JPH0817645A - Gas insulation transformer - Google Patents

Gas insulation transformer

Info

Publication number
JPH0817645A
JPH0817645A JP6146864A JP14686494A JPH0817645A JP H0817645 A JPH0817645 A JP H0817645A JP 6146864 A JP6146864 A JP 6146864A JP 14686494 A JP14686494 A JP 14686494A JP H0817645 A JPH0817645 A JP H0817645A
Authority
JP
Japan
Prior art keywords
gas
winding
insulating
insulating cylinder
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6146864A
Other languages
Japanese (ja)
Inventor
Masahiro Hanai
正広 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6146864A priority Critical patent/JPH0817645A/en
Publication of JPH0817645A publication Critical patent/JPH0817645A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a gas insulation transformer of high cooling efficiency and reliability wherein the capacity of a blower is not increased even in the case that the build of winding is large. CONSTITUTION:Insulating cylinders 2a, 2b are arranged inside and outside the winding direction of a winding 1 constituted of a plurality of sections 1s. Gaps 4 sufficient to make insulating gas flow are formed between adjacent sections 1s of the winding 1. An insulating cylinder 21 provided with holes is arranged between the inner insulating cylinder 2a and the winding 1. A cooling duct 31 is formed between the insulating cylinder 21 provided with holes and the inner insulating cylinder 2a. Penetrating holes 22 are formed in a plurality of portions in the vertical direction facing the gaps 4 between the sections 1s. The area of the penetrating holes in the upper part is set larger than the area of the penetrating holes in the lower part. The interval of the cooling duct 31 is set larger than the interval between the insulating cylinder 21 provided with holes and the winding 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、巻線間または巻線内部
に冷却用のガス流路を持つガス絶縁変圧器に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas insulated transformer having a gas flow path for cooling between windings or inside the windings.

【0002】[0002]

【従来の技術】近年、防災上の理由から油絶縁変圧器に
代わる変圧器として、不燃性絶縁ガスを絶縁媒体とした
ガス絶縁変圧器が注目されている。ガス絶縁変圧器の巻
線にはいろいろな構成があるが、その一つに絶縁ガスで
冷却と絶縁の両方を行わせるドライタイプのものがあ
る。このドライタイプのガス絶縁変圧器は、液体の冷却
媒体と組み合わせて構成するセミプールタイプやスプレ
ータイプならびに冷却と絶縁を別々に行うセパレートタ
イプのガス絶縁変圧器に比べ、高価な液体の冷却媒体を
使用しないため構成が簡単になり、安価で信頼性の高い
変圧器が製作でき、高電圧大容量の変圧器にも適用でき
る。このドライタイプのガス冷却式ガス絶縁変圧器は、
従来の油絶縁変圧器とほぼ同様に、銅製のワイヤに高分
子フィルムを重ねて巻いた素線を用いたものであり、冷
却および絶縁用媒体を絶縁油から絶縁ガスに変えたもの
である。
2. Description of the Related Art In recent years, a gas-insulated transformer using an incombustible insulating gas as an insulating medium has been attracting attention as a transformer replacing an oil-insulated transformer for disaster prevention reasons. There are various configurations for the windings of the gas insulation transformer, and one of them is the dry type that performs both cooling and insulation with an insulation gas. This dry-type gas-insulated transformer uses a more expensive liquid cooling medium than the semi-pool type or spray type that is combined with a liquid cooling medium and the separate-type gas-insulated transformer that separates cooling and insulation. Since it is not used, the structure is simple, an inexpensive and highly reliable transformer can be manufactured, and it can be applied to a high-voltage and large-capacity transformer. This dry type gas cooled gas insulated transformer
Almost the same as the conventional oil-insulated transformer, a wire made of a polymer wire and a copper wire wound thereon is used, and the cooling and insulating medium is changed from insulating oil to insulating gas.

【0003】しかしながら、このように、冷却および絶
縁用媒体を絶縁油から絶縁ガスに変更するためには、絶
縁ガスの冷却用流量を絶縁油の冷却用流量に比べて各段
に増大させる必要がある。すなわち、絶縁ガスは絶縁油
に比べ熱容量が小さいため、同じ電圧電流容量の変圧器
を構成する場合には、絶縁油に比べて単位時間当たりは
るかに大量のガスを循環させなければ、巻線で発生する
損失による熱を冷却できない。そのため、従来、巻線の
寸法に合わせて、図6および図7に示すような冷却方式
が採用されている。
However, in order to change the cooling and insulating medium from insulating oil to insulating gas as described above, it is necessary to increase the cooling gas flow rate of the insulating gas at each stage as compared with the cooling oil flow rate. is there. In other words, insulating gas has a smaller heat capacity than insulating oil, so if you configure a transformer with the same voltage and current capacity, you must circulate a much larger amount of gas per unit time than in insulating oil, and the winding The heat generated by the generated loss cannot be cooled. Therefore, conventionally, a cooling method as shown in FIGS. 6 and 7 is adopted according to the size of the winding.

【0004】まず、図6は、巻線のビルド(巻回方向の
厚さ寸法)が小さい場合に採用される冷却方式のガス絶
縁変圧器を示している。この冷却方式は、巻線の内周面
と外周面に沿ってガスを大量に流す方式であり、一般的
にダクトフロー方式と呼ばれている。すなわち、図6に
示すように、複数のセクション1sからなる巻線1の巻
回方向内外には、絶縁筒2a,2bがそれぞれ配置さ
れ、この内外の絶縁筒2a,2bと巻線1との間に冷却
ダクト3a,3bがそれぞれ形成されている。
First, FIG. 6 shows a gas insulation transformer of a cooling system which is adopted when the build of the winding (thickness in the winding direction) is small. This cooling method is a method of flowing a large amount of gas along the inner peripheral surface and the outer peripheral surface of the winding, and is generally called a duct flow method. That is, as shown in FIG. 6, insulating cylinders 2a and 2b are respectively arranged inside and outside the winding direction of the winding 1 including a plurality of sections 1s, and the insulating cylinders 2a and 2b inside and outside the winding 1 and the winding 1 are separated from each other. Cooling ducts 3a and 3b are formed therebetween.

【0005】このように構成された図6のガス絶縁変圧
器において、巻線1で発生した熱量は、絶縁ガスのガス
流10によって奪われる。すなわち、巻線1の内外に形
成された冷却ダクト3a,3bの下部に供給されたガス
が、巻線1の内周面と外周面に沿って流れるガス流10
となり、このガス流10によって、巻線1の内周面と外
周面の熱が奪われ、この部分の冷却が行われる。そし
て、このように巻線1の内周面と外周面が冷却される結
果、この部分のガスの温度に対して、巻線1のビルド方
向に温度勾配を生じ、巻線1のビルド中央部分で発生し
た熱量は、ビルド方向に伝達される。
In the gas-insulated transformer of FIG. 6 constructed as described above, the amount of heat generated in the winding 1 is taken away by the gas flow 10 of the insulating gas. That is, the gas supplied to the lower portions of the cooling ducts 3 a and 3 b formed inside and outside the winding 1 flows along the inner peripheral surface and the outer peripheral surface of the winding 1 in the gas flow 10
Thus, the gas flow 10 removes heat from the inner peripheral surface and the outer peripheral surface of the winding 1 and cools this portion. As a result of cooling the inner peripheral surface and the outer peripheral surface of the winding wire 1 in this way, a temperature gradient is generated in the build direction of the winding wire 1 with respect to the temperature of the gas in this portion, and the build center portion of the winding wire 1 is formed. The amount of heat generated at is transmitted in the build direction.

【0006】ところで、以上のように、巻線1のビルド
方向に温度勾配を生じると、巻線1のビルド中央部分の
温度が高くなる。この巻線1のビルドが小さい場合に
は、巻線1のビルド中央部分の温度が絶縁物の耐熱温度
を越えることがないので問題とならない。しかし、巻線
1のビルドが大きくなると、ビルド中央部分の温度が絶
縁物の耐熱温度を越える可能性がでてくる。
By the way, when a temperature gradient is generated in the build direction of the winding 1 as described above, the temperature at the center of the build of the winding 1 increases. When the build of the winding 1 is small, there is no problem because the temperature of the central portion of the build of the winding 1 does not exceed the heat resistant temperature of the insulator. However, when the build of the winding 1 becomes large, the temperature at the center of the build may exceed the heat resistant temperature of the insulator.

【0007】そのため、巻線1のビルドが、以上のよう
なダクトフロー方式で耐熱温度に問題を生じるほど大き
い場合には、図7に示すような冷却方式が採用される。
すなわち、図7に示すように、図6と同様に、複数のセ
クション1sが軸方向に積層されて構成された巻線1の
巻回方向内外には、絶縁筒2a,2bがそれぞれ配置さ
れ、この内外の絶縁筒2a,2bと巻線1との間に冷却
ダクト3a,3bがそれぞれ形成されている。また、巻
線1の隣接するセクション1s間には、絶縁ガスを流す
のに十分な間隙4がそれぞれ形成され、ある一定数のセ
クション1s毎の間隙4にガス止めカラー5が取り付け
られている。なお、図中6は、内外の絶縁筒2a,2b
と巻線1との間に配置されて各部の間隔を保持するダク
トピースである。
Therefore, when the build of the winding 1 is large enough to cause a problem in the heat resistant temperature in the above duct flow system, the cooling system as shown in FIG. 7 is adopted.
That is, as shown in FIG. 7, as in FIG. 6, insulating cylinders 2a and 2b are arranged inside and outside the winding direction of the winding wire 1 configured by stacking a plurality of sections 1s in the axial direction, Cooling ducts 3a and 3b are formed between the inner and outer insulating cylinders 2a and 2b and the winding 1, respectively. Further, between the adjacent sections 1s of the winding 1, gaps 4 sufficient for flowing an insulating gas are respectively formed, and gas stop collars 5 are attached to the gaps 4 for each certain number of sections 1s. In addition, 6 in the drawing is the inner and outer insulating cylinders 2a and 2b.
Is a duct piece that is disposed between the coil 1 and the winding 1 to maintain the intervals between the respective parts.

