JPS6320368B2 - - Google Patents

Info

Publication number
JPS6320368B2
JPS6320368B2 JP3377381A JP3377381A JPS6320368B2 JP S6320368 B2 JPS6320368 B2 JP S6320368B2 JP 3377381 A JP3377381 A JP 3377381A JP 3377381 A JP3377381 A JP 3377381A JP S6320368 B2 JPS6320368 B2 JP S6320368B2
Authority
JP
Japan
Prior art keywords
winding
circumferential direction
oil
flow guide
oil flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3377381A
Other languages
Japanese (ja)
Other versions
JPS57148322A (en
Inventor
Takao Kumasaka
Masanori Yamaguchi
Yoshiaki Inui
Yoshio Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3377381A priority Critical patent/JPS57148322A/en
Publication of JPS57148322A publication Critical patent/JPS57148322A/en
Publication of JPS6320368B2 publication Critical patent/JPS6320368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

【発明の詳細な説明】 本発明は自冷式静止誘導電器巻線に係り、特に
自冷式の変圧器やリアクトルにおける円板巻線ま
たはヘリカル巻線の冷却油道の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a self-cooled stationary induction electric appliance winding, and more particularly to the configuration of a cooling oil passage for a disk winding or helical winding in a self-cooled transformer or reactor.

従来の自冷式変圧器において電圧が高い場合
は、第1図に示すように、円板巻線1の外側に外
側絶縁筒11を設けた構造(外筒あり円板巻線構
造と略称する)が用いられ、電圧が低い場合は、
第3図に示すように、円板巻線1と油自由空間1
3が直接接触する構造(外筒なし円板巻線構造と
略称する)が用いられていた。以下、この2種類
の巻線構造について第1図〜第4図を用いて説明
する。
When the voltage is high in a conventional self-cooling transformer, as shown in Fig. 1, a structure in which an outer insulating tube 11 is provided on the outside of the disk winding 1 (abbreviated as disk winding structure with outer tube) is used. ) is used and the voltage is low, then
As shown in Fig. 3, a disc winding 1 and an oil free space 1
A structure (abbreviated as a disk winding structure without an outer cylinder) was used in which the wires were in direct contact with each other. Hereinafter, these two types of winding structures will be explained using FIGS. 1 to 4.

第1図に示す外筒あり円板巻線構造は、鉄心の
外周に板状に巻回されたコイル2を、それぞれ所
定の高さの水平スペーサを介して水平油道3を形
成するように、高さ方向に積重ねて構成すると共
に、これを内側絶縁筒4の外側に内側垂直スペー
サを介して内側垂直油道5を形成するように配置
し、更に巻線1の外側にも外側垂直スペーサを介
して外側絶縁筒11を配置して外側垂直油道6を
形成すると共に、内側垂直油道5を閉塞する内側
油流案内板7と外側垂直油道11を閉塞する外側
油流案内板12を配置していた。(以下、垂直油
道を閉塞する部材によつて区分される巻線1の高
さ方向の区間を折流区と称する。)又、巻線1の
円周方向においてはほぼ同一の構造となつてい
た。
In the disk winding structure with an outer cylinder shown in FIG. 1, coils 2 are wound in a plate shape around the outer periphery of an iron core, and horizontal oil passages 3 are formed through horizontal spacers each having a predetermined height. , are stacked in the height direction, and arranged so as to form an inner vertical oil passage 5 on the outside of the inner insulating cylinder 4 via an inner vertical spacer, and furthermore, an outer vertical spacer is placed on the outside of the winding 1. The outer insulating cylinder 11 is arranged through the outer vertical oil passage 6 to form the outer vertical oil passage 6, and the inner oil flow guide plate 7 that blocks the inner vertical oil passage 5 and the outer oil flow guide plate 12 that blocks the outer vertical oil passage 11. was placed. (Hereinafter, the section in the height direction of the winding 1 that is divided by the member that blocks the vertical oil passage is referred to as the fold section.) Also, in the circumferential direction of the winding 1, the structure is almost the same. was.

このような巻線構造では、第1図の矢印の如く
油を流動させてコイル2を冷却しているが、折流
区内の油流量分布は、第2図に曲線Q0で示すよ
うに、折流区の下部(例えばa、b)で多く、上
部に行くにつれ少なくなる分布となり、その結
果、コイル2の温度上昇は、曲線T0で示すよう
に、不均一となり、特に水平油道3の油流量の少
ない折流区上部(例えば、y、z)では局部的に
高温となる傾向があつた。
In such a winding structure, the coil 2 is cooled by flowing oil as shown by the arrow in Fig. 1, but the oil flow rate distribution in the folded flow section is as shown by the curve Q 0 in Fig. 2. , the temperature rise in the coil 2 becomes uneven, as shown by the curve T 0 , and increases in the lower part of the flow section (for example, a, b) and decreases towards the upper part. In No. 3, there was a tendency for the temperature to become locally high in the upper part of the flow section (for example, y, z) where the oil flow rate was low.

