal spacers 4 on the disk-shaped winding 1 . The interval between the horizontal spacers 4 adjacent in the circumferential direction is made larger than the width of the horizontal spacers 4 in the circumferential direction so that the cross-sectional area of the horizontal duct 10 is increased. The number and spacing of the horizontal spacers 4 can be changed arbitrarily.

水平スペーサー4の内側と内側垂直スペーサー6、水平スペーサー4の外側と外側垂直スペーサー7とは接触するようにされている。すなわち、内側垂直スペーサー6、水平スペーサー4、外側垂直スペーサー7はそれぞれ周方向に間隔をあけて配置されるが、それらは内側絶縁筒2、外側絶縁筒3の中心軸の周りの回転角において重なり合う位置に設置される。 The inner side of the horizontal spacer 4 and the inner vertical spacer 6, and the outer side of the horizontal spacer 4 and the outer vertical spacer 7 are made to contact each other. That is, the inner vertical spacer 6, the horizontal spacer 4, and the outer vertical spacer 7 are arranged at intervals in the circumferential direction, but they overlap at the rotation angle around the central axis of the inner insulating tube 2 and the outer insulating tube 3. placed in position.

水平スペーサー4に形成された流路溝5は内側が内側垂直ダクト8、外側が外側垂直ダクト9に向けて開口し、それらの間を径方向に接続する流路となっている。本実施の形態1の水平スペーサー4では内側垂直スペーサー6、外側垂直スペーサー7が配置された範囲は溝が形成されず中実であり、円板型巻線1の間隔を保持する主な部位となっている。 The channel groove 5 formed in the horizontal spacer 4 opens toward the inner vertical duct 8 on the inner side and toward the outer vertical duct 9 on the outer side, forming a channel connecting them in the radial direction. In the horizontal spacer 4 of Embodiment 1, the area where the inner vertical spacer 6 and the outer vertical spacer 7 are arranged is solid without grooves, and is the main part for maintaining the interval between the disk-shaped windings 1. It's becoming

図6は実施の形態1に係る誘導電器巻線装置の断面図であり、図5の径方向に沿ったA-A面で切った断面における冷媒の流れを示す。また、図7は実施の形態1に係る誘導電器巻線装置の断面図であり、図5の周方向に沿ったB-B面で切った断面である。内側垂直ダクト8と外側垂直ダクト9とには、軸方向にずらして複数枚の円板型巻線1毎に閉塞板11を交互に設け、内側垂直ダクト8と外側垂直ダクト9の流れを閉塞している。閉塞板11は円環状の板または円環を構成するための複数の扇状の板などからなり、内側が内側絶縁筒2と接するか、または外側が外側絶縁筒3と接して垂直ダクトの一方を閉塞し、その径方向の反対側は他方側の垂直ダクトの手前までのびるが閉塞しないようにされている。図7のように閉塞板11は円板型巻線1と同様に水平スペーサー4によって軸方向に挟まれて保持されるようにするとよい。 FIG. 6 is a cross-sectional view of the induction electric winding device according to Embodiment 1, and shows the flow of the coolant in a cross-section cut along plane AA along the radial direction of FIG. FIG. 7 is a cross-sectional view of the induction electric winding device according to Embodiment 1, and is a cross-section taken along the plane BB along the circumferential direction of FIG. In the inner vertical duct 8 and the outer vertical duct 9, blocking plates 11 are alternately provided for each of the plurality of disk-shaped windings 1 while being shifted in the axial direction, thereby blocking the flow of the inner vertical duct 8 and the outer vertical duct 9. are doing. The blocking plate 11 is made up of an annular plate or a plurality of fan-shaped plates forming an annular ring. It is closed, and its radially opposite side extends to the front of the vertical duct on the other side, but is not closed. As shown in FIG. 7, the closing plate 11 is preferably axially sandwiched and held by the horizontal spacers 4 in the same manner as the disk-shaped winding 1 .

流路溝5の高さ寸法は、水平スペーサー4の厚さの1/2未満で調整してよい。流路溝5の高さ寸法とは、流路溝5の円板型巻線1軸方向の高さ寸法のことを指す。また、流路溝5の高さ方向の位置は水平スペーサー4の下面のみ、上面のみ、下面と上面の両方のいずれでも良い。図7に示すように、閉塞板11に接する水平スペーサー4は円板型巻線1と接する側に流路溝5を形成するとよい。 The height dimension of the channel groove 5 may be adjusted to be less than half the thickness of the horizontal spacer 4 . The height dimension of the flow channel 5 refers to the height dimension of the flow channel 5 in the one-axis direction of the disk-shaped winding. Moreover, the position of the flow channel 5 in the height direction may be on the lower surface of the horizontal spacer 4 only, on the upper surface only, or on both the lower surface and the upper surface. As shown in FIG. 7, the horizontal spacer 4 in contact with the closing plate 11 is preferably formed with a channel groove 5 on the side in contact with the disk-shaped winding 1 .

また、図4では流路溝5の断面形状を矩形とした例を示したが、冷却流体19が流入可能であれば、例えば、断面形状が半円などの溝としてもよく、特に限定されるものではない。 4 shows an example in which the cross-sectional shape of the flow channel groove 5 is rectangular, but as long as the cooling fluid 19 can flow in, the groove may have a cross-sectional shape such as a semicircle, and is not particularly limited. not a thing