【0008】このように構成された図7のガス絶縁変圧
器においては、巻線1の内外に形成された冷却ダクト3
a,3bと、セクション1s間の間隙4中に、ガス流1
0が流れるとともに、ガス止めカラー5により、ガス流
10の流れが逆転することにより、巻線1全体としてジ
グザグにガス流10が流れる。そのため、巻線1で発生
した熱量は、巻線1の内周面と外周面から奪われるとと
もに、セクション1sの軸方向両側の表面から奪われ、
したがって、巻線1のセクション1sの表面全体が冷却
されることになる。すなわち、この図7の冷却方式によ
れば、図6の冷却方式とは異なり、巻線1のビルド中央
部分を冷却することができるため、巻線1のビルド中央
部分の温度が絶縁物の耐熱温度を越えない構造にするこ
とが可能である。
In the gas-insulated transformer of FIG. 7 constructed in this way, the cooling duct 3 formed inside and outside the winding 1 is formed.
In the gap 4 between a and 3b and the section 1s, the gas flow 1
0 flows and the gas stop collar 5 reverses the flow of the gas flow 10, so that the gas flow 10 flows in a zigzag manner as a whole of the winding 1. Therefore, the amount of heat generated in the winding wire 1 is robbed from the inner peripheral surface and the outer peripheral surface of the winding wire 1 and from the surfaces on both axial sides of the section 1s,
Therefore, the entire surface of the section 1s of the winding 1 is cooled. That is, according to the cooling method of FIG. 7, unlike the cooling method of FIG. 6, the build central portion of the winding 1 can be cooled, so that the temperature of the build central portion of the winding 1 is higher than that of the insulator. It is possible to have a structure that does not exceed the temperature.

【0009】また、図8は、図6および図7に示すよう
な従来のガス絶縁変圧器の全体を示す図であり、絶縁ガ
スが充填されたタンク7内に、鉄心8の周囲に巻線1と
絶縁筒2を単数または複数層(図では複数層)配置して
なる変圧器中身が収納され、変圧器本体が構成されてい
る。この場合、図中9は、巻線1の外側に設けられて圧
力差保持用のバッフルである。さらに、このタンク7の
外部には、冷却器11と送風器12が配置され、ガス配
管13を介してタンク7内と連通しており、ガス循環系
が構成されている。
FIG. 8 is a diagram showing the entire conventional gas-insulated transformer as shown in FIGS. 6 and 7, in which a coil 7 is wound around an iron core 8 in a tank 7 filled with an insulating gas. The transformer main body is configured by accommodating the contents of a transformer formed by arranging 1 and the insulating cylinder 2 in a single layer or a plurality of layers (a plurality of layers in the figure). In this case, reference numeral 9 in the drawing is a baffle provided outside the winding 1 for holding the pressure difference. Further, outside the tank 7, a cooler 11 and a blower 12 are arranged and communicate with the inside of the tank 7 through a gas pipe 13 to form a gas circulation system.

【0010】このような図8に示すガス循環系において
は、次のようにしてガス絶縁変圧器の冷却が行われる。
すなわち、冷却器11によって冷却された絶縁ガスを送
風器12によってタンク7内に供給し、巻線1部分を冷
却した後、この絶縁ガスを回収して冷却器11によって
再び冷却するという冷却サイクルを繰り返すことによ
り、ガス絶縁変圧器の連続的な冷却を行う。
In the gas circulation system shown in FIG. 8, the gas insulation transformer is cooled as follows.
That is, the cooling cycle in which the insulating gas cooled by the cooler 11 is supplied into the tank 7 by the blower 12 to cool the winding 1 portion, and then the insulating gas is recovered and cooled again by the cooler 11 is used. By repeating, the gas-insulated transformer is continuously cooled.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、図7に
示すような従来の冷却方式のガス絶縁変圧器には、次の
ような問題点がある。すなわち、図7に示すように、巻
線1全体としてガス流10をジグザグに流した場合、巻
線1のセクション1sの表面全体を冷却できる反面、ガ
ス流路の全長が長くなり、ガス流の圧力損失が大きくな
る。そのため、図8に示すガス循環系において、巻線1
を十分に冷却可能な大量のガスを循環するためには、こ
の圧力損失に対応できるような、容量の大きい送風器1
2が必要になる。さらに、図8に示すガス循環系におい
て、巻線1部分における圧力損失が大きい場合には、巻
線1の外側で圧力差を保つバッフル9に大きな圧力が加
わることになる。この場合には、バッフル9の機械的強
度を十分に確保する必要があるため、部品が多くなり、
組み立て時間の増加や、コストの増大につながってしま
う。しかも、容量の大きい送風器12は、容量の増加と
共に大型化・高価格化する。したがって、大きな容量を
持つ送風器12を用いることで、ガス絶縁変圧器全体が
大型化・高価格化してしまうことになる。
However, the conventional cooling type gas-insulated transformer as shown in FIG. 7 has the following problems. That is, as shown in FIG. 7, when the gas flow 10 is made to flow in a zigzag manner as a whole of the winding 1, the entire surface of the section 1s of the winding 1 can be cooled, but the total length of the gas flow path becomes long and the gas flow Pressure loss increases. Therefore, in the gas circulation system shown in FIG.
In order to circulate a large amount of gas that can sufficiently cool the fan, a blower with a large capacity that can handle this pressure loss is used.
2 is needed. Further, in the gas circulation system shown in FIG. 8, when the pressure loss in the winding 1 portion is large, a large pressure is applied to the baffle 9 that maintains the pressure difference outside the winding 1. In this case, since it is necessary to secure sufficient mechanical strength of the baffle 9, the number of parts increases,
This leads to an increase in assembly time and an increase in cost. Moreover, the blower 12 having a large capacity increases in size and price as the capacity increases. Therefore, by using the blower 12 having a large capacity, the gas insulated transformer as a whole becomes large in size and expensive.

【0012】本発明は、以上のような従来技術の問題点
を解決するために提案されたものであり、その目的は、
巻線のビルドが大きい場合であっても送風器の容量を増
大させることがない、冷却効率および信頼性の高いガス
絶縁変圧器を提供することである。
The present invention has been proposed in order to solve the above problems of the prior art, and its purpose is to:
It is an object of the present invention to provide a gas-insulated transformer with high cooling efficiency and high reliability, which does not increase the capacity of the blower even when the build of windings is large.

【0013】[0013]

【課題を解決するための手段】本発明は、絶縁ガスを充
填したタンク内部に、鉄心とこの鉄心軸方向周囲に複数
のセクションを積層する形で構成した巻線を配置し、セ
クション間長手方向にガスを流す間隙を設けてなるガス
絶縁変圧器において、巻線近傍に絶縁筒を次のように配
置し、構成したことを特徴としている。
According to the present invention, an iron core and a winding formed by laminating a plurality of sections around the axial direction of the iron core are arranged inside a tank filled with an insulating gas, and a longitudinal direction between the sections is set. In a gas-insulated transformer having a gap through which a gas flows, an insulating cylinder is arranged in the vicinity of the winding as follows and is configured.

【0014】請求項1記載のガス絶縁変圧器は、巻線の
巻回方向内外に第1と第2の絶縁筒をそれぞれ配置し、
この第1と第2の絶縁筒のいずれか一方と巻線との間に
第3の絶縁筒を配置してこの第3の絶縁筒と隣接する第
1または第2の絶縁筒との間に絶縁ガスが流れるダクト
を形成したものである。そして、第3の絶縁筒の軸方向
に複数の貫通孔を設けたことを特徴としている。
According to another aspect of the gas-insulated transformer of the present invention, first and second insulating cylinders are arranged inside and outside the winding direction of the winding, respectively.
A third insulating cylinder is arranged between one of the first and second insulating cylinders and the winding, and between the third insulating cylinder and the adjacent first or second insulating cylinder. A duct is formed through which insulating gas flows. A plurality of through holes are provided in the axial direction of the third insulating cylinder.

【0015】請求項2〜4記載のガス絶縁変圧器は、特
に、複数の巻線を内外に配置したガス絶縁変圧器におい
て、巻線近傍に絶縁筒を次のように配置し、構成したこ
とを特徴としている。
The gas-insulated transformer according to any one of claims 2 to 4, in particular, in a gas-insulated transformer having a plurality of windings arranged inside and outside, the insulating cylinder is arranged near the winding as follows. Is characterized by.

【0016】請求項2記載のガス絶縁変圧器は、複数の
巻線の各々の巻回方向内外に絶縁筒をそれぞれ配置し、
隣接する内外の巻線の間の隣接する2つの絶縁筒の間に
絶縁ガスが流れるダクトを形成したものである。そし
て、このダクトを構成するいずれか一方の絶縁筒の軸方
向に複数の貫通孔を設けたことを特徴としている。
According to another aspect of the gas-insulated transformer of the present invention, insulating cylinders are arranged inside and outside each winding direction of the plurality of windings.
A duct in which an insulating gas flows is formed between two adjacent insulating cylinders between adjacent inner and outer windings. Further, it is characterized in that a plurality of through holes are provided in the axial direction of any one of the insulating cylinders constituting this duct.