又、第3図に示す外筒なし円板巻線構造は、巻
線1の外側には外側垂直スペーサや外側絶縁筒1
1を設けず、コイル2の外周端が直接油自由空間
13と接触するようにし、所定のコイル数毎に内
側垂直油道5を閉塞する内側油流案内板7を配置
したものである。
In addition, the disk winding structure without an outer cylinder shown in FIG.
1 is not provided, the outer peripheral end of the coil 2 is brought into direct contact with the oil free space 13, and an inner oil flow guide plate 7 that closes the inner vertical oil passage 5 is arranged for every predetermined number of coils.

このような巻線構造では、第3図の矢印の如く
油を流動させてコイル2を冷却しているが、折流
区内の油流分布は、第4図の曲線Q′0に示すよう
に、折流区の下部(例えばa、b)及び上部(例
えばy、z)で多く、折流区の中央部で少ない分
布となり、その結果、コイル2の温度上昇は曲線
T′0で示すようになり、水平油道3の油流量の少
ない折流区の中央部では局部的に高温となる傾向
があつた。
In such a winding structure, the coil 2 is cooled by flowing oil as shown by the arrow in Fig. 3, but the oil flow distribution within the fold section is as shown by the curve Q' 0 in Fig. 4. In this case, the temperature rise of the coil 2 is higher in the lower part (e.g. a, b) and upper part (e.g. y, z) of the folded flow area, and less in the middle part of the folded flow area, and as a result, the temperature rise of the coil 2 is
As shown by T' 0 , there was a tendency for the temperature to become locally high in the central part of the diversion section of horizontal oilway 3 where the oil flow rate was low.

このような巻線の温度上昇の不均一を是正する
1つの方法として、特開昭51−73216号に記載さ
れているように、高さ方向の折流区を所定の円周
方向のブロツク毎にずらし、巻線を円周方向に展
開した場合千鳥状となる様に折流区を配置する方
法が考えられている。我々の変圧器巻線を用いた
実験によると、自冷式変圧器においては、折流区
の油流速は油流量に比例し、最大でも数cm/sec
程度であり、自冷領域ではコイルの熱放散係数は
油流速に対し約0.3乗で比例することがわかつた。
このため、上述の方法を用いて局部的に高温とな
るコイルを円周方向の熱伝導を利用して巻線各部
が均等になる様に冷却するには、油流速値が小さ
く充分な効果を得にくいという欠点があることが
明らかになつてきた。又、これを避けるには折流
区内のコイル数を減少させて上記の千鳥状の配置
を構成し折流区の油流速を高める方法が考えられ
るが、例えば油流速を約2倍に増加させるには巻
線の全折流区数を約2倍にしなければならず、そ
の結果、巻線部の圧力損失が増加し油流量が減少
するので、変圧器の最高油温が高くなるという欠
点が付随することも分つてきた。
As one method for correcting such non-uniform temperature rise in the windings, as described in Japanese Patent Application Laid-Open No. 73216/1983, the folded sections in the height direction are divided into predetermined blocks in the circumferential direction. A method has been considered in which the folded sections are arranged in a staggered manner when the windings are expanded in the circumferential direction. According to our experiments using transformer windings, in self-cooled transformers, the oil flow velocity in the flow section is proportional to the oil flow rate, and the maximum is several cm/sec.
It was found that in the self-cooling region, the heat dissipation coefficient of the coil is proportional to the oil flow velocity to the 0.3 power.
Therefore, in order to use the method described above to uniformly cool each part of the winding using heat conduction in the circumferential direction of a coil that is locally hot, the oil flow velocity must be small enough to have a sufficient effect. It has become clear that the drawback is that it is difficult to obtain. In addition, to avoid this, it is possible to reduce the number of coils in the flow section and configure the above-mentioned staggered arrangement to increase the oil flow velocity in the flow section. In order to achieve this, the total number of folded flow sections in the winding must be approximately doubled, and as a result, the pressure loss in the winding increases, the oil flow rate decreases, and the maximum oil temperature of the transformer increases. It has also become clear that there are drawbacks.

本発明の目的は、巻線部での圧力損失をそれ程
増大させることなく温度上昇の不均一を矯正し、
温度上昇のほぼ均等な自冷式静止誘導電器巻線を
提供するにある。
The purpose of the present invention is to correct uneven temperature rise without significantly increasing pressure loss in the winding section,
The purpose is to provide self-cooled stationary induction electric windings with almost uniform temperature rise.