必須ではないが、上記のように円板型巻線1の所々に閉塞板11を設けると、冷却流体19の流れによって冷却が促進される。図6では、冷却流体19の流れを矢印で示すように、外側垂直ダクト9を上昇する冷却流体19は閉塞板11によって堰き止められ、水平ダクト10と流路溝5とを径方向内向きに流れて、内側垂直ダクト8に流入する。更に、内側垂直ダクト8を流れる冷却流体19は、さらに上にある閉塞板11によって堰き止められ、水平ダクト10と流路溝5と径方向外向きに流れ、外側垂直ダクト9に流入する。このように軸方向上方に向ってジグザグの流れを生じて、水平ダクト10と流路溝5の流れが促進されて、効率的に円板型巻線1を冷却出来る。ただし、この冷媒流れは一例であり、これに限定されるものではない。対流に限らずポンプなどの動力により、軸方向のある高さにある水平ダクト10の内側にある内側垂直ダクト8と外側にある外側垂直ダクト9との間に圧力差を生じさせるとよい。これにより、内側垂直ダクト8と外側垂直ダクト9との一方が上流、他方が下流となり、水平ダクト10および流路溝5に径方向に流れが促進される。 Although it is not essential, the cooling is promoted by the flow of the cooling fluid 19 when the blocking plates 11 are provided at various places on the disk-shaped winding 1 as described above. In FIG. 6, as the flow of the cooling fluid 19 is indicated by arrows, the cooling fluid 19 rising through the outer vertical duct 9 is blocked by the blocking plate 11, causing the horizontal duct 10 and the flow channel groove 5 to move radially inward. flows into the inner vertical duct 8. Furthermore, the cooling fluid 19 flowing through the inner vertical duct 8 is blocked by the upper blocking plate 11 , flows radially outward through the horizontal duct 10 and the flow channel 5 , and flows into the outer vertical duct 9 . In this way, a zigzag flow is generated upward in the axial direction, and the flow in the horizontal duct 10 and the flow channel 5 is promoted, so that the disk-shaped winding 1 can be efficiently cooled. However, this refrigerant flow is an example and is not limited to this. It is preferable to generate a pressure difference between the inner vertical duct 8 inside the horizontal duct 10 at a certain height in the axial direction and the outer vertical duct 9 outside the horizontal duct 10 not only by convection but also by the power of a pump or the like. As a result, one of the inner vertical duct 8 and the outer vertical duct 9 becomes upstream and the other becomes downstream, thereby promoting the flow in the horizontal duct 10 and the flow channel 5 in the radial direction.

上記のような構造を有する誘導電器巻線装置は、 冷却流体19は内側垂直ダクト8と外側垂直ダクト9と水平ダクト10にて円板型巻線1から熱を奪い密度が低下する。一方、放熱器18内では冷却流体19は放熱し温度が低下するため、密度が上昇する。そのため、タンク12内の冷却流体19と放熱器18内の冷却流体19の密度差を駆動力とする冷却流体19の循環流が自然発生する。冷却流体19はこの循環流により、円板型巻線1から発生する熱を放熱器18に輸送することが出来る。なお、冷却流体19をポンプなどで強制的に循環してもよい。 The cooling fluid 19 takes heat from the disk-shaped winding 1 through the inner vertical duct 8, the outer vertical duct 9 and the horizontal duct 10, and the density is lowered. On the other hand, in the radiator 18, the cooling fluid 19 dissipates heat and the temperature drops, so the density increases. Therefore, a circulating flow of the cooling fluid 19 driven by the density difference between the cooling fluid 19 in the tank 12 and the cooling fluid 19 in the radiator 18 is naturally generated. The cooling fluid 19 can transfer the heat generated from the disc-shaped winding 1 to the radiator 18 by this circulation flow. Note that the cooling fluid 19 may be forcibly circulated by a pump or the like.

実施の形態1において、水平スペーサー4が内側垂直スペーサー6と外側垂直スペーサー7よりも円板型巻線の周方向外側に円板型巻線1の径方向に 冷却流体19が流れる流路溝5を有することで、強度を保ちながら水平面内の冷却面積の拡大できる。すなわち、強度を保ちながら円板型巻線1の冷却性能を向上させることができる。 In Embodiment 1, the horizontal spacers 4 are arranged radially outward of the disk-shaped windings 1 relative to the inner vertical spacers 6 and the outer vertical spacers 7, respectively. By having, the cooling area in the horizontal plane can be expanded while maintaining the strength. That is, it is possible to improve the cooling performance of the disc-shaped winding 1 while maintaining the strength.

また、流路溝5よりも周方向の最外部に溝がなく円板型巻線1の間隔を保持する部分が有るため、間隔を保持する強度が特に優れている。 In addition, since there is no groove at the outermost part in the circumferential direction than the channel groove 5 and there is a portion for maintaining the interval between the disc-shaped windings 1, the strength for maintaining the interval is particularly excellent.

以上のように、本実施の形態1の構成の誘導電器巻線装置は冷却効率の向上により従来よりも高出力での運転が可能となる。その結果、従来同等の出力での運転に必要な巻線量を削減出来るため、製造コストを削減することが出来る。 As described above, the induction electric winding apparatus having the configuration of the first embodiment can be operated at a higher output than before due to the improved cooling efficiency. As a result, it is possible to reduce the number of windings required for operation at the same output as in the conventional case, thereby reducing the manufacturing cost.

実施の形態2.
以下、実施の形態2に係る誘導電器巻線装置について説明する。実施の形態2に係る誘導電器は、水平スペーサー4、流路溝5、内側垂直スペーサー6、外側垂直スペーサー7の構成のみが実施の形態1にと異なるため、実施の形態1に係る誘導電器巻線装置と同様である構成については説明を繰り返さない。
Embodiment 2.
An induction electric winding device according to Embodiment 2 will be described below. Since the induction electric appliance according to the second embodiment differs from the first embodiment only in the configuration of the horizontal spacer 4, the flow channel 5, the inner vertical spacer 6, and the outer vertical spacer 7, the induction electric appliance winding according to the first embodiment The description of the configuration that is similar to the line device will not be repeated.