【0017】請求項3記載のガス絶縁変圧器は、複数の
巻線の各々の巻回方向内外に絶縁筒をそれぞれ配置し、
隣接する内外の巻線の間の隣接する2つの絶縁筒の間に
絶縁ガスが流れるダクトを形成したものである。そし
て、このダクトを構成する両方の絶縁筒の軸方向に複数
の貫通孔を設けたことを特徴としている。
According to another aspect of the gas-insulated transformer of the present invention, insulating cylinders are arranged inside and outside each winding direction of the plurality of windings.
A duct in which an insulating gas flows is formed between two adjacent insulating cylinders between adjacent inner and outer windings. Further, it is characterized in that a plurality of through holes are provided in the axial direction of both of the insulating cylinders constituting this duct.

【0018】請求項4記載のガス絶縁変圧器は、複数の
巻線間には絶縁筒を配置せずに、最も内側の巻線の内側
と最も外側の巻線の外側に第1と第2の絶縁筒をそれぞ
れ配置し、この第1と第2の絶縁筒のいずれか一方とこ
の絶縁筒が付属する巻線との間に第3の絶縁筒を配置し
てこの第3の絶縁筒と隣接する第1または第2の絶縁筒
との間にガスを流すダクトを形成したものである。そし
て、第3の絶縁筒の軸方向に複数の貫通孔を設けたこと
を特徴としている。
According to another aspect of the gas-insulated transformer of the present invention, the insulating cylinder is not arranged between the plurality of windings, and the first and second windings are provided inside the innermost winding and outside the outermost winding. Insulating cylinders are respectively arranged, and a third insulating cylinder is arranged between one of the first and second insulating cylinders and a winding wire to which the insulating cylinder is attached, and the third insulating cylinder is A duct for flowing gas is formed between the first and second insulating cylinders adjacent to each other. A plurality of through holes are provided in the axial direction of the third insulating cylinder.

【0019】請求項5、6記載のガス絶縁変圧器は、請
求項1〜4記載のいずれかのガス絶縁変圧器において、
ダクトの間隔または絶縁筒の貫通孔の面積を次のように
設定したことを特徴としている。すなわち、請求項5記
載のガス絶縁変圧器は、2つの絶縁筒の間に形成される
ダクトの間隔を、貫通孔を設けた絶縁筒とこれに対向す
る巻線との間の間隔より大きくしたことを特徴としてい
る。請求項6記載のガス絶縁変圧器は、貫通孔を設けた
絶縁筒の単位面積あたりの貫通孔の面積を、絶縁筒の下
部から上部に向かって大きくしたことを特徴としてい
る。
A gas-insulated transformer according to claims 5 and 6 is the gas-insulated transformer according to any one of claims 1 to 4,
The feature is that the intervals of the ducts or the areas of the through holes of the insulating cylinder are set as follows. That is, in the gas-insulated transformer according to claim 5, the distance between the ducts formed between the two insulating cylinders is larger than the distance between the insulating cylinder having the through hole and the winding facing the insulating cylinder. It is characterized by that. The gas-insulated transformer according to claim 6 is characterized in that the area of the through-hole per unit area of the insulating cylinder provided with the through-hole is increased from the lower part to the upper part of the insulating cylinder.

【0020】[0020]

【作用】以上のような構成を有する本発明のガス絶縁変
圧器によれば、次のような作用が得られる。
According to the gas-insulated transformer of the present invention having the above structure, the following effects can be obtained.

【0021】すなわち、本発明のガス絶縁変圧器におい
ては、2つの絶縁筒の間に形成されるダクトにガスを供
給することにより、絶縁筒の貫通孔からガスが巻線の巻
回方向に流れて巻線を冷却する。本発明において、絶縁
筒の貫通孔が十分に大きい場合、ガスの流れによる圧力
損失は、ほとんどが絶縁筒の貫通孔を通過する際と巻線
のセクション間の間隙を通過する際に発生することにな
るが、本発明において、ガスはこれらの圧力損失部分を
一回ずつ通過するだけであるため、圧力損失をできる限
り小さくすることができる。すなわち、本発明におい
て、部分的な圧力損失は大きいものの、この圧力損失部
分においてガスは巻線内を並列に流れるため、ガスが巻
線内部をジグザグに流れる場合に比べて、巻線のガス流
路全体の入口から出口までの圧力損失の総和は小さくな
る。
That is, in the gas-insulated transformer of the present invention, by supplying gas to the duct formed between the two insulating cylinders, the gas flows from the through hole of the insulating cylinder in the winding direction of the winding. To cool the winding. In the present invention, when the through hole of the insulating cylinder is sufficiently large, most of the pressure loss due to the flow of gas occurs when passing through the through hole of the insulating cylinder and when passing through the gap between the winding sections. However, in the present invention, since the gas passes through these pressure loss portions only once, the pressure loss can be made as small as possible. That is, in the present invention, although the partial pressure loss is large, the gas flows in the winding in parallel in this pressure loss portion, so that the gas flow in the winding is greater than that in the case where the gas flows in the zigzag inside the winding. The total pressure loss from the inlet to the outlet of the entire channel is small.

【0022】したがって、本発明においては、巻線で発
生する熱量を奪って冷却するために大量のガスを流した
場合でも圧力損失をできる限り小さくでき、冷却効率を
向上することができる。そしてまた、巻線の外側に設け
られる圧力差保持用のバッフルに加わる圧力をできる限
り小さくできるため、このバッフルをできる限り簡略化
できる。さらに、送風器の容量をできる限り小さくでき
るため、送風器を小型化・低価格化することができる。
その結果、ガス絶縁変圧器全体を小型化・低価格化する
ことができる。
Therefore, in the present invention, the pressure loss can be minimized and the cooling efficiency can be improved even when a large amount of gas is passed in order to remove the amount of heat generated in the winding for cooling. Further, since the pressure applied to the pressure difference holding baffle provided outside the winding can be made as small as possible, the baffle can be simplified as much as possible. Furthermore, since the capacity of the blower can be made as small as possible, the blower can be downsized and the price can be reduced.
As a result, it is possible to reduce the size and cost of the entire gas insulated transformer.

【0023】請求項1記載の発明によれば、第3の絶縁
筒と隣接する第1または第2の絶縁筒の間に形成される
ダクトにガスを供給することにより、このガスが、第3
の絶縁筒の貫通孔から巻線のセクション間の間隙に導か
れ、この間隙を巻回方向に流れて巻線を冷却する。ここ
で、第3の絶縁筒を巻回方向内側である第1の絶縁筒側
に設けた場合には、ガスが巻線の巻回方向内側から外側
に向かって流れることになる。また、第3の絶縁筒を巻
回方向外側である第2の絶縁筒側に設けた場合には、ガ
スが巻線の巻回方向外側から内側に向かって流れること
になる。
According to the first aspect of the present invention, by supplying gas to the duct formed between the third insulating cylinder and the first or second insulating cylinder adjacent to the third insulating cylinder, the gas is converted into the third insulating cylinder.
It is guided from the through hole of the insulating cylinder to the gap between the sections of the winding, and flows in this winding direction in the winding direction to cool the winding. Here, when the third insulating cylinder is provided on the side of the first insulating cylinder which is the inner side in the winding direction, the gas flows from the inner side to the outer side in the winding direction of the winding. Further, when the third insulating cylinder is provided on the second insulating cylinder side which is the outer side in the winding direction, the gas flows from the outer side to the inner side in the winding direction of the winding.

【0024】請求項2記載の発明によれば、巻線の間の
隣接する2つの絶縁筒の間に形成されるダクトにガスを
供給することにより、このガスが、一方の絶縁筒の貫通
孔からこの絶縁筒が付属する巻線のセクション間の間隙
に導かれ、この間隙を巻回方向に流れ、内側または外側
の巻線を冷却する。ここで、隣接する2つの絶縁筒のう
ちの内側の絶縁筒(内側の巻線の外側の絶縁筒)に貫通
孔を設けた場合には、ガスが内側の巻線の巻回方向外側
から内側に向かって流れ、この内側の巻線を冷却するこ
とになる。また、隣接する2つの絶縁筒のうちの外側の
絶縁筒(外側の巻線の内側の絶縁筒)に貫通孔を設けた
場合には、ガスが外側の巻線の巻回方向内側から外側に
向かって流れ、この外側の巻線を冷却することになる。
According to the second aspect of the invention, the gas is supplied to the duct formed between the two insulating cylinders adjacent to each other between the windings, so that the gas is passed through the through hole of one insulating cylinder. Is guided to the gap between the sections of the winding to which it is attached and flows in this winding direction in the winding direction, cooling the inner or outer winding. Here, when the through hole is provided in the inner insulating cylinder (the outer insulating cylinder of the inner winding) of the two adjacent insulating cylinders, the gas flows from the outer side to the inner side in the winding direction of the inner winding. Will flow toward and cool this inner winding. Further, when the through hole is provided in the outer insulating cylinder (the inner insulating cylinder of the outer winding) of the two adjacent insulating cylinders, the gas flows from the inner side to the outer side in the winding direction of the outer winding. Flow towards and cool this outer winding.

【0025】請求項3記載の発明によれば、巻線の間の
隣接する2つの絶縁筒の間に形成されるダクトにガスを
供給することにより、このガスが、両方の絶縁筒の貫通
孔から各絶縁筒が付属する各巻線のセクション間の間隙
に導かれ、この間隙を巻回方向に流れ、各巻線をそれぞ
れ冷却する。すなわち、ガスは、両方の絶縁筒に分岐す
る形で、内側の絶縁筒(内側の巻線の外側の絶縁筒)の
貫通孔から内側の巻線の巻回方向内側に向かって流れて
この内側の巻線を冷却すると同時に、外側の絶縁筒(外
側の巻線の内側の絶縁筒)の貫通孔から外側の巻線の巻
回方向内側に向かって流れてこの外側の巻線を冷却する
ことになる。
According to the third aspect of the present invention, the gas is supplied to the duct formed between the two insulating cylinders adjacent to each other between the windings, so that the gas passes through the holes of both insulating cylinders. Is guided to the gap between the sections of the respective windings to which the respective insulating cylinders are attached, and flows in this winding direction in the winding direction to cool the respective windings. That is, the gas is branched into both insulating cylinders, flows from the through hole of the inner insulating cylinder (outer insulating cylinder of the inner winding) toward the inner side in the winding direction of the inner winding, Of the outer winding (the inner insulating cylinder of the outer winding), and at the same time, the outer winding is cooled by flowing toward the inner side in the winding direction of the outer winding. become.