この目的を達成するため、本発明は、円周方向
および高さ方向において所定のコイル数の第1の
折流区と、この第1の折流区を分割して形成され
る第2の折流区とを交互に配置し、第1の折流区
で局部的に高温となるコイルを、これに隣接する
第2の折流区を流れる油流速の速い油流による熱
伝導を利用して効果的に冷却すると共に、コイル
数が多い第1の折流区とコイル数の少ない折流区
を高さ方向に交互に配置することによつて、巻線
部での圧力損失を円周方向で均等にし、かつ著し
く増大しないようにしたことを特徴とする。
In order to achieve this object, the present invention provides a first fold section having a predetermined number of coils in the circumferential direction and a height direction, and a second fold section formed by dividing the first fold section. The coils are arranged alternately, and the coils that become locally hot in the first folded flow section utilize heat conduction by the high-speed oil flow flowing through the adjacent second folded flow section. In addition to effective cooling, the pressure loss in the winding section is reduced in the circumferential direction by alternately arranging the first fold section with a large number of coils and the fold section with a small number of coils in the height direction. It is characterized in that it is made even and does not increase significantly.

以下、本発明を図示の実施例に基づいて詳細に
説明する。
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第5図〜第9図は本発明を外側絶縁筒11を設
けた構造(外筒あり円板巻線)に適用した実施例
である。この実施例では第6図に斜視図を示すよ
うに、巻線1の外側に外側垂直スペーサ10を介
して外側絶縁筒11を配置すると共に、従来の内
側及び外側油流案内板7,12(内側及び外側油
流案内板を以下、第1の油流案内部材と呼ぶ)の
他に、第7図a〜fに示すような、円周方向に所
定のブロツク毎に内周部又は外周部或は内外周部
に切り欠きを設けたリング状絶縁板からなる第2
の油流案内部材14a〜14cを巻線1の水平ス
ペーサ8間に配置したものである。
5 to 9 show examples in which the present invention is applied to a structure provided with an outer insulating tube 11 (disc winding with an outer tube). In this embodiment, as shown in a perspective view in FIG. In addition to the inner and outer oil flow guide plates (hereinafter referred to as first oil flow guide members), the inner circumference or outer circumference is arranged in predetermined blocks in the circumferential direction as shown in FIGS. 7a to 7f. Alternatively, a second insulating plate made of a ring-shaped insulating plate with cutouts on the inner and outer peripheries
The oil flow guide members 14a to 14c are arranged between the horizontal spacers 8 of the winding 1.

第8図aは第5図の−′断面を示したもの
であるが、内側、外側油流案内板7,12間に内
側油流案内板7から遠ざかる方向に第7図a〜c
に示す形状を持つ第2の油流案内部材を14a,
14b,14cの順に、次の外側、外側油流案内
板12,7間では外側油流案内板12から遠ざか
る方向に第7図d〜fに示す形状を持つ第2の油
流案内部材を14c′,14b′,14a′の順に配置
する。ここで第2の油流案内部材14a′〜14
c′は14a〜14cを円周方向に所定のブロツク
だけずらしたものである。そして第1の油流案内
部材(内側油流案内板)7と第2の油流案内部材
14bで構成される折流区および第1の油流案内
部材(外側油流案内板)12と第2の油流案内部
材14bで構成される折流区を第1の折流区A、
第2の油流案内部材14bと14c、および14
cと12、および14b′と14a′、および14
a′と7とで構成される折流区を第2の折流区Bと
呼ぶことにする。すなわち、第8図aでは高さ方
向に第1の折流区Aと、折流区内のコイル数が第
1の折流区Aの約半分の折流区Bとが下方から
A,B,B,A…の順に構成される。
FIG. 8a shows the -' cross section of FIG. 5, and FIG.
A second oil flow guide member having a shape shown in 14a,
In the order of 14b and 14c, between the next outer oil flow guide plates 12 and 7, a second oil flow guide member 14c having the shape shown in FIGS. ', 14b', and 14a' are arranged in this order. Here, the second oil flow guide members 14a' to 14
c' is obtained by shifting 14a to 14c by a predetermined block in the circumferential direction. Then, there is a folding section composed of the first oil flow guide member (inner oil flow guide plate) 7 and the second oil flow guide member 14b, and the first oil flow guide member (outer oil flow guide plate) 12 and the second oil flow guide member (outer oil flow guide plate) 14b. The flow section composed of the two oil flow guide members 14b is referred to as the first flow section A,
Second oil flow guide members 14b and 14c, and 14
c and 12, and 14b' and 14a', and 14
The fold section composed of a' and 7 will be referred to as the second fold section B. That is, in FIG. 8a, the first fold section A and the fold section B, in which the number of coils in the fold section is about half of the first fold section A, are arranged in the height direction from A, B. , B, A, and so on.