図8は実施の形態2に係る誘導電器巻線装置の水平スペーサー4の斜視図である。実施の形態2の水平スペーサー4の径方向の長さは円板型巻線1の径方向の長さ、つまり、円板型巻線1の内側の円と外側の円の半径の差よりも大きいものとされる。水平スペーサー4の径方向端部は円板型巻線1の内側と外側に円板型巻線1から径方向に突き出している。水平スペーサー4の径方向両端には内側垂直ダクトと外側垂直ダクトを部分的に遮るように径方向に突き出している突き出し部20を有している。そして、この径方向端部に内側垂直スペーサー6と外側垂直スペーサー7が嵌め込まれる切欠きが設けられている。嵌合部となる切欠きは最も径方向に突き出した突き出し部20で挟まれるように形成されている。内側垂直スペーサー6と外側垂直スペーサー7はこの切欠きに嵌め合うよう配置され、水平スペーサー4と内側垂直スペーサー6と外側垂直スペーサー7との位置が固定されている。図8では水平スペーサー4の切欠きの形状および内側垂直スペーサー6と外側垂直スペーサー7の断面形状は本実施の形態では矩形および台形の例を示しているが、内側垂直スペーサー6と外側垂直スペーサー7と嵌め合い、位置関係が拘束されるのであれば、特に限定されるものではない。 FIG. 8 is a perspective view of the horizontal spacer 4 of the induction electric winding device according to the second embodiment. The radial length of the horizontal spacer 4 in the second embodiment is greater than the radial length of the disk-shaped winding 1, that is, the difference between the radii of the inner and outer circles of the disk-shaped winding 1. considered to be large. The radial ends of the horizontal spacers 4 protrude radially inside and outside the disc-shaped winding 1 from the disc-shaped winding 1 . The horizontal spacer 4 has radially opposite ends 20 which radially protrude so as to partially block the inner vertical duct and the outer vertical duct. Notches into which the inner vertical spacers 6 and the outer vertical spacers 7 are fitted are provided at the radial ends. The notch that serves as the fitting portion is formed so as to be sandwiched between the protruding portions 20 protruding most radially. The inner vertical spacer 6 and the outer vertical spacer 7 are arranged so as to fit into this notch, and the positions of the horizontal spacer 4, the inner vertical spacer 6 and the outer vertical spacer 7 are fixed. In FIG. 8, the shape of the notch of the horizontal spacer 4 and the cross-sectional shape of the inner vertical spacer 6 and the outer vertical spacer 7 are rectangular and trapezoidal in this embodiment. It is not particularly limited as long as it fits with and the positional relationship is constrained.

水平スペーサー4の突き出し部20であって、内側垂直スペーサー6と外側垂直スペーサー7よりも円板型巻線周方向外側となる位置に、径方向に冷却流体19が流れる流路溝5が形成されている。すなわち、流路溝5が突き出し部20に重なるように、つまり流路溝5の内側、外側の端部が突き出し部20にあるように流路溝5が形成されている。流路溝5の円板型巻線1によっておおわれる部位は閉じられるが、流路溝5の端部は円板型巻線1で覆われないため、 冷却流体19が流入または流出する開口となる。そして、流路溝5が円板型巻線1から径方向に突出するため、流路溝5の端部は径方向だけでなく、軸方向にも垂直ダクトに向けて開口する。水平スペーサー4は内側絶縁筒2、外側絶縁筒3に一部が接するようにしてもよいが、流路溝5が形成される位置では内側絶縁筒2、外側絶縁筒3と隙間を有するようにすると好ましい。流路溝5の端部が垂直ダクトに軸方向に開口しているため、突き出し部20の内側垂直ダクト8と外側垂直ダクト9への突き出し寸法は特に限定せず、例えば、外側垂直ダクト9を径方向に閉塞してもよい。なお、内側垂直ダクトと外側垂直ダクトとをまとめて垂直ダクトという。 A flow channel 5 through which a cooling fluid 19 flows radially is formed at a protruding portion 20 of the horizontal spacer 4 and at a position outside the inner vertical spacer 6 and the outer vertical spacer 7 in the circumferential direction of the disk-shaped winding. ing. That is, the flow channel 5 is formed so that the flow channel 5 overlaps the protruding portion 20 , that is, the inner and outer ends of the flow channel 5 are located on the protruding portion 20 . The portion of the channel groove 5 covered by the disk-shaped winding 1 is closed, but the end of the channel groove 5 is not covered with the disk-shaped winding 1, so it serves as an opening through which the cooling fluid 19 flows in or out. Become. Since the channel groove 5 protrudes radially from the disk-shaped winding 1, the end of the channel groove 5 opens toward the vertical duct not only in the radial direction but also in the axial direction. The horizontal spacer 4 may be partially in contact with the inner insulating tube 2 and the outer insulating tube 3, but should have a gap between the inner insulating tube 2 and the outer insulating tube 3 at the position where the channel groove 5 is formed. It is preferable to do so. Since the end of the flow channel 5 is axially open to the vertical duct, the projection dimension of the projection 20 to the inner vertical duct 8 and the outer vertical duct 9 is not particularly limited. It may be closed radially. The inner vertical duct and the outer vertical duct are collectively called the vertical duct.

図9は実施の形態2に係る誘導電器巻線装置の巻線部分の軸に垂直な部分断面図であり、実施の形態1の図5と同様の部分の断面図である。図9のように水平スペーサー4、流路溝5の周方向の幅を広くしてもよい。たとえば、流路溝5の周方向の幅の合計が径方向に溝の無い中実部の幅よりも大きくなるようにしてもよい。軸方向の間隔を保持するための中実部の面積を一定の広さがあればよい。水平スペーサー4の周方向の最外の部位が広がるため軸方向の力を受ける位置が広く分散し強度が増す。円板型巻線1上に放射状に配置する水平スペーサー4の枚数を減らすことも可能となる。また、水平スペーサー4は円板型巻線1の軸方向の厚みを増大させ、流路溝5の高さ寸法を拡大してもよい。 FIG. 9 is a partial cross-sectional view perpendicular to the axis of the winding portion of the induction electric winding device according to Embodiment 2, and is a cross-sectional view of the same portion as FIG. 5 of Embodiment 1. FIG. As shown in FIG. 9, the width of the horizontal spacer 4 and the channel groove 5 in the circumferential direction may be widened. For example, the total width of the flow channel grooves 5 in the circumferential direction may be larger than the width of the solid portion having no grooves in the radial direction. It is sufficient that the area of the solid portion for maintaining the axial distance is a certain width. Since the outermost portion of the horizontal spacer 4 in the circumferential direction is widened, the positions receiving the force in the axial direction are widely distributed, and the strength is increased. It is also possible to reduce the number of horizontal spacers 4 radially arranged on the disk-shaped winding 1 . Further, the horizontal spacer 4 may increase the thickness of the disk-shaped winding 1 in the axial direction to increase the height dimension of the channel groove 5 .