【0026】請求項4記載の発明によれば、第3の絶縁
筒と隣接する第1または第2の絶縁筒の間に形成される
ダクトにガスを供給することにより、このガスが、第3
の絶縁筒の貫通孔から複数の巻線のセクション間の間隙
に導かれ、この間隙を巻回方向に流れて複数の巻線を順
次冷却する。ここで、第3の絶縁筒を巻回方向内側であ
る第1の絶縁筒側に設けた場合には、ガスが最も内側の
巻線の巻回方向内側から外側に向かって流れることにな
る。また、第3の絶縁筒を巻回方向外側である第2の絶
縁筒側に設けた場合には、ガスが最も外側の巻線の巻回
方向外側から内側に向かって流れることになる。
According to the fourth aspect of the invention, the gas is supplied to the duct formed between the third insulating cylinder and the first or second insulating cylinder adjacent to the third insulating cylinder.
It is guided from the through hole of the insulating cylinder to the gap between the sections of the plurality of windings, and flows through the gap in the winding direction to sequentially cool the plurality of windings. Here, when the third insulating cylinder is provided on the inner side in the winding direction, that is, on the side of the first insulating cylinder, the gas flows from the inner side to the outer side in the winding direction of the innermost winding. Further, when the third insulating cylinder is provided on the second insulating cylinder side which is the outer side in the winding direction, the gas flows from the outer side in the winding direction of the outermost winding toward the inner side.

【0027】請求項5記載の発明によれば、2つの絶縁
筒の間に形成されるダクトの間隔を、貫通孔を設けた絶
縁筒とこれに対向する巻線との間の間隔より大きくする
ことにより、絶縁筒の貫通孔から吹き出したガスが、対
向する巻線のセクション間の間隙内に流れ込み易くな
る。そのため、冷却効率を向上することができる。請求
項6記載の発明によれば、絶縁筒の単位面積あたりの貫
通孔の面積を、絶縁筒の下部から上部に向かって大きく
することにより、絶縁筒の上下方向におけるガスの吹き
出し量を均一化することができる。すなわち、上下方向
におけるガスの噴出圧力は、上部に向かって小さくなる
ため、貫通孔の面積をこの噴出圧力とは逆に上部に向か
って大きくすることにより、絶縁筒の上下で均一な吹き
出し量を確保することができる。したがって、ガス絶縁
変圧器全体の冷却効率を向上することができる。
According to the invention of claim 5, the interval of the duct formed between the two insulating cylinders is made larger than the interval between the insulating cylinder having the through hole and the winding facing the insulating cylinder. As a result, the gas blown out from the through hole of the insulating cylinder easily flows into the gap between the sections of the windings facing each other. Therefore, the cooling efficiency can be improved. According to the invention described in claim 6, by increasing the area of the through hole per unit area of the insulating cylinder from the lower part to the upper part of the insulating cylinder, the amount of gas blown out in the vertical direction of the insulating cylinder is made uniform. can do. That is, since the gas ejection pressure in the vertical direction becomes smaller toward the upper part, the area of the through hole is made larger toward the upper part, which is the opposite of this ejection pressure. Can be secured. Therefore, the cooling efficiency of the entire gas insulated transformer can be improved.

【0028】[0028]

【実施例】以下に、本発明によるガス絶縁変圧器の複数
の実施例について、図1〜図5を参照して具体的に説明
する。なお、図6〜図8に示した従来技術と同一部分に
は同一符号を付している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A plurality of embodiments of the gas insulation transformer according to the present invention will be specifically described below with reference to FIGS. The same parts as those of the conventional technique shown in FIGS. 6 to 8 are designated by the same reference numerals.

【0029】[1]第1実施例…図1、図2 図1は、本発明によるガス絶縁変圧器の第1実施例を示
す図である。この第1実施例は、特に、請求項1、5、
および6記載の発明を適用した実施例である。すなわ
ち、本実施例ではまず、図1に示すように、複数のセク
ション1sが積層されて構成された巻線1の巻回方向内
外に、本発明の第1と第2の絶縁筒である絶縁筒2a,
2bがそれぞれ配置されるとともに、巻線1の隣接する
セクション1s間には、その長手方向に絶縁ガスを流す
のに十分な間隙4がそれぞれ形成されている。また、本
実施例においては、内側の絶縁筒2aと巻線1との間に
本発明の第3の絶縁筒である孔付き絶縁筒21が配置さ
れており、この孔付き絶縁筒21と内側の絶縁筒2aと
の間に冷却ダクト31が形成されている。一方、外側の
絶縁筒2bと巻線1との間には冷却ダクト3が形成され
ている。さらに、内側の絶縁筒2aと孔付き絶縁筒21
との間、孔付き絶縁筒21と巻線1との間、および巻線
1と外側の絶縁筒2bとの間には、図7に示すようなダ
クトピース6が設けられ、各部の間隔が保持されてい
る。
[1] First Embodiment FIG. 1 and FIG. 2 FIG. 1 is a diagram showing a first embodiment of a gas insulation transformer according to the present invention. This first embodiment is particularly applicable to claims 1, 5 and
7 is an embodiment to which the inventions described in 6 and 6 are applied. That is, in the present embodiment, first, as shown in FIG. 1, the insulation of the first and second insulation cylinders of the present invention is provided inside and outside the winding direction of the winding wire 1 configured by laminating a plurality of sections 1s. Tube 2a,
2b are respectively arranged, and between the adjacent sections 1s of the winding 1, gaps 4 sufficient to allow the insulating gas to flow are formed in the longitudinal direction thereof. Further, in the present embodiment, the insulating cylinder with a hole 21 which is the third insulating cylinder of the present invention is arranged between the inner insulating cylinder 2a and the winding 1, and the insulating cylinder with a hole 21 and the inner side. A cooling duct 31 is formed between the cooling duct 31 and the insulating cylinder 2a. On the other hand, a cooling duct 3 is formed between the outer insulating cylinder 2b and the winding 1. Further, the inner insulating cylinder 2a and the insulating cylinder 21 with holes are
Between the insulating cylinder with hole 21 and the winding 1, and between the winding 1 and the outer insulating cylinder 2b, a duct piece 6 as shown in FIG. Is held.

【0030】そして、本実施例の孔付き絶縁筒21に
は、図1に示すように、巻線1のセクション1s間の間
隙4と対向する上下方向の複数箇所に貫通孔22が設け
られている。この貫通孔22は、図2に示すように、円
周方向に等間隔に配置された円状の貫通孔である。この
場合、孔付き絶縁筒21の上部の貫通孔22は、下部の
貫通孔22よりも大径とされており、したがって、上部
の貫通孔22の面積は下部の貫通孔22の面積よりも大
きくされている。また、これらの貫通孔22は、図示し
ていないダクトピース6と重ならないように配置されて
いる。さらに、図1に示すように、内側の絶縁筒2aと
この孔付き絶縁筒21の間に形成される冷却ダクト31
の間隔は、孔付き絶縁筒21と巻線1との間の間隔より
大きくされている。一方、図中23は、巻線1の上下両
端部に設けられた端部ガス止めであり、この上下の端部
ガス止め23は、内外の絶縁筒2a,2bとともに、巻
線1を囲むガス空間を周囲の空間から区分している。す
なわち、この上下の端部ガス止め23は、冷却ダクト3
1へのガス供給口24と冷却ダクト3からのガス排出口
25を残して巻線1の上下両端部を覆っている。
As shown in FIG. 1, the insulating cylinder 21 with holes of this embodiment is provided with through holes 22 at a plurality of vertical positions facing the gaps 4 between the sections 1s of the winding 1. There is. As shown in FIG. 2, the through holes 22 are circular through holes arranged at equal intervals in the circumferential direction. In this case, the through-hole 22 in the upper part of the insulating cylinder with hole 21 has a larger diameter than the through-hole 22 in the lower part. Therefore, the area of the through-hole 22 in the upper part is larger than the area of the through-hole 22 in the lower part. Has been done. Further, these through holes 22 are arranged so as not to overlap the duct piece 6 (not shown). Further, as shown in FIG. 1, a cooling duct 31 formed between the inner insulating cylinder 2a and the insulating cylinder 21 with holes.
Is larger than the distance between the insulating cylinder with hole 21 and the winding 1. On the other hand, reference numeral 23 in the figure denotes end gas stoppers provided at both upper and lower ends of the winding 1. The upper and lower end gas stoppers 23 surround the winding 1 together with the inner and outer insulating cylinders 2a and 2b. The space is separated from the surrounding space. That is, the upper and lower end gas stoppers 23 are provided in the cooling duct 3.
The upper and lower ends of the winding 1 are covered, leaving the gas supply port 24 for the coil 1 and the gas outlet 25 for the cooling duct 3.

【0031】なお、その他の部分については図示してい
ないが、図8に示す従来例と同様に構成されている。す
なわち、鉄心8の周囲に以上のような絶縁筒2a,2
b,21を含む巻線1を単数または複数層配置してなる
変圧器中身が収納され、巻線1の外側には、圧力差保持
用のバッフル9が設けられている。さらに、タンク7の
外部には、冷却器11と送風器12が配置され、ガス配
管13を介してタンク7内と連通しており、ガス循環系
が構成されている。
Although the other parts are not shown, they have the same structure as the conventional example shown in FIG. That is, the insulating cylinders 2a, 2
The transformer contents formed by arranging one or a plurality of windings 1 including b and 21 are housed, and a baffle 9 for holding a pressure difference is provided outside the windings 1. Further, a cooler 11 and a blower 12 are arranged outside the tank 7, and communicate with the inside of the tank 7 via a gas pipe 13 to form a gas circulation system.