第5図の−′線で示す円周方向のブロツク
Xと隣接するブロツクY(Y−Y′線で示す)で
は、第8図bに示すように第1および第2の折流
区A,Bの配置が下方からB,B,A,B,B…
の順に構成されるようにする。その結果、巻線の
高さ方向では第1の折流区Aと第2の折流区Bが
所定の長さ毎に交互に配置され、円周方向でも第
1の折流区Aと第2の折流区Bとが隣接するよう
に配置される。
In the block Y (indicated by the line Y-Y') adjacent to the block X in the circumferential direction shown by the line -' in FIG. 5, the first and second fold sections A, The arrangement of B is B, B, A, B, B from the bottom...
be configured in this order. As a result, in the height direction of the winding, the first folding section A and the second folding section B are arranged alternately every predetermined length, and also in the circumferential direction, the first folding section A and the second folding section B are arranged alternately at predetermined lengths. The two folding sections B are arranged so as to be adjacent to each other.

次に、コイルの温度上昇特性について説明す
る。第9図のQa及びQbはそれぞれ第1の折流区
A、第2の折流区Bにおける油流量分布曲線、
Ta、Tbはそれぞれ巻線の全周が第1の折流区A、
第2の折流区Bで構成される場合の温度上昇分布
曲線、Tは本実施例の変圧器巻線の温度上昇分布
曲線である。
Next, the temperature rise characteristics of the coil will be explained. Q a and Q b in FIG. 9 are oil flow rate distribution curves in the first fold section A and the second fold section B, respectively;
T a and T b are respectively the entire circumference of the winding, which is the first folding section A;
The temperature rise distribution curve T is the temperature rise distribution curve of the transformer winding of this embodiment when the second fold section B is configured.

いま、第5図に示すように、円周方向に隣接し
た2つの巻線ブロツクを考え、ある高さ方向の巻
線区間において第1の折流区A、第2の折流区B
がそれぞれブロツクX、ブロツクYに属している
ものとすると、ブロツクX、ブロツクYでは、第
9図に示すように、それぞれ油流量分布曲線Qa
Qbに対応した油流によつて冷却されることにな
る。従つて、ブロツクXとブロツクYとの間で熱
の移動がないとするならば、それぞれの油流に対
応したコイルの温度上昇分布はTa、Tbとなるが、
本実施例では2つのブロツク、すなわち、局部高
温部の生じる傾向のある第1の折流区Aと折流区
の平均油流速が第1の折流区Aの約2倍の第2の
折流区Bとが円周方向に隣接しているので、コイ
ル2の円周方向に温度勾配が生じた場合は、コイ
ル導体の熱伝導により円周方向に熱が移動して各
部の温度は平均化され、温度上昇曲線Tで示すよ
うに、Ta、Tbの中間の温度となる。その結果、
変圧器巻線のコイル2の温度上昇の最高と最低と
の温度差ΔTは従来構造の場合と比べて大幅に小
さくなり、巻線全体をほぼ均一に冷却することが
できる。
Now, as shown in Fig. 5, consider two winding blocks adjacent to each other in the circumferential direction, and in a winding section in a certain height direction, a first fold section A and a second fold section B are formed.
Assuming that these belong to block X and block Y, respectively, the oil flow rate distribution curves Q a and
It will be cooled by the oil flow corresponding to Q b . Therefore, if there is no heat transfer between block X and block Y, the temperature rise distribution of the coil corresponding to each oil flow will be T a and T b ,
In this example, there are two blocks: a first fold section A where local high temperature areas tend to occur, and a second fold section A where the average oil flow velocity in the fold section is approximately twice that of the first fold section A. Since the flow zone B is adjacent to the flow zone B in the circumferential direction, if a temperature gradient occurs in the circumferential direction of the coil 2, heat will move in the circumferential direction due to heat conduction of the coil conductor, and the temperature of each part will be averaged. As shown by the temperature rise curve T, the temperature becomes intermediate between T a and T b . the result,
The temperature difference ΔT between the highest and lowest temperature rises in the coil 2 of the transformer winding is significantly smaller than in the conventional structure, and the entire winding can be cooled almost uniformly.