以上のように水平スペーサーは円板型巻線よりも径方向内側と径方向外側とに突き出し部20を有し、その突き出し部20の内側垂直スペーサー6と外側垂直スペーサー7よりも円板型巻線1の周方向の外側に流路溝5を有している。内側垂直ダクト8および外側垂直ダクト9を上昇した冷却流体19は、例えば、一部がそのまま外側垂直ダクト9を上昇するが、残りの冷却流体19は流路溝5と水平ダクト10を外周側から内周側へ流れて内側垂直ダクト8に合流し、再び上方へ流れる。上記のような冷却流体19の流れにおいて、突き出し部20が内側垂直ダクト8および外側垂直ダクト9内の冷却流体19の上方への流れを阻害し、流路溝5を流れる冷却流体19の流量が増加させることができる。流路溝5への流入を促進させることで、円板型巻線1を冷却する冷却面積の拡大となる。よって、突き出し部を設けることで、円板型巻線1を効率よく冷却することが可能となる。 As described above, the horizontal spacer has protruding portions 20 radially inward and outward from the disk-shaped winding, and the protruding portion 20 has a disc-shaped winding from the inner vertical spacer 6 and the outer vertical spacer 7 . A flow channel 5 is provided on the outer side of the wire 1 in the circumferential direction. A part of the cooling fluid 19 that has ascended the inner vertical duct 8 and the outer vertical duct 9, for example, ascends the outer vertical duct 9 as it is. It flows to the inner peripheral side, joins the inner vertical duct 8, and flows upward again. In the flow of the cooling fluid 19 as described above, the protrusion 20 obstructs the upward flow of the cooling fluid 19 in the inner vertical duct 8 and the outer vertical duct 9, and the flow rate of the cooling fluid 19 flowing through the flow channel groove 5 is reduced. can be increased. By promoting the inflow into the flow channel groove 5, the cooling area for cooling the disk-shaped winding 1 is enlarged. Therefore, by providing the projecting portion, it becomes possible to cool the disk-shaped winding 1 efficiently.

また、流路溝5の端部が突き出し部20にあり、突き出し部20が内側垂直ダクト8または外側垂直ダクト9に突き出されているため、流路溝5は内側垂直ダクト8または外側垂直ダクト9の軸方向に向けて開口する部位を有している。そのため、内側垂直ダクト8または外側垂直ダクト9を垂直方向に流れる冷却流体19が流路溝5への流入または流出することが容易となる。その結果、本実施の形態2の誘導電器巻線装置では流路溝5に面する円板型巻線1の冷却が向上する。 In addition, since the end of the flow channel 5 is located at the protruding portion 20 and the protruding portion 20 protrudes into the inner vertical duct 8 or the outer vertical duct 9, the flow channel 5 is located at the inner vertical duct 8 or the outer vertical duct 9. has a portion that opens in the axial direction of the Therefore, the cooling fluid 19 vertically flowing through the inner vertical duct 8 or the outer vertical duct 9 can easily flow into or out of the channel groove 5 . As a result, the cooling of the disk-shaped winding 1 facing the flow channel 5 is improved in the induction winding device of the second embodiment.

さらに、内側垂直スペーサー6と外側垂直スペーサー7とに嵌め合う構造としたことにより、強度を高めることができる。 Furthermore, the structure in which the inner vertical spacer 6 and the outer vertical spacer 7 are fitted together can increase the strength.

次に、本実施の形態2の変形例について述べる。図10は実施の形態2に係る変形例の誘導電器巻線装置の巻線とスペーサーとの配置を示す斜視図であり、実施の形態1の図3と同様の部分の断面図である。図11は実施の形態2に係る変形例の誘導電器巻線装置の巻線部分の軸に平行な部分断面図であり、実施の形態1の図7と同様の部分の断面図である。この変形例では、図11に示すように、流路溝5の周方向幅を水平スペーサー4の高さ位置によって変化させている。円板型巻線1の軸方向に高い位置にある水平スペーサー4ほど流路溝5の周方向の幅を広くすると望ましい。円板型巻線1を冷却した 冷却流体19は対流によって垂直ダクトを上昇するため、上部に流れる冷却流体19ほど温度が高くなり、上部に位置する円板型巻線1の温度が高くなりやすくなるおそれがある。この変形例では軸方向上部に位置する流路溝5ほど円周方向の幅を広く設けているため、軸方向上部での円板型巻線1の冷却効率が促進される。円板型巻線1の冷却ブロック内の軸方向温度分布が均一化されることにより、巻線最高温度を低減することが出来る。
Next, a modified example of the second embodiment will be described. FIG. 10 is a perspective view showing the arrangement of windings and spacers of a modified induction winding device according to Embodiment 2, and is a cross-sectional view of the same portion as FIG. 3 of Embodiment 1. FIG. FIG. 11 is a partial cross-sectional view parallel to the axis of the winding portion of the induction winding device of the modification according to the second embodiment, and is a cross-sectional view of the same portion as FIG. 7 of the first embodiment. In this modified example, as shown in FIG. 11, the circumferential width of the channel groove 5 is changed according to the height position of the horizontal spacer 4. As shown in FIG. It is desirable to widen the width of the flow channel groove 5 in the circumferential direction as the horizontal spacer 4 is positioned higher in the axial direction of the disk-shaped winding 1 . Since the cooling fluid 19 that has cooled the disk-shaped winding 1 rises in the vertical duct due to convection, the temperature of the cooling fluid 19 flowing in the upper part becomes higher, and the temperature of the disk-shaped winding 1 located at the upper part tends to become higher. may become In this modified example, the circumferential width of the flow channel groove 5 located at the upper part in the axial direction is increased, so that the cooling efficiency of the disk-shaped winding 1 at the upper part in the axial direction is promoted. By making the temperature distribution in the cooling block of the disk-shaped winding 1 uniform in the axial direction, the maximum temperature of the winding can be reduced.