【0032】以上のような構成を有する本実施例の作用
は次の通りである。まず、ガス絶縁変圧器の運転時に
は、図示していない冷却器11によって冷却されたガス
を、図示していない送風器12によって、タンク7内の
巻線1部分、すなわち、内側の絶縁筒2aと孔付き絶縁
筒21との間に形成された冷却ダクト31の下部に、ガ
ス供給口24を介して供給する。このように冷却ダクト
31の下部に供給されたガスは、この冷却ダクト31を
上方に向かって流れるガス流10となる。そして、この
ガス流10は、孔付き絶縁筒21の各貫通孔22の部分
で次々に分流し、この孔付き絶縁筒21と巻線1との間
に吹き出す。
The operation of this embodiment having the above-mentioned structure is as follows. First, at the time of operation of the gas insulation transformer, the gas cooled by the cooler 11 (not shown) is fed by the blower 12 (not shown) to the winding 1 portion in the tank 7, that is, the inner insulating cylinder 2a. The gas is supplied to the lower portion of the cooling duct 31 formed between the insulating cylinder with a hole 21 and the gas supply port 24. The gas thus supplied to the lower portion of the cooling duct 31 becomes the gas flow 10 flowing upward in the cooling duct 31. Then, the gas flow 10 is diverted one after another at each of the through holes 22 of the insulating cylinder with hole 21 and is blown out between the insulating cylinder with hole 21 and the winding 1.

【0033】この場合、冷却ダクト31の間隔に比べて
孔付き絶縁筒21と巻線1との間の間隔が狭いため、孔
付き絶縁筒21の貫通孔22から吹き出したガス流10
は、対向する巻線1のセクション1s間の間隙4内に効
率よく流れ込み、この間隙4内を巻回方向外側に向かっ
て流れて巻線1を冷却する。この後、このガス流10
は、巻線1の外側の冷却ダクト3に流れ込み、他のセク
ション1s間から同様に巻線1の外側の冷却ダクト3に
流れ込むガス流10と合流する。このように冷却ダクト
3内で合流したガスは、冷却ダクト3の上部からガス排
出口25を介して吹き出してタンク7外部の冷却器11
に戻され、再び冷却された後、送風器12によって再び
冷却用のガスとしてタンク7内に供給される。
In this case, since the gap between the insulating cylinder 21 with a hole and the winding wire 1 is narrower than the gap of the cooling duct 31, the gas flow 10 blown out from the through hole 22 of the insulating cylinder 21 with a hole.
Efficiently flows into the gap 4 between the sections 1s of the windings 1 that face each other, and flows in the gap 4 toward the outside in the winding direction to cool the winding 1. After this, this gas flow 10
Flows into the cooling duct 3 outside the winding 1 and joins with the gas flow 10 which also flows into the cooling duct 3 outside the winding 1 from between the other sections 1s. The gas thus merged in the cooling duct 3 is blown out from the upper portion of the cooling duct 3 through the gas discharge port 25, and the cooler 11 outside the tank 7 is provided.
Then, after being cooled again, the gas is again supplied into the tank 7 by the blower 12 as cooling gas.

【0034】以上のように、本実施例においては、孔付
き絶縁筒21の各貫通孔22で次々にガスが分流し、巻
線1内を並列に流れるため、図6に示した従来例のよう
にガスが巻線1内部をジグザグに流れる方法に比べて、
巻線1のガス流路全体の入口から出口までの圧力損失の
総和は小さくなる。したがって、本実施例においては、
巻線1で発生する熱量を奪って冷却するために大量のガ
スを流した場合でも圧力損失をできる限り小さくでき、
冷却効率を向上することができる。
As described above, in this embodiment, the gas is shunted one after another in each through hole 22 of the insulating cylinder with a hole 21 and flows in parallel in the winding 1, so that the gas of the conventional example shown in FIG. Compared with the method in which gas flows in the winding 1 in a zigzag manner,
The total pressure loss from the inlet to the outlet of the entire gas passage of the winding 1 becomes small. Therefore, in this embodiment,
Even if a large amount of gas is flowed in order to remove the heat generated in the winding 1 and cool it, the pressure loss can be made as small as possible,
The cooling efficiency can be improved.

【0035】また、このように圧力損失を小さくするこ
とができることから、巻線1の外側に設けられる圧力差
保持用のバッフル9に加わる圧力をできる限り小さくで
きるため、このバッフル9をできる限り簡略化できる。
すなわち、バッフル9の機械的強度を十分に確保する必
要がないため、部品点数を少なくでき、組み立て時間を
短縮し、コストを低減することができる。さらに、圧力
損失を小さくすることができることから、送風器12の
容量をできる限り小さくできるため、送風器12を小型
化・低価格化することができる。その結果、ガス絶縁変
圧器全体を小型化・低価格化することができる。
Since the pressure loss can be reduced in this way, the pressure applied to the pressure difference holding baffle 9 provided outside the winding 1 can be reduced as much as possible. Therefore, the baffle 9 can be simplified as much as possible. Can be converted.
That is, since it is not necessary to sufficiently secure the mechanical strength of the baffle 9, the number of parts can be reduced, the assembly time can be shortened, and the cost can be reduced. Further, since the pressure loss can be reduced, the capacity of the blower 12 can be reduced as much as possible, so that the blower 12 can be downsized and reduced in price. As a result, it is possible to reduce the size and cost of the entire gas insulated transformer.

【0036】ところで、孔付き絶縁筒21の各貫通孔2
2におけるガスの噴出圧力は、上部にいくほど小さくな
るため、各貫通孔22の大きさが孔付き絶縁筒21の上
下で同じであるとすると、孔付き絶縁筒21の貫通孔2
2から吹き出すガスの吹き出し量は上部に向かって小さ
くなる。これに対して、本実施例においては、孔付き絶
縁筒21の上部に向かって貫通孔22の径を大きくし、
貫通孔22の面積を大きくしているため、孔付き絶縁筒
21の上下で均一な吹き出し量を確保することができ、
巻線1を均一に冷却することができる。したがって、ガ
ス絶縁変圧器全体の冷却効率を向上することができる。
By the way, each through hole 2 of the insulating cylinder 21 with a hole
Since the gas ejection pressure in 2 becomes smaller toward the top, assuming that the size of each through hole 22 is the same above and below the insulating cylinder with hole 21, the through hole 2 of the insulating cylinder with hole 2
The amount of gas blown from 2 becomes smaller toward the upper part. On the other hand, in the present embodiment, the diameter of the through hole 22 is increased toward the upper part of the insulating cylinder with a hole 21,
Since the area of the through hole 22 is large, it is possible to ensure a uniform blowout amount above and below the insulating cylinder with a hole 21.
The winding 1 can be cooled uniformly. Therefore, the cooling efficiency of the entire gas insulated transformer can be improved.

【0037】[2]第2実施例…図3 図3は、本発明によるガス絶縁変圧器の第2実施例を示
す図である。この第2実施例は、特に、請求項3、5、
および6記載の発明を適用した実施例である。すなわ
ち、本実施例ではまず、図3に示すように、それぞれ複
数のセクション1sが積層されて構成された2つの巻線
1A,1Bが巻回方向内外に配置されており、内側の巻
線1Aのビルドは、外側の巻線1Bのビルドよりもはる
かに大きくなっている。そして、内側の巻線1Aの内外
には絶縁筒2と孔付き絶縁筒21がそれぞれ配置され、
絶縁筒2と巻線1Aとの間に冷却ダクト3が形成されて
いる。また、外側の巻線1Bの内外には絶縁筒2a,2
bがそれぞれ配置されており、これらの絶縁筒2a,2
bと巻線1Bとの間には冷却ダクト3a,3bがそれぞ
れ形成されている。この場合、外側の巻線1Bの内側の
絶縁筒2aと内側の巻線1Aの孔付き絶縁筒21との間
にも、冷却ダクト31が形成されている。
[2] Second Embodiment ... FIG. 3 FIG. 3 is a view showing a second embodiment of the gas insulation transformer according to the present invention. This second embodiment is particularly applicable to claims 3, 5 and
7 is an embodiment to which the inventions described in 6 and 6 are applied. That is, in the present embodiment, first, as shown in FIG. 3, the two windings 1A and 1B each formed by laminating a plurality of sections 1s are arranged inside and outside the winding direction, and the inner winding 1A is arranged. Is much larger than the outer winding 1B build. The insulating cylinder 2 and the insulating cylinder 21 with holes are arranged inside and outside the inner winding 1A, respectively.
A cooling duct 3 is formed between the insulating cylinder 2 and the winding 1A. In addition, the insulating cylinders 2a, 2 are provided inside and outside the outer winding 1B.
b are arranged respectively, and these insulating cylinders 2a, 2
Cooling ducts 3a and 3b are respectively formed between b and the winding 1B. In this case, the cooling duct 31 is also formed between the insulating cylinder 2a inside the outer winding 1B and the insulating cylinder 21 with holes in the inner winding 1A.