第10図、第11図は本発明を円板巻線1と油
自由空間13が直接接触する構造(外筒なし円板
巻線)に適用した他の実施例である。この実施例
では、従来構造において用いられる外側油流案内
板7の他に、第7図c,dに示すような、第2の
油流案内部材14c、及びそれを円周方向に所定
のブロツクだけずらした14c′を巻線1の水平ス
ペーサ8間に配置したものである。すなわち、第
10図a,bに示すように、巻線1の高さ方向で
第1の油流案内板7をはさんで第2の油流案内部
材14cと14c′とが交互になるように配置す
る。例えば、ある円周方向のブロツク(ブロツク
X)では第10図aに示すように、折流区の構成
を下方からB,B,A,B…となるようにし、ブ
ロツクXと隣接する円周方向のブロツクYでは第
10図bに示すように、折流区の構成を下方から
A,B,B,A…となるようにしたものである。
その結果、巻線の高さ方向では第1の折流区Aと
第2の折流区Bが所定の長さ毎に配置され、円周
方向でも第1の折流区Aと第2の折流区Bとが隣
接するように配置される。従つて、本実施例にお
いても、第8図a,bに示した実施例の場合と同
様な効果を得ることができる。
10 and 11 show other embodiments in which the present invention is applied to a structure in which the disk winding 1 and the oil free space 13 are in direct contact (disc winding without an outer cylinder). In this embodiment, in addition to the outer oil flow guide plate 7 used in the conventional structure, a second oil flow guide member 14c as shown in FIGS. 14c' shifted by 14c' is placed between the horizontal spacers 8 of the winding 1. That is, as shown in FIGS. 10a and 10b, the second oil flow guide members 14c and 14c' are arranged alternately across the first oil flow guide plate 7 in the height direction of the winding 1. Place it in For example, in a certain circumferential block (block In the block Y in the direction, as shown in FIG. 10b, the configuration of the fold sections is A, B, B, A, . . . from the bottom.
As a result, in the height direction of the winding, the first folding section A and the second folding section B are arranged at predetermined lengths, and also in the circumferential direction, the first folding section A and the second folding section B are arranged. The flow section B is arranged so as to be adjacent to the flow section B. Therefore, in this embodiment as well, the same effects as in the embodiment shown in FIGS. 8a and 8b can be obtained.

第11図は本実施例の水平油道の油流量分布及
びコイルの温度上昇分布図である。ブロツクXと
ブロツクYとの間で熱の移動がない場合は、それ
ぞれの油流Q′a、Q′bに対応したコイルの温度上昇
分布T′a、T′bとなるが、上述したようにブロツク
XとブロツクYとは円周方向で隣接しているの
で、温度勾配が生じた場合はコイル導体の熱伝導
により円周方向に熱が移動し、その結果、各部の
温度を温度上昇分布曲線T′で示すように平均化
することができる。又、コイル2の温度上昇の最
高と最低との温度差ΔT′を従来構造の場合と比べ
て大幅に小さくすることができる。
FIG. 11 is a diagram showing the oil flow rate distribution in the horizontal oilway and the temperature rise distribution in the coil of this embodiment. If there is no heat transfer between block Blocks X and Y are adjacent to each other in the circumferential direction, so if a temperature gradient occurs, heat will move in the circumferential direction due to heat conduction in the coil conductor, and as a result, the temperature of each part will change to a temperature increase distribution. It can be averaged as shown by curve T'. Furthermore, the temperature difference ΔT' between the highest and lowest temperature rises of the coil 2 can be significantly reduced compared to the conventional structure.

第12図は、外筒あり巻線を対象に、本発明の
構造(曲線T1)と他の従来構造である折流区を
千鳥状に配置する特開昭51−73216号による構造
(曲線T2)の効果を比較したものである。前述し
たように、本発明によれば、第1の折流区Aにお
いて局部的に高温となるコイルと円周方向に隣接
する第2の折流区Bの油流速を従来構造に比べて
約2倍以上にすることができるので、第12図に
示すように巻線全体にわたつてコイルの温度を低
下させることができる。図中、T3は油温を示す。
FIG. 12 shows the structure of the present invention (curve T 1 ) and another conventional structure according to Japanese Patent Application Laid-open No. 73216/1983 (curve T 1 ) in which folded sections are arranged in a staggered manner for a winding with an outer cylinder. This is a comparison of the effects of T 2 ). As described above, according to the present invention, the oil flow velocity in the coil, which locally becomes high temperature in the first folding section A, and the second folding section B, which is circumferentially adjacent to the coil, is reduced by about 100% compared to the conventional structure. Since it can be doubled or more, the temperature of the coil can be lowered over the entire winding as shown in FIG. In the figure, T3 indicates oil temperature.

尚、第8図及び第10図の実施例では第1の折
流区Aと円周方向に隣接する第2の折流区Bは第
1の折流区Aを高さ方向に2分割して構成した
が、本発明は2分割と限定されず、所望数に分割
し第2の折流区Bの平均油流速をさらに高めても
良い。しかし、分割数を多くするにつれて巻線部
の圧力損失が増加するという欠点が付随する。
又、第8図及び第10図では、第2の折流区Bを
均等な長さの区間となる様に構成したが、本発明
は均等な場合に限定されず、第1の折流区Aの温
度及び油流量分布特性に応じて冷却効果が最良と
なるように、不均等に分割する場合も含まれるこ
とはもちろんである。
In the embodiments shown in FIGS. 8 and 10, the first folding section A and the second folding section B adjacent to the circumferential direction divide the first folding section A into two in the height direction. However, the present invention is not limited to two divisions, and may be divided into a desired number of divisions to further increase the average oil flow velocity in the second fold section B. However, as the number of divisions increases, the pressure loss in the winding section increases, which is a drawback.
Furthermore, in FIGS. 8 and 10, the second fold section B is configured to have equal lengths, but the present invention is not limited to the case where the lengths are equal; It goes without saying that this also includes cases in which the cooling effect is maximized depending on the temperature and oil flow distribution characteristics of A, and the division is unevenly divided.