流路溝5の円周方向の幅を軸方向上部ほど広くしたことにより、構造物による荷重が大きくなる軸方向下部では水平スペーサー4の機械的強度は維持できる。構造物による荷重が小さくなる軸方向上部では円板型巻線1の冷却効率を向上し、かつ、水平スペーサー4に使用する材料を削減することが出来る。また、軸方向にある複数の水平スペーサー4は流路溝5の周方向の外側に軸方向の間隔を支える部位が重なり合う位置にあるため、強度を高めることができる。 By widening the width of the channel groove 5 in the circumferential direction toward the upper portion in the axial direction, the mechanical strength of the horizontal spacer 4 can be maintained at the lower portion in the axial direction where the load from the structure increases. The cooling efficiency of the disk-shaped winding 1 can be improved and the material used for the horizontal spacer 4 can be reduced in the upper axial direction where the load due to the structure is small. In addition, since the plurality of horizontal spacers 4 in the axial direction are located at positions where the portions supporting the axial spacing are overlapped on the outer side of the channel groove 5 in the circumferential direction, the strength can be increased.

さらに、この変形例の誘導電器巻線装置では内側垂直スペーサー6と外側垂直スペーサー7の周方向の幅を軸方向上部になるに従って段階的に狭くしている。突き出し部20の周方向幅を広くした場合に、内側垂直スペーサー6と外側垂直スペーサー7とが水平スペーサー4の切欠き部に収まるよう内側垂直スペーサー6と外側垂直スペーサー7との周方向幅を狭くする。このように上部の切欠き部の幅は狭くなるが、水平スペーサー4の周方向の幅は軸方向に変わらないようにしてあり、流路溝5の外側にある軸方向の間隔を保つ部位は軸方向に重なるようにされている。内側垂直スペーサー6と外側垂直スペーサー7の幅を細くした上部では突き出し部20の幅を広くして流路溝5の幅を広くしたり、流路溝5の開口部を大きくしたりできるため、冷却効率が促進することができる。 Furthermore, in the induction winding device of this modified example, the circumferential widths of the inner vertical spacer 6 and the outer vertical spacer 7 are gradually narrowed toward the top in the axial direction. The circumferential width of the inner vertical spacer 6 and the outer vertical spacer 7 is narrowed so that the inner vertical spacer 6 and the outer vertical spacer 7 fit in the notch of the horizontal spacer 4 when the circumferential width of the projecting portion 20 is widened. do. Although the width of the upper notch portion is thus narrowed, the width of the horizontal spacer 4 in the circumferential direction is kept unchanged in the axial direction. They are arranged to overlap in the axial direction. At the upper part where the widths of the inner vertical spacer 6 and the outer vertical spacer 7 are narrowed, the width of the protruding part 20 can be widened to widen the width of the flow channel 5 or enlarge the opening of the flow channel 5. Cooling efficiency can be promoted.

なお、本変形例では内側垂直スペーサー6と外側垂直スペーサー7の幅を軸方向で変化させたが、これらは一定としたままで、流路溝5の幅のみを変化させるようにしてもよい。 Although the widths of the inner vertical spacers 6 and the outer vertical spacers 7 are changed in the axial direction in this modified example, only the width of the channel groove 5 may be changed while keeping them constant.

実施の形態3.
以下、実施の形態3に係る誘導電器巻線装置について説明する。実施の形態3に係る誘導電器は、水平スペーサー4と流路溝5の構成のみが実施の形態1と異なるため、実施の形態1に係る誘導電器巻線装置と同様である構成については説明を繰り返さない。
Embodiment 3.
An induction electric winding device according to Embodiment 3 will be described below. Since the induction electric machine according to the third embodiment differs from the first embodiment only in the configuration of the horizontal spacer 4 and the flow channel groove 5, the same construction as the induction electric machine winding device according to the first embodiment will not be explained. Do not repeat.