【0038】そして、本実施例の孔付き絶縁筒21に
は、この孔付き絶縁筒21が付属する巻線1Aの間隙4
と対向する上下方向の複数箇所に貫通孔22が設けられ
ている。この貫通孔22の基本的な配置構成は図示して
いないが、前記第1実施例と同様に、図2に示すように
構成されている。そしてまた、図3に示すように、孔付
き絶縁筒21と絶縁筒2aとの間に形成される冷却ダク
ト31の間隔は、孔付き絶縁筒21と巻線1Aとの間の
間隔より大きくされている。さらに、巻線1A,1Bに
は、ある一定数(図では例示的に3つ)のセクション1
s毎の間隙4にガス止めカラー5が取り付けられてお
り、このガス止めカラー5は、孔付き絶縁筒21の貫通
孔22の近接位置まで伸びるようにして配置されてい
る。一方、巻線1Aの上下両端部には端部ガス止め23
がそれぞれ設けられており、この上下の端部ガス止め2
3は、2つの絶縁筒2,2aとともに、巻線1Aを囲む
ガス空間を周囲の空間から区分している。すなわち、こ
の上下の端部ガス止め23は、冷却ダクト31へのガス
供給口24と冷却ダクト3からのガス排出口25を残し
て巻線1Aの上下両端部を覆っている。なお、冷却器1
1や送風器12などの他の部分については図示していな
いが、前記第1実施例と同様に構成されている。
The insulating cylinder 21 with holes of this embodiment has the gap 4 of the winding 1A to which the insulating cylinder 21 with holes is attached.
Through holes 22 are provided at a plurality of positions in the up-down direction that face each other. Although the basic arrangement of the through holes 22 is not shown, it is constructed as shown in FIG. 2 as in the first embodiment. Further, as shown in FIG. 3, the interval of the cooling duct 31 formed between the insulating cylinder 21 with holes and the insulating cylinder 2a is made larger than the interval between the insulating cylinder 21 with holes and the winding 1A. ing. Further, the windings 1A and 1B have a certain number of section 1 (three in the figure as an example).
A gas stop collar 5 is attached to the gap 4 for each s, and the gas stop collar 5 is arranged so as to extend to a position close to the through hole 22 of the insulating cylinder with a hole 21. On the other hand, end gas stoppers 23 are provided at both upper and lower ends of the winding 1A.
Are provided respectively, and the upper and lower end gas stoppers 2
3, together with the two insulating cylinders 2 and 2a, separates the gas space surrounding the winding 1A from the surrounding space. That is, the upper and lower end gas stoppers 23 cover the upper and lower ends of the winding 1A, leaving the gas supply port 24 to the cooling duct 31 and the gas discharge port 25 from the cooling duct 3. In addition, cooler 1
The other parts such as 1 and the blower 12 are not shown in the figure, but are configured similarly to the first embodiment.

【0039】以上のような構成を有する本実施例の作用
は次の通りである。まず、ガス絶縁変圧器の運転時に
は、図示していない冷却器11によって冷却されたガス
を、図示していない送風器12によって、タンク7内の
巻線1A,1B部分、すなわち、内側の巻線1Aの孔付
き絶縁筒21と外側の巻線1Bとの間に形成された冷却
ダクト31の下部に、ガス供給口24を介して供給する
とともに、外側の巻線1Bの両側の冷却ダクト3a,3
bの下部に供給する。このうち、冷却ダクト31の下部
に供給されたガスは、この冷却ダクト31を上方に向か
って流れるガス流10となる。そして、このガス流10
は、孔付き絶縁筒21の各貫通孔22の部分で次々に分
流し、この孔付き絶縁筒21と内側の巻線1Aとの間に
吹き出す。このように孔付き絶縁筒21の貫通孔22か
ら吹き出したガス流10は、対向する内側の巻線1Aの
セクション1s間の間隙4内に効率よく流れ込み、この
間隙4内を巻回方向内側に向かって流れて巻線1Aを冷
却する。この場合、ガス止めカラー5が、貫通孔22の
近接位置まで伸びるようにして配置されているため、ガ
ス流10は軸方向に移動せず、巻回方向に確実に流れ、
巻線1Aを均一に冷却する。この後、このガス流10
は、巻線1Aの内側の冷却ダクト3に流れ込み、他のセ
クション1s間から同様に巻線1Aの内側の冷却ダクト
3に流れ込むガスと合流して冷却ダクト3の上部からガ
ス排出口25を介して吹き出す。
The operation of this embodiment having the above-mentioned structure is as follows. First, when the gas insulation transformer is in operation, the gas cooled by the cooler 11 (not shown) is fed by the blower 12 (not shown) to the windings 1A and 1B in the tank 7, that is, the inner windings. The cooling duct 31 formed between the insulating cylinder 21 with holes 1A and the outer winding 1B is supplied to the lower portion of the cooling duct 31 through the gas supply port 24, and the cooling ducts 3a on both sides of the outer winding 1B are provided. Three
Supply to the bottom of b. Of these, the gas supplied to the lower portion of the cooling duct 31 becomes the gas flow 10 flowing upward in the cooling duct 31. And this gas flow 10
Are sequentially shunted at the through-holes 22 of the insulating cylinder with hole 21 and are blown out between the insulating cylinder with hole 21 and the inner winding 1A. In this way, the gas flow 10 blown out from the through hole 22 of the holed insulating cylinder 21 efficiently flows into the gap 4 between the sections 1s of the inner winding 1A facing each other, and the inside of the gap 4 is wound in the winding direction. It flows toward and cools the winding 1A. In this case, the gas stop collar 5 is arranged so as to extend to the position close to the through hole 22, so that the gas flow 10 does not move in the axial direction and reliably flows in the winding direction.
Winding 1A is cooled uniformly. After this, this gas flow 10
Flows into the cooling duct 3 inside the winding 1A, merges with the gas flowing into the cooling duct 3 inside the winding 1A from between the other sections 1s, and joins from the upper part of the cooling duct 3 via the gas outlet 25. Blow out.

【0040】一方、外側の巻線1Bの両側の冷却ダクト
3a,3bの下部に供給されたガスは、それぞれ、巻線
1の内周面と外周面に沿ってこの冷却ダクト3a,3b
内を流れるガス流10となる。そして、このガス流10
によって、巻線1Bの内周面と外周面の熱が奪われ、こ
の部分の冷却が行われた後、このガス流10は冷却ダク
ト3a,3bの上部から吹き出す。
On the other hand, the gas supplied to the lower portions of the cooling ducts 3a and 3b on both sides of the outer winding 1B is distributed along the inner peripheral surface and the outer peripheral surface of the winding 1, respectively.
There is a gas stream 10 flowing inside. And this gas flow 10
The heat of the inner peripheral surface and the outer peripheral surface of the winding 1B is removed by this, and after cooling this portion, the gas flow 10 is blown out from the upper portions of the cooling ducts 3a and 3b.

【0041】なお、巻線1Aの内側の冷却ダクト3の上
部から吹き出したガスと、巻線1Bの両側の冷却ダクト
3a,3bから吹き出したガスは、タンク7の上部で合
流してタンク7外部の冷却器11に戻され、再び冷却さ
れた後、送風器12によって再び冷却用のガスとしてタ
ンク7内に供給される。
The gas blown from the upper portion of the cooling duct 3 inside the winding 1A and the gas blown from the cooling ducts 3a and 3b on both sides of the winding 1B join together at the upper portion of the tank 7 and outside the tank 7. After being returned to the cooler 11 and cooled again, the blower 12 supplies the cooling gas again into the tank 7.

【0042】以上のように、本実施例においては、ビル
ドの大きい内側の巻線1A内に、ガスを並列に流すこと
ができるため、前記第1実施例と同様に、巻線1Aのガ
ス流路全体の入口から出口までの圧力損失の総和は小さ
くなる。この場合、本実施例は、巻線1Aの外側から内
側にガスを流すため、巻線1の内側から外側にガスを流
す前記第1実施例と、巻線内におけるガス流方向は逆方
向となるが、このようなガス流方向の差異が冷却効率に
ほとんど影響を与えるものでないことは明らかである。
したがって、本実施例においても、前記第1実施例と同
様の効果が得られる。なお、巻線1Bについては、その
ビルドが小さいため、内周面と外周面の冷却だけで、巻
線1B全体を十分に冷却することができる。
As described above, in this embodiment, the gas can flow in parallel inside the winding 1A having a large build. Therefore, as in the first embodiment, the gas flow in the winding 1A is increased. The total pressure loss from the inlet to the outlet of the entire channel is small. In this case, since the gas flows from the outside to the inside of the winding 1A in this embodiment, the gas flow direction in the winding is opposite to that of the first embodiment in which the gas flows from the inside to the outside of the winding 1. However, it is clear that such a difference in the gas flow direction has little influence on the cooling efficiency.
Therefore, also in this embodiment, the same effect as that of the first embodiment can be obtained. Since the winding 1B has a small build, the entire winding 1B can be sufficiently cooled only by cooling the inner peripheral surface and the outer peripheral surface.

【0043】また、本実施例においては、巻線1Aのセ
クション1s間の間隙4にガス止めカラー5を取り付
け、貫通孔22の近接位置まで伸びるようにして配置し
ているため、このガス止めカラー5により、ガスの軸方
向への流れを阻止して巻回方向への流れを促進可能であ
り、巻線1Aをより均一に冷却することができる。した
がって、ガス絶縁変圧器全体の冷却効率をより向上する
ことができる。
Further, in this embodiment, since the gas stop collar 5 is attached to the gap 4 between the sections 1s of the winding 1A so as to extend to the position close to the through hole 22, this gas stop collar is arranged. 5, it is possible to prevent the gas from flowing in the axial direction and promote the flow in the winding direction, and the winding 1A can be cooled more uniformly. Therefore, the cooling efficiency of the entire gas insulated transformer can be further improved.