更に本発明の他の各実施例を第13図及び第1
4図を用いて説明する。第13図は第1の折流区
Aと第2の折流区Bを複数の円周方向のブロツク
を含む所定の区間Z1、Z2毎に隣接させたものであ
る。本実施例は巻線1の円周方向のブロツク数が
多くなる場合に、前記した第6図で示す実施例の
ように、円周方向の1ブロツク毎に第1の折流区
Aと第2の折流区Bとを隣接させる場合に比べ
て、第2の油流案内部材14の製作において切り
欠き部の数が減少するので、その分だけ製作が容
易となる利点がある。
Furthermore, other embodiments of the present invention are shown in FIG.
This will be explained using Figure 4. In FIG. 13, a first folding section A and a second folding section B are arranged adjacent to each other in predetermined sections Z 1 and Z 2 including a plurality of circumferential blocks. In this embodiment, when the number of blocks in the circumferential direction of the winding 1 increases, as in the embodiment shown in FIG. Compared to the case where the second folding section B is made adjacent to each other, the number of notches in manufacturing the second oil flow guide member 14 is reduced, so there is an advantage that manufacturing becomes easier.

第14図は本発明を巻線1のH1で示す上部の
区間に適用した例である。本実施例では油温の上
昇により巻線上部の区間において巻線の温度上昇
が所定の限界値を越えると予想される場合に、そ
の部分を比較的容易に限界値内に下げることがで
きるという利点がある。又、本実施例では、高低
圧巻線間のアンペアターンの調整等により巻線の
一部が高温になることが予想される場合、その部
分に限つて適用すれば同様な効果を得ることがで
きる。
FIG. 14 is an example in which the present invention is applied to the upper section of the winding 1 indicated by H1 . In this embodiment, if the temperature rise of the winding in the upper section of the winding is expected to exceed a predetermined limit value due to a rise in oil temperature, it is possible to relatively easily lower that part to within the limit value. There are advantages. Furthermore, in this embodiment, if a part of the winding is expected to become hot due to adjustment of ampere turns between high and low voltage windings, the same effect can be obtained by applying it only to that part. .