図12は実施の形態3に係る誘導電器巻線装置の巻線部の軸に垂直な部分断面図である。図13は実施の形態3に係る誘導電器巻線装置の水平スペーサー4の斜視図である。図14は実施の形態3に係る誘導電器巻線装置の部分断面図であり、図12のD-D断面を示す。実施の形態3の誘導電器巻線装置は、図12に示すように水平スペーサー4の円板型巻線1上に配置する枚数を実施の形態1よりも減少させている。この図では水平スペーサー4が円板型巻線1の1/4周に等間隔で2個、つまり45度間隔で配置された例を示している。また、図13に示すように実施の形態1、2の流路溝5を内側流路溝21、外側流路溝22、合流部23で構成している。径方向内側にある内側流路溝21と径方向外側にある外側流路溝22とは軸方向の高さが異なっている。軸方向に隣接する2枚の円板型巻線1に挟まれた水平スペーサー4において、内側流路溝21は一方の円板型巻線1に面する溝であり、外側流路溝22は他方に面する溝である。合流部23は水平スペーサー4の径方向の途中の位置に軸方向に貫通する孔として形成されて、内側流路溝21と外側流路溝22とを連通する。合流部23は隣接する2枚の円板型巻線1のいずれにも面する孔となる。合流部23の径方向位置は、径方向中央に限定されるものではなく、径方向中央よりも内側または外側に変位してもよい。 FIG. 12 is a partial cross-sectional view perpendicular to the axis of the winding portion of the induction electric winding device according to the third embodiment. FIG. 13 is a perspective view of the horizontal spacer 4 of the induction electric winding device according to the third embodiment. FIG. 14 is a partial cross-sectional view of an induction electric winding device according to Embodiment 3, showing a DD cross section of FIG. As shown in FIG. 12, the induction winding device of the third embodiment reduces the number of horizontal spacers 4 arranged on the disk-shaped winding 1 as compared with the first embodiment. This figure shows an example in which two horizontal spacers 4 are arranged at regular intervals around the circumference of the disk-shaped winding 1, that is, at intervals of 45 degrees. Further, as shown in FIG. 13 , the flow channel 5 of Embodiments 1 and 2 is composed of an inner flow channel 21 , an outer flow channel 22 and a confluence portion 23 . The inner flow groove 21 on the radially inner side and the outer flow groove 22 on the radial outer side have different heights in the axial direction. In the horizontal spacer 4 sandwiched between two disk-shaped windings 1 adjacent in the axial direction, the inner flow groove 21 is a groove facing one of the disk-shaped windings 1, and the outer flow groove 22 is a groove facing one of the disk-shaped windings 1. It is the groove facing the other. The confluence portion 23 is formed as a hole penetrating the horizontal spacer 4 in the radial direction in the axial direction, and communicates the inner channel groove 21 and the outer channel groove 22 . The merging portion 23 becomes a hole facing both of the two disc-shaped windings 1 adjacent to each other. The radial position of the merging portion 23 is not limited to the radial center, and may be displaced inside or outside the radial center.

本実施の形態3においては、水平スペーサー4の円板型巻線1の周方向幅と水平スペーサー4の厚さを、実施の形態1よりも拡大している。内側流路溝21と外側流路溝22の円板型巻線1の周方向幅および高さ方向寸法の少なくともどちらか一方は、実施の形態1よりも拡大している。 In the third embodiment, the width of the horizontal spacer 4 in the circumferential direction of the disc-shaped winding 1 and the thickness of the horizontal spacer 4 are increased as compared with the first embodiment. At least one of the circumferential width and height dimension of the disk-shaped winding 1 of the inner flow channel 21 and the outer flow channel 22 is larger than that of the first embodiment.

本実施の形態3においては、図13および図14に示すように内側流路溝21は水平スペーサー4の上面に形成されており、外側流路溝22は水平スペーサー4の下面に形成される。この時内側流路溝21と外側流路溝22の高さ方向の位置関係は軸方向に上下反対であってもよい。合流部23の円板型巻線1径方向内側面と円板型巻線1径方向外側面は垂直な面に限定されるものではなく、例えば、45度の傾斜面としてもよい。また合流部23の各エッジは直角に限定されるものではなく、例えば、曲面としてもよい。 In the third embodiment, the inner channel groove 21 is formed on the upper surface of the horizontal spacer 4, and the outer channel groove 22 is formed on the lower surface of the horizontal spacer 4, as shown in FIGS. At this time, the positional relationship in the height direction between the inner channel groove 21 and the outer channel groove 22 may be upside down in the axial direction. The radially inner surface of the disk-shaped winding 1 and the radially outer surface of the disk-shaped winding 1 of the confluence portion 23 are not limited to vertical surfaces, and may be, for example, inclined surfaces of 45 degrees. Further, each edge of the confluence portion 23 is not limited to a right angle, and may be, for example, a curved surface.

本実施の形態3に係る誘導電器巻線装置は、内側流路溝21と外側流路溝22の高さが異なり図14に示すように階段状に上昇する構造となっているため、下から上に流れる作用が径方向に流れを生じて、流路溝内の流れを促進する。また、実施の形態1で述べたように、 冷却流体19が内側垂直ダクト8と外側垂直ダクト9をともに軸方向に上昇する流れとされ、かつ、一方が上流となり他方が下流となるように流れが生じる場合、上流となる垂直ダクト側に高さが低い流路溝、下流となる垂直ダクト側に高さが高い流路溝を配置するようにするとよい。このようにすれば、垂直ダクトの上流下流の流れを流路溝内の流れが促進することになって、円板型巻線1の冷却効率を向上させることが出来る。また、合流部23では、冷却流体19は隣接する上下の円板型巻線1を冷却する。これらにより、円板型巻線1の冷却効率を向上させることが出来る。 Since the induction electric winding device according to the third embodiment has a structure in which the heights of the inner channel groove 21 and the outer channel groove 22 are different from each other and rise in steps as shown in FIG. The upward flow action creates radial flow to facilitate flow within the flow channel. In addition, as described in the first embodiment, the cooling fluid 19 flows axially upward through both the inner vertical duct 8 and the outer vertical duct 9, and one flows upstream and the other flows downstream. If this occurs, it is preferable to arrange a low channel groove on the upstream vertical duct side and a high channel groove on the downstream vertical duct side. By doing so, the flow in the flow channel promotes the flow upstream and downstream of the vertical duct, and the cooling efficiency of the disk-shaped winding 1 can be improved. Also, at the junction 23, the cooling fluid 19 cools the adjacent upper and lower disk-shaped windings 1. As shown in FIG. As a result, the cooling efficiency of the disk-shaped winding 1 can be improved.