【0044】[3]第3実施例…図4 図4は、本発明によるガス絶縁変圧器の第3実施例を示
す図である。この第3実施例は、特に、請求項3、5、
および6記載の発明を適用した実施例である。すなわ
ち、本実施例ではまず、図4に示すように、それぞれ複
数のセクション1sが積層されて構成された2つの巻線
1A,1Bが巻回方向内外に配置されており、内側の巻
線1Aのビルドと、外側の巻線1Bのビルドとはほぼ等
しくなっている。また、内側の巻線1Aのセクション1
s間の間隙4の位置と、外側の巻線1Bのセクション1
s間の間隙4の位置は整合している。そして、内側の巻
線1Aの内外には絶縁筒2aと孔付き絶縁筒21aがそ
れぞれ配置され、外側の巻線1Bの内外には孔付き絶縁
筒21bと絶縁筒2bが配置されている。この場合、内
外の巻線1A,1Bの間の隣接する2つの孔付き絶縁筒
21a,21bの間には、冷却ダクト31が形成されて
いる。また、最も内側の絶縁筒2aと内側の巻線1Aと
の間には冷却ダクト3aが形成されており、最も外側の
絶縁筒2bと外側の巻線1Bとの間には冷却ダクト3b
が形成されている。
[3] Third Embodiment FIG. 4 FIG. 4 is a diagram showing a gas insulation transformer according to a third embodiment of the present invention. This third embodiment is particularly applicable to claims 3, 5 and
7 is an embodiment to which the inventions described in 6 and 6 are applied. That is, in the present embodiment, first, as shown in FIG. 4, two windings 1A and 1B each formed by laminating a plurality of sections 1s are arranged inside and outside the winding direction, and the inner winding 1A is arranged. And the build of the outer winding 1B are almost equal. Also, section 1 of the inner winding 1A
The position of the gap 4 between s and the section 1 of the outer winding 1B
The positions of the gaps 4 between s are aligned. The insulating cylinder 2a and the insulating cylinder 21a with holes are arranged inside and outside the inner winding 1A, and the insulating cylinder 21b and insulating cylinder 2b with holes are arranged inside and outside the outer winding 1B. In this case, the cooling duct 31 is formed between the two adjacent insulating cylinders with holes 21a and 21b between the inner and outer windings 1A and 1B. A cooling duct 3a is formed between the innermost insulating cylinder 2a and the inner winding 1A, and a cooling duct 3b is formed between the outermost insulating cylinder 2b and the outer winding 1B.
Are formed.

【0045】そして、本実施例の2つの孔付き絶縁筒2
1a,21bには、各孔付き絶縁筒21a,21bが付
属する巻線1A,1Bの間隙4と対向する上下方向の複
数箇所に貫通孔22が設けられている。この貫通孔22
の基本的な配置構成は図示していないが、前記第1、第
2実施例と同様に、図2に示すように構成されている。
そしてまた、図4に示すように、2つの孔付き絶縁筒2
1a,21bの間に形成される冷却ダクト31の間隔
は、各孔付き絶縁筒21a,21bと各巻線1A,1B
との間の間隔より大きくされている。一方、2つの巻線
1A,1Bの上下両端部には、端部ガス止め23がそれ
ぞれ設けられており、この上下の端部ガス止め23は、
2つの絶縁筒2a,2bとともに、これらの巻線1A,
1Bを囲むガス空間を周囲の空間から区分している。す
なわち、この上下の端部ガス止め23は、冷却ダクト3
1へのガス供給口24と冷却ダクト3a,3bからのガ
ス排出口25を残して2つの巻線1A,1Bの上下両端
部を一括的に覆っている。なお、冷却器11や送風器1
2などの他の部分については図示していないが、前記第
1、第2実施例と同様に構成されている。
Then, the insulating cylinder 2 with two holes of this embodiment.
Through holes 22 are provided in each of 1a and 21b at a plurality of positions in the up-down direction facing the gaps 4 of the windings 1A and 1B to which the insulating cylinders with holes 21a and 21b are attached. This through hole 22
Although the basic arrangement configuration of (1) is not shown, it is configured as shown in FIG. 2 similarly to the first and second embodiments.
And again, as shown in FIG. 4, two insulating cylinders 2 with holes are provided.
The spacing of the cooling duct 31 formed between 1a and 21b is the insulating cylinders with holes 21a and 21b and the windings 1A and 1B.
The spacing between and has been greater. On the other hand, end gas stoppers 23 are provided at the upper and lower ends of the two windings 1A and 1B, respectively.
Together with the two insulating cylinders 2a, 2b, these windings 1A,
The gas space surrounding 1B is separated from the surrounding space. That is, the upper and lower end gas stoppers 23 are provided in the cooling duct 3.
The upper and lower ends of the two windings 1A and 1B are collectively covered, leaving a gas supply port 24 for the first coil 1 and a gas outlet 25 for the cooling ducts 3a, 3b. In addition, the cooler 11 and the blower 1
Although other parts such as 2 are not shown, they are configured similarly to the first and second embodiments.

【0046】以上のような構成を有する本実施例の作用
は次の通りである。まず、ガス絶縁変圧器の運転時に
は、図示していない冷却器11によって冷却されたガス
を、図示していない送風器12によって、タンク7内の
巻線1A,1B部分、すなわち、内外の巻線1A,1B
の間の2つの孔付き絶縁筒21a,21bの間に形成さ
れた冷却ダクト31の下部に、ガス供給口24を介して
供給する。このように冷却ダクト31の下部に供給され
たガスは、この冷却ダクト31を上方に向かって流れる
ガス流10となる。そして、このガス流10は、両側の
孔付き絶縁筒21a,21bの各貫通孔22の部分で次
々に分流し、各孔付き絶縁筒21a,21bと各巻線1
A,1Bとの間にそれぞれ吹き出す。
The operation of this embodiment having the above configuration is as follows. First, when the gas insulation transformer is in operation, the gas cooled by the cooler 11 (not shown) is fed by the blower 12 (not shown) to the windings 1A and 1B in the tank 7, that is, the windings inside and outside. 1A, 1B
The gas is supplied to the lower portion of the cooling duct 31 formed between the two insulating cylinders 21a and 21b with holes through the gas supply port 24. The gas thus supplied to the lower portion of the cooling duct 31 becomes the gas flow 10 flowing upward in the cooling duct 31. Then, this gas flow 10 is diverted one after another at the portions of the through holes 22 of the insulating cylinders 21a and 21b with holes on both sides, and the insulating cylinders 21a and 21b with holes and the windings 1
Blow between A and 1B respectively.

【0047】この場合、各孔付き絶縁筒21a,21b
の各貫通孔22からそれぞれ吹き出したガス流10は、
各巻線1A,1Bのセクション1s間の間隙4内にそれ
ぞれ効率よく流れ込み、各間隙4内を巻回方向内側と外
側に向かってそれぞれ流れて各巻線1A,1Bをそれぞ
れ冷却する。この後、各ガス流10は、内側の巻線1A
の内側の冷却ダクト3aと外側の巻線1Bの外側の冷却
ダクト3bにそれぞれ流れ込み、他のセクション1s間
から同様に同じ側の冷却ダクト3a,3bにそれぞれ流
れ込むガス流10と合流して冷却ダクト3a,3bの上
部からガス排出口25を介して吹き出す。このように内
外の冷却ダクト3a,3bから吹き出したガスは、タン
ク7外部の冷却器11に戻され、再び冷却された後、送
風器12によって再び冷却用のガスとしてタンク7内に
戻される。
In this case, the insulating cylinders 21a and 21b with holes are provided.
The gas flow 10 blown from each of the through holes 22 of
The windings 1A and 1B efficiently flow into the gaps 4 between the sections 1s, and flow inside the gaps 4 toward the inner side and the outer side in the winding direction to cool the respective windings 1A and 1B. After this, each gas stream 10 is fed to the inner winding 1A.
Of the cooling duct 3a on the inner side and the cooling duct 3b on the outer side of the winding 1B on the outer side, respectively, and joins with the gas flows 10 respectively flowing between the other sections 1s to the cooling ducts 3a, 3b on the same side. It blows out from the upper part of 3a, 3b through the gas discharge port 25. The gas blown out from the inside and outside cooling ducts 3a and 3b is returned to the cooler 11 outside the tank 7, cooled again, and then returned to the inside of the tank 7 as the cooling gas by the blower 12.

【0048】以上のように、本実施例においては、ほぼ
等しいビルドを有する内外の巻線1A,1B内に、ガス
をそれぞれ並列に流すことができるため、この内外の巻
線1A,1Bのガス流路の入口から出口までの圧力損失
の総和は、前記第1、第2実施例と同様に小さくなる。
したがって、本実施例においても、前記第1、第2実施
例と同様の効果が得られる。また、本実施例において
は、同一の冷却ダクト31によって、2つの巻線1A,
1Bを同時に冷却できるため、構成が簡略である。特
に、2つの巻線1A,1B間に高い電圧が加わる場合、
2つの巻線1A,1Bの主間隙距離を広く取る必要があ
る場合には、これらの巻線1A,1B間の冷却ダクト3
1の距離を大きく取れるため、圧力損失をより小さくす
ることができる。
As described above, in this embodiment, the gas can flow in parallel in the inner and outer windings 1A and 1B having substantially equal builds, so that the gas in the inner and outer windings 1A and 1B can be supplied. The total pressure loss from the inlet to the outlet of the flow passage becomes small as in the first and second embodiments.
Therefore, also in this embodiment, the same effects as those of the first and second embodiments can be obtained. In addition, in the present embodiment, the two coils 1A, 1A,
Since 1B can be cooled at the same time, the structure is simple. Especially when a high voltage is applied between the two windings 1A and 1B,
When it is necessary to widen the main gap distance between the two windings 1A and 1B, the cooling duct 3 between the windings 1A and 1B is required.
Since the distance of 1 can be made large, the pressure loss can be made smaller.