上記したように、本発明によれば、巻線全体に
わたつてコイルの温度をほぼ均等にし、局部的な
高温部を除去することができるので、絶縁物の劣
化を防ぎ、静止誘導電器の絶縁耐力を向上させる
ことができる。又、巻線の最高温度上昇が低下す
るため、同一仕様の自冷式静止誘導電器巻線の使
用温度を上げることが可能となり、その分だけ電
流密度を増し静止誘導電器の容量を増大させるこ
とができる。
As described above, according to the present invention, the temperature of the coil can be made almost uniform throughout the entire winding, and local high-temperature parts can be removed, thereby preventing deterioration of the insulation and insulating the static induction appliance. It can improve durability. In addition, since the maximum temperature rise of the winding is reduced, it is possible to raise the operating temperature of the self-cooled static induction electric appliance winding with the same specifications, increasing the current density accordingly and increasing the capacity of the static induction electric appliance. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図は従来の自冷式変圧器巻線の縦
断面図、第2図、第4図はそれぞれ第1図、第3
図の巻線構造の水平油道の油流量分布及びコイル
の温度上昇分布図、第5図は本発明の一実施例に
係る自冷式変圧器巻線の円周方向の構成を説明す
るための横断面図、第6図は同自冷式変圧器巻線
の斜視図、第7図a〜fは同自冷式変圧器巻線に
使用される第2の油流案内部材の平面図、第8図
a,bはそれぞれ第5図のX−X′線、Y−Y′線
断面図、第9図は同自冷式変圧器巻線の水平油道
の油流量分布及びコイルの温度上昇分布図、第1
0図a,bは本発明の他の実施例に係る自冷式変
圧器巻線各部の縦断面図、第11図は同自冷式変
圧器巻線の水平油道の油流量分布及びコイルの温
度上昇分布図、第12図は本発明の構造及び他の
従来構造のコイルの温度上昇分布図、第13図及
び第14図は本発明の更に他の各実施例に係る自
冷式変圧器巻線の折流区の配置を説明するための
円周方向の展開図である。 1……円板巻線、2……コイル、3……水平油
道、4……内側絶縁筒、5……内側垂直油道、6
……外側垂直油道、7……内側油流案内板(第1
の油流案内部材)、8……水平スペーサ、9……
内側垂直スペーサ、10……外側垂直スペーサ、
11……外側絶縁筒、12……外側油流案内板
(第1の油流案内部材)、13……油自由空間、1
4a〜14c,14a′〜14c′……リング状絶縁
板(第2の油流案内部材)、A……第1の折流区、
B……第2の折流区。
Figures 1 and 3 are longitudinal cross-sectional views of conventional self-cooling transformer windings, and Figures 2 and 4 are Figures 1 and 3, respectively.
Fig. 5 is a diagram of the oil flow distribution in the horizontal oil pipe and the temperature rise distribution of the coil in the winding structure shown in the figure. FIG. 6 is a perspective view of the self-cooling transformer winding, and FIGS. 7 a to f are plan views of the second oil flow guide member used in the self-cooling transformer winding. , Figures 8a and b are cross-sectional views taken along lines X-X' and Y-Y' in Figure 5, respectively, and Figure 9 shows the oil flow distribution in the horizontal oil passage of the self-cooling transformer winding and the coil. Temperature rise distribution map, 1st
0A and 0B are longitudinal cross-sectional views of various parts of a self-cooling transformer winding according to another embodiment of the present invention, and FIG. FIG. 12 is a temperature rise distribution diagram of coils of the structure of the present invention and other conventional structures, and FIGS. 13 and 14 are self-cooling type transformers according to still other embodiments of the present invention. FIG. 3 is a developed view in the circumferential direction for explaining the arrangement of folded sections of the winding. 1...Disc winding, 2...Coil, 3...Horizontal oil pipe, 4...Inner insulating tube, 5...Inner vertical oil pipe, 6
...Outer vertical oil pipe, 7...Inner oil flow guide plate (first
oil flow guide member), 8...horizontal spacer, 9...
Inner vertical spacer, 10... Outer vertical spacer,
DESCRIPTION OF SYMBOLS 11...Outer insulating cylinder, 12...Outer oil flow guide plate (first oil flow guide member), 13...Oil free space, 1
4a to 14c, 14a' to 14c'...Ring-shaped insulating plate (second oil flow guide member), A...first fold section,
B...Second folding area.

Claims (1)