さらに、流路溝の端部が突き出し部20にあるようにすると、図14に示すように、上流側の上昇流に下面が開口した流路溝があり、下流側の上昇流に上面が開口した流路溝がある構成となり、流路溝へ冷却流体19の流入のみでなく、流出も促進されるため、円板型巻線1の冷却効率を向上させることが出来る。 Furthermore, when the end of the flow channel is located at the protruding portion 20, as shown in FIG. Since the cooling fluid 19 is facilitated not only to flow into the flow channel but also to flow out of the flow channel, the cooling efficiency of the disk-shaped winding 1 can be improved.

また、本実施の形態3に係る誘導電器巻線装置は水平スペーサー4の配置数を減少させ、円板型巻線1の冷却面積を増大させたことにより、円板型巻線1の冷却効率を向上させることが出来る。 In addition, in the induction electric winding device according to the third embodiment, the number of horizontal spacers 4 arranged is reduced and the cooling area of the disk-shaped winding 1 is increased. can be improved.

さらに、内側流路溝21と外側流路溝22の径方向幅および高さの少なくともどちらか一方を拡大したことにより、内側流路溝21と外側流路溝22の流路抵抗が低減され内側流路溝21と外側流路溝22への冷却流体19の流入を促進することが出来るため、円板型巻線1の冷却効率を向上することが出来る。 Furthermore, by enlarging at least one of the radial width and height of the inner flow groove 21 and the outer flow groove 22, the flow resistance of the inner flow groove 21 and the outer flow groove 22 is reduced. Since the inflow of the cooling fluid 19 into the channel grooves 21 and the outer channel grooves 22 can be promoted, the cooling efficiency of the disk-shaped winding 1 can be improved.

以上のように本発明の各実施の形態に係る誘導電器巻線装置は、上記冷却効率の向上により、従来よりも高出力での運転が可能となる。その結果、従来同等の出力での運転に必要な巻線量を削減出来るため、製造コストを削減することが出来る。 As described above, the induction electric winding device according to each embodiment of the present invention can be operated at a higher output than before due to the improvement in the cooling efficiency. As a result, it is possible to reduce the number of windings required for operation at the same output as in the conventional case, thereby reducing the manufacturing cost.

なお、本発明は、以上のように説明しかつ記述した特定の詳細内容および代表的な実施の形態に限定されるものではない。当業者によって容易に導き出すことができるさらなる変形例および効果も本発明に含まれる。したがって、添付の特許請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 However, the invention is not limited to the specific details and representative embodiments so illustrated and described. Further variations and effects that can be easily derived by those skilled in the art are also included in the present invention. Accordingly, various changes may be made without departing from the spirit or scope of the general inventive concept defined by the appended claims and equivalents thereof.

1 円板型巻線、 2 内側絶縁筒、 3 外側絶縁筒、 4 水平スペーサー、 5 流路溝、 6 内側垂直スペーサー、 7 外側垂直スペーサー、 8 内側垂直ダ
クト、 9 外側垂直ダクト、 10 水平ダクト、 11 閉塞板、 12 タンク、13 鉄心、 14 絶縁筒、 15 低圧巻線、 16 高圧巻線、 17 配管、
18 放熱器、 19 冷却流体、 20 突き出し部、 21 内側流路溝、 22
外側流路溝、 23 合流部。
1 disc type winding 2 inner insulating cylinder 3 outer insulating cylinder 4 horizontal spacer 5 channel groove 6 inner vertical spacer 7 outer vertical spacer 8 inner vertical duct 9 outer vertical duct 10 horizontal duct , 11 closing plate, 12 tank, 13 iron core, 14 insulating cylinder, 15 low-voltage winding, 16 high-voltage winding, 17 piping,
18 radiator, 19 cooling fluid, 20 protrusion, 21 inner channel groove, 22
Outer channel groove, 23 confluence.

Claims (5)