【特許請求の範囲】 1 複数のコイルをそれぞれの間に水平油道を形
成するように水平スペーサを介して高さ方向に積
み重ねて円板状巻線を形成し、この円板状巻線を
内側絶縁筒の外側に内側垂直油道を形成するよう
に内側垂直スペーサを介して配置し、前記水平ス
ペーサおよび内側垂直スペーサにより前記円板状
巻線を円周方向に区分して円周方向の複数の巻線
ブロツクを形成すると共に、少なくとも前記内側
垂直油道を全周で閉塞する複数の第1の油流案内
部材を高さ方向に間隔をあけて配置して高さ方向
に折流区を形成した自冷式静止誘導電器巻線にお
いて、前記第1の油流案内部材間に、円周方向の
複数の巻線ブロツクの垂直油道を交互に閉塞する
第2の油流案内部材を高さ方向の折流区間内で円
周方向の巻線ブロツクの垂直油道を閉塞する位置
をずらして配置し、円周方向および高さ方向にお
いて所定のコイル数の第1の折流区とこの第1の
折流区を分割して形成される第2の折流区とが交
互に配置されるように構成したことを特徴とする
自冷式静止誘導電器巻線。 2 特許請求の範囲第1項において、円板状巻線
の外側に外側垂直油道を形成するように外側垂直
スペーサを介して外側絶縁筒を配置すると共に、
前記第2の油流案内部材は、内周部に円周方向の
所定巻線ブロツク単位で切り欠きが設けられかつ
内側垂直油道を交互に閉塞するリング状絶縁板
と、外周部に円周方向の所定巻線ブロツク単位で
切り欠きが設けられかつ外側垂直油道を交互に閉
塞するリング状絶縁板と、内周部および外周部に
円周方向の所定巻線ブロツク単位で切り欠きが設
けられかつ内側および外側垂直油道を交互に閉塞
するリング状絶縁板とを用いて構成したことを特
徴とする自冷式静止誘導電器巻線。 3 特許請求の範囲第1項において、前記円板状
巻線の外側には外側絶縁筒を配置せずに油自由空
間とし、前記第2の油流案内部材は、内周部に円
周方向の所定巻線ブロツク単位で切り欠きが設け
られかつ内側垂直油道を交互に閉塞するリング状
絶縁板を用いて構成したことを特徴とする自冷式
静止誘導電器巻線。
[Claims] 1 A disc-shaped winding is formed by stacking a plurality of coils in the height direction via horizontal spacers so as to form horizontal oil passages between them, and this disc-shaped winding is The disk-shaped winding is circumferentially divided by the horizontal spacer and the inner vertical spacer so as to form an inner vertical oil passage outside the inner insulating cylinder via an inner vertical spacer. A plurality of first oil flow guide members forming a plurality of winding blocks and blocking at least the inner vertical oil passage all around the circumference are arranged at intervals in the height direction to form a folded flow section in the height direction. In the self-cooled stationary induction electric winding, a second oil flow guide member is provided between the first oil flow guide members to alternately block the vertical oil passages of the plurality of winding blocks in the circumferential direction. The positions of the winding blocks in the circumferential direction at which the vertical oil passages are blocked are staggered within the folded section in the height direction, and the first folded section has a predetermined number of coils in the circumferential direction and the height direction. A self-cooled stationary induction electric appliance winding characterized in that the first folded flow sections are divided and the second folded flow sections are arranged alternately. 2. In claim 1, an outer insulating cylinder is disposed via an outer vertical spacer so as to form an outer vertical oil passage outside the disc-shaped winding, and
The second oil flow guide member includes a ring-shaped insulating plate in which cutouts are provided on the inner periphery in units of predetermined winding blocks in the circumferential direction and that alternately block the inner vertical oil passages, and a ring-shaped insulating plate on the outer periphery that has notches provided in units of predetermined winding blocks in the circumferential direction. A ring-shaped insulating plate is provided with notches in units of predetermined winding blocks in the direction and alternately closes the outer vertical oil passage, and cutouts are provided in the inner and outer circumferential parts in units of predetermined winding blocks in the circumferential direction. 1. A self-cooled stationary induction electric appliance winding, characterized in that it is constructed using ring-shaped insulating plates that alternately block inner and outer vertical oil passages. 3. In claim 1, an oil-free space is provided without an outer insulating tube disposed outside the disc-shaped winding, and the second oil flow guide member is provided with a circumferential direction on the inner periphery. 1. A self-cooled stationary induction electric appliance winding, characterized in that it is constructed using ring-shaped insulating plates that are provided with notches in units of predetermined winding blocks and alternately block inner vertical oil passages.
JP3377381A 1981-03-11 1981-03-11 Self-cooling stationary inductor coil winding Granted JPS57148322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3377381A JPS57148322A (en) 1981-03-11 1981-03-11 Self-cooling stationary inductor coil winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3377381A JPS57148322A (en) 1981-03-11 1981-03-11 Self-cooling stationary inductor coil winding

Publications (2)

Publication Number Publication Date
JPS57148322A JPS57148322A (en) 1982-09-13
JPS6320368B2 true JPS6320368B2 (en) 1988-04-27

Family

ID=12395763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3377381A Granted JPS57148322A (en) 1981-03-11 1981-03-11 Self-cooling stationary inductor coil winding

Country Status (1)

Country Link
JP (1) JPS57148322A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2851912B1 (en) * 2013-09-23 2020-06-24 ABB Power Grids Switzerland AG Static electric induction system
EP4210076A1 (en) * 2022-01-05 2023-07-12 Hitachi Energy Switzerland AG Spacer element for a winding, kit, method for manufacturing a winding and winding

Also Published As

Publication number Publication date
JPS57148322A (en) 1982-09-13

Similar Documents

Publication Publication Date Title
US4000482A (en) Transformer with improved natural circulation for cooling disc coils
US3902146A (en) Transformer with improved liquid cooled disc winding
TWI623950B (en) Static induction
US3548354A (en) Transformer having ventilating passages
US4207550A (en) Winding structure of electric devices
WO2015040213A1 (en) Static electric induction system
US2912658A (en) Turburlence promoters for fluid cooled electrical apparatus
JPS6320368B2 (en)
US2116404A (en) Electrical induction apparatus
EP0146948B1 (en) Electromagnetic induction apparatus
US4477791A (en) Spacer block pattern for electrical inductive apparatus
JP2998407B2 (en) Cooling structure of electromagnetic induction disk winding
JP7255394B2 (en) Induction winding device
JPS6113365B2 (en)
JP2953329B2 (en) Winding structure for induction magnet
JPH09293617A (en) Guided spiral
JP3671778B2 (en) Transformer
JPH0822918A (en) Transformer winding
JP2697600B2 (en) Winding structure for induction magnet
JPS593545Y2 (en) Forced cooling windings for stationary equipment
JP2003077737A (en) Winding of electric equipment
JP2508994B2 (en) Induction electric disk winding
JPS59155109A (en) Winding for natural cooling induction electric apparatus
JPS59155110A (en) Winding for natural cooling induction electric apparatus
JPH0864426A (en) Stationary induction device