内側絶縁筒とその外側に同軸に配置された外側絶縁筒と、
前記内側絶縁筒と前記外側絶縁筒との間に軸方向に複数段積層された円板型巻線と、
前記内側絶縁筒と前記円板型巻線の内側との間で前記円板型巻線の周方向に互いに間隔をあけて複数配置され、前記軸方向にのびる内側垂直スペーサーと、
前記外側絶縁筒と前記円板型巻線の外側との間で前記円板型巻線の周方向に互いに間隔をあけて複数配置され、前記軸方向にのびる外側垂直スペーサーと、
前記軸方向に隣接する前記円板型巻線の間隔を保持し、前記円板型巻線の周方向に互いに間隔をあけて複数配置され、前記内側垂直スペーサーと前記外側垂直スペーサーとに接触するように形成された水平スペーサーと、
隣接する前記内側垂直スペーサーの間、隣接する前記外側垂直スペーサーの間、隣接する前記水平スペーサーの間を流れる冷却流体とを備え、
前記水平スペーサーは前記内側垂直スペーサーと前記外側垂直スペーサーよりも前記円板型巻線の周方向外側に前記円板型巻線の径方向に前記冷却流体が流れる流路溝を有しており、
前記円板型巻線の周方向において、前記水平スペーサーは前記内側垂直スペーサーと前記外側垂直スペーサーが配置された範囲には前記流路溝を有さず、
前記流路溝は、前記水平スペーサーの前記円板型巻線と接する面に設けられる
ことを特徴とする誘導電器巻線装置。
an inner insulating cylinder and an outer insulating cylinder arranged coaxially outside thereof;
a disc-shaped winding laminated in multiple stages in the axial direction between the inner insulating cylinder and the outer insulating cylinder;
a plurality of inner vertical spacers arranged in the circumferential direction of the disc-shaped winding between the inner insulating cylinder and the inner side of the disc-shaped winding and extending in the axial direction;
a plurality of outer vertical spacers arranged in the circumferential direction of the disc-shaped winding between the outer insulating cylinder and the outer side of the disc-shaped winding and extending in the axial direction;
The space between the axially adjacent disc-shaped windings is maintained, and a plurality of the disc-shaped windings are spaced apart from each other in the circumferential direction of the disc-shaped windings to contact the inner vertical spacer and the outer vertical spacer. a horizontal spacer formed to:
a cooling fluid flowing between adjacent said inner vertical spacers, between adjacent said outer vertical spacers, between adjacent said horizontal spacers;
The horizontal spacer has a channel groove through which the cooling fluid flows in the radial direction of the disk-shaped winding outside the inner vertical spacer and the outer vertical spacer in the circumferential direction of the disk-shaped winding ,
In the circumferential direction of the disk-shaped winding, the horizontal spacer does not have the flow channel groove in the range where the inner vertical spacer and the outer vertical spacer are arranged,
The flow channel groove is provided on a surface of the horizontal spacer that is in contact with the disk-shaped winding.
An induction electric winding device characterized by:
前記水平スペーサーは前記円板型巻線よりも径方向内側と径方向外側とに突き出し部を有することを特徴とする請求項1に記載の誘導電器巻線装置。 2. The induction electric winding device according to claim 1, wherein the horizontal spacer has projections radially inside and outside the disk-shaped winding. 高い位置にある前記水平スペーサーほど前記流路溝の幅を広くしたことを特徴とする請求項1または2に記載の誘導電器巻線装置。 3. The induction electric winding device according to claim 1, wherein the higher the horizontal spacer, the wider the width of the channel groove. 前記内側垂直スペーサーと前記外側垂直スペーサーの円板型巻線周方向の幅を軸方向上部になるほど段階的に狭くしたことを特徴とする請求項1から3のいずれか一項に記載の誘導電器巻線装置。 4. The induction electric machine according to claim 1, wherein the width of the inner vertical spacer and the outer vertical spacer in the circumferential direction of the disc-shaped winding is gradually narrowed upward in the axial direction. Winding device. 前記流路溝は、前記円板型巻線の径方向内側に設けられた内側流路溝と、前記円板型巻線の径方向外側に設けられた外側流路溝と、前記水平スペーサーを前記軸方向に貫通し、前記内側流路溝と前記外側流路溝が合流する合流部とを備え、前記内側流路溝と前記外側流路溝とは前記円板型巻線の前記軸方向に異なる位置に設けられ、
前記冷却流体は、前記円板型巻線の径方向において、前記内側流路溝から前記合流部を介して前記外側流路溝へと径方向に流れる
ことを特徴とする請求項1から4のいずれか一項に記載の誘導電器巻線装置。
The flow channel groove includes an inner flow channel groove provided radially inside the disk-shaped winding, an outer flow channel groove provided radially outside the disk-shaped winding, and the horizontal spacer. a confluence portion penetrating in the axial direction and where the inner flow groove and the outer flow groove merge, wherein the inner flow groove and the outer flow groove are arranged in the axial direction of the disk-shaped winding provided at different positions in the
The cooling fluid radially flows from the inner flow groove to the outer flow groove via the confluence in the radial direction of the disk-shaped winding.
The induction electric winding device according to any one of claims 1 to 4, characterized in that:
JP2019124219A 2019-07-03 2019-07-03 Induction winding device Active JP7255394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019124219A JP7255394B2 (en) 2019-07-03 2019-07-03 Induction winding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019124219A JP7255394B2 (en) 2019-07-03 2019-07-03 Induction winding device

Publications (2)

Publication Number Publication Date
JP2021009969A JP2021009969A (en) 2021-01-28
JP7255394B2 true JP7255394B2 (en) 2023-04-11

Family

ID=74199516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019124219A Active JP7255394B2 (en) 2019-07-03 2019-07-03 Induction winding device

Country Status (1)

Country Link
JP (1) JP7255394B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277351A (en) 1999-03-26 2000-10-06 Toshiba Corp Stationary induction apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5054520U (en) * 1973-09-17 1975-05-24
JPS5077713U (en) * 1973-11-19 1975-07-05
JPS5329924Y2 (en) * 1974-01-24 1978-07-26
JPS595609A (en) * 1982-07-01 1984-01-12 Toshiba Corp Transformer winding
JPH03246912A (en) * 1990-02-26 1991-11-05 Hitachi Ltd Winding structure of transformer
JPH0817645A (en) * 1994-06-28 1996-01-19 Toshiba Corp Gas insulation transformer
JPH09275024A (en) * 1996-04-03 1997-10-21 Meidensha Corp Static induction machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277351A (en) 1999-03-26 2000-10-06 Toshiba Corp Stationary induction apparatus

Also Published As

Publication number Publication date
JP2021009969A (en) 2021-01-28

Similar Documents

Publication Publication Date Title
US9947453B2 (en) Stationary induction electric apparatus
US20180261374A1 (en) Reactor, motor driver, power conditioner and machine
US3551863A (en) Transformer with heat dissipator
JP2002075749A (en) Winding device for induction electrical equipment
EP2851912B1 (en) Static electric induction system
JP7255394B2 (en) Induction winding device
KR101869820B1 (en) A transformer having its own cooling structure
JP5930780B2 (en) Reactor
KR20140005166U (en) Power transformaer
TWI675384B (en) Static sensor
CN108922737B (en) Heat abstractor provided with slant oil duct
JP2013243167A (en) Stationary induction apparatus
JP2953329B2 (en) Winding structure for induction magnet
JP2022160043A (en) Static induction device
JPH0749775Y2 (en) Stationary induction equipment
JP2000077236A (en) Stationary induction device
JP6429815B2 (en) Stationary inductor
JP6113101B2 (en) Reactor
JPH0357602B2 (en)
JPS59155110A (en) Winding for natural cooling induction electric apparatus
JPS6320368B2 (en)
JP2022188800A (en) Stationary induction current
JP2022118358A (en) transformer
JPH0249408A (en) Self-cooled stationary electromagnetic induction apparatus
CN116231891A (en) Stator core structure with large heat dissipation area and motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20220427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R151 Written notification of patent or utility model registration

Ref document number: 7255394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151