【0049】[4]第4実施例…図5 図5は、本発明によるガス絶縁変圧器の第4実施例を示
す図である。この第4実施例は、特に、請求項4〜6記
載の発明を適用した実施例である。すなわち、本実施例
ではまず、図5に示すように、それぞれ複数のセクショ
ン1sが積層されて構成された4つの巻線1A,1B,
1C,1Dが巻回方向内外に配置されている。この場
合、各巻線1A〜1Dのビルドは互いに異なっており、
特に、最も内側の巻線1Aのビルドは他の巻線1B〜1
Dに比べて格段に小さくなっている。また、最も内側の
巻線1Aを除く3つの巻線1B〜1Dのセクション1s
間の間隙4の位置は整合している。そして、最も内側の
巻線1Aの内外には、絶縁筒2a,2bがそれぞれ配置
されており、これらの絶縁筒2a,2bと巻線1Aとの
間には冷却ダクト3a,3bがそれぞれ形成されてい
る。また、最も外側の巻線1Dの外側には絶縁筒2が配
置されており、この絶縁筒2と巻線1Dとの間には冷却
ダクト3が形成されている。さらに、内側の巻線1Aの
外側の絶縁筒2bと内側から2番目の巻線1Bとの間に
は、孔付き絶縁筒21が配置されており、この孔付き絶
縁筒21と絶縁筒2bとの間に冷却ダクト31が形成さ
れている。一方、3つの巻線1B〜1Dの間には、絶縁
筒が全く配置されておらず、連続したガス流路が形成さ
れている。この場合、絶縁筒2b,絶縁筒2、および孔
付き絶縁筒21は、本発明の第1、第2、および第3の
絶縁筒にそれぞれ相当する。
[4] Fourth Embodiment ... FIG. 5 FIG. 5 is a view showing a fourth embodiment of the gas insulated transformer according to the present invention. The fourth embodiment is an embodiment to which the invention described in claims 4 to 6 is applied. That is, in this embodiment, first, as shown in FIG. 5, four windings 1A, 1B, each of which is configured by laminating a plurality of sections 1s,
1C and 1D are arranged inside and outside the winding direction. In this case, the build of each winding 1A-1D is different from each other,
In particular, the innermost winding 1A builds on the other windings 1B-1
It is much smaller than D. In addition, the section 1s of the three windings 1B to 1D excluding the innermost winding 1A
The positions of the gaps 4 therebetween are aligned. The insulating cylinders 2a and 2b are arranged inside and outside the innermost winding 1A, and cooling ducts 3a and 3b are formed between the insulating cylinders 2a and 2b and the winding 1A. ing. Further, an insulating cylinder 2 is arranged outside the outermost winding 1D, and a cooling duct 3 is formed between the insulating cylinder 2 and the winding 1D. Further, an insulating cylinder with a hole 21 is arranged between the outer insulating cylinder 2b of the inner winding 1A and the second winding 1B from the inside. The insulating cylinder with a hole 21 and the insulating cylinder 2b are connected to each other. A cooling duct 31 is formed between them. On the other hand, no insulating cylinder is arranged between the three windings 1B to 1D, and a continuous gas flow path is formed. In this case, the insulating cylinder 2b, the insulating cylinder 2, and the insulating cylinder with a hole 21 correspond to the first, second, and third insulating cylinders of the present invention, respectively.

【0050】そして、本実施例の孔付き絶縁筒21に
は、この孔付き絶縁筒21が付属する巻線1Bの間隔4
と対向する上下方向の複数箇所に貫通孔22が設けられ
ている。この貫通孔22の基本的な配置構成は図示して
いないが、前記第1〜第3実施例と同様に、図2に示す
ように構成されている。そしてまた、図5に示すよう
に、絶縁筒2bと孔付き絶縁筒21との間に形成される
冷却ダクト31の間隔は、孔付き絶縁筒21と巻線1B
との間の間隔より大きくされている。さらに、外側の2
つの巻線1C,1Dには、適当な数のセクション1s毎
の間隙4にガス止めカラー5が取り付けられている。こ
の場合、巻線1Cのガス止めカラー5は、その内側に隣
接する巻線1Bの近接位置まで伸びるようにして配置さ
れており、巻線1Dのガス止めカラー5は、その内側に
隣接する巻線1Cの近接位置まで伸びるようにして配置
されている。一方、3つの巻線1B〜1Dの上下両端部
には端部ガス止め23がそれぞれ設けられており、この
上下の端部ガス止め23は、2つの絶縁筒2b,2とと
もに、3つの巻線1B〜1Dを囲むガス空間を周囲の空
間から区分している。すなわち、この上下の端部ガス止
め23は、冷却ダクト31へのガス供給口24と冷却ダ
クト3からのガス排出口25を残して巻線1B〜1Dの
上下両端部を覆っている。なお、冷却器11や送風器1
2などの他の部分については図示していないが、前記第
1〜第3実施例と同様に構成されている。
The insulating cylinder with holes 21 of this embodiment has a space 4 between the windings 1B to which the insulating cylinder with holes 21 is attached.
Through holes 22 are provided at a plurality of positions in the up-down direction that face each other. Although the basic arrangement of the through holes 22 is not shown, it is configured as shown in FIG. 2 as in the first to third embodiments. Further, as shown in FIG. 5, the gap of the cooling duct 31 formed between the insulating cylinder 2b and the insulating cylinder 21 with holes is determined by the insulating cylinder 21 with holes and the winding 1B.
The spacing between and has been greater. In addition, the outer two
A gas stop collar 5 is attached to each of the windings 1C and 1D in a gap 4 for each suitable number of sections 1s. In this case, the gas stop collar 5 of the winding 1C is arranged so as to extend close to the winding 1B adjacent to the inside thereof, and the gas stop collar 5 of the winding 1D is adjacent to the inside thereof. It is arranged so as to extend to a position close to the line 1C. On the other hand, end gas stoppers 23 are provided at the upper and lower ends of the three windings 1B to 1D, respectively. The upper and lower end gas stoppers 23, together with the two insulating cylinders 2b and 2, have three windings. The gas space surrounding 1B to 1D is divided from the surrounding space. That is, the upper and lower end gas stoppers 23 cover the upper and lower ends of the windings 1B to 1D, except for the gas supply port 24 to the cooling duct 31 and the gas discharge port 25 from the cooling duct 3. In addition, the cooler 11 and the blower 1
Although other parts such as 2 are not shown, they are configured similarly to the first to third embodiments.

【0051】以上のような構成を有する本実施例の作用
は次の通りである。まず、ガス絶縁変圧器の運転時に
は、図示していない冷却器11によって冷却されたガス
を、図示していない送風器12によって、タンク7内の
巻線1A〜1D部分、すなわち、最も内側の巻線1Aの
内外の絶縁筒2a,2bとこの巻線1Aとの間に形成さ
れた冷却ダクト3a,3bの下部に供給するとともに、
絶縁筒2bと孔付き絶縁筒21との間に形成された冷却
ダクト31の下部に、ガス供給口24を介して供給す
る。このうち、冷却ダクト31の下部に供給されたガス
は、この冷却ダクト31を上方に向かって流れるガス流
10となる。そして、このガス流10は、孔付き絶縁筒
21の各孔22の部分で次々に分流し、孔付き絶縁筒2
1と巻線1Bとの間に吹き出す。
The operation of this embodiment having the above construction is as follows. First, during operation of the gas insulation transformer, the gas cooled by the cooler 11 (not shown) is fed by the blower 12 (not shown) to the windings 1A to 1D in the tank 7, that is, the innermost winding. While supplying to the lower part of the cooling ducts 3a and 3b formed between the windings 1A and the insulating cylinders 2a and 2b inside and outside the wire 1A,
The gas is supplied to the lower portion of the cooling duct 31 formed between the insulating cylinder 2b and the insulating cylinder with a hole 21 through the gas supply port 24. Of these, the gas supplied to the lower portion of the cooling duct 31 becomes the gas flow 10 flowing upward in the cooling duct 31. Then, the gas flow 10 is branched at the portions of the holes 22 of the perforated insulating cylinder 21 one after another, and the perforated insulating cylinder 2
Blow between 1 and winding 1B.

【0052】この場合、孔付き絶縁筒21の各貫通孔2
2からそれぞれ吹き出したガス流10は、間に絶縁筒が
設けられていない3つの巻線1B〜1Dのセクション1
s間の間隙4内にそれぞれ効率よく流れ込み、各間隙4
内を巻回方向外側に向かって順次流れて各巻線1B〜1
Dをそれぞれ冷却する。この場合、下流側となる2つの
巻線1C,1Dに、隣接する上流側の巻線の間隙4の近
接位置まで伸びるようにしてガス止めカラー5が配置さ
れているため、ガス流10は軸方向に移動せず、巻回方
向に確実に流れ、巻線1C,1Dを均一に冷却する。こ
の後、ガス流10は、最も外側の巻線1Dの外側の冷却
ダクト3に流れ込み、他のセクション1s間から同様に
冷却ダクト3に流れ込むガス流10と合流して冷却ダク
ト3の上部からガス排出口25を介して吹き出す。
In this case, each through hole 2 of the insulating cylinder 21 with a hole
The gas flow 10 blown out from each of the two windings is the section 1 of the three windings 1B to 1D in which the insulating cylinder is not provided.
Each of the gaps 4 flows efficiently into the gap 4
Each of the windings 1B to 1 sequentially flows in the winding direction to the outside in the winding direction.
Cool each D. In this case, the gas stop collar 5 is arranged in the two windings 1C and 1D on the downstream side so as to extend to the position close to the gap 4 of the adjacent upstream windings, and therefore the gas flow 10 is axial. Does not move in the direction, but flows in the winding direction reliably, and the windings 1C and 1D are uniformly cooled. After this, the gas flow 10 flows into the cooling duct 3 outside the outermost winding 1D, merges with the gas flow 10 that also flows into the cooling duct 3 from between the other sections 1s, and the gas flows from the upper part of the cooling duct 3. Blow out through the outlet 25.

【0053】一方、最も内側の巻線1Aの両側の冷却ダ
クト3a,3bの下部に供給されたガスは、それぞれ、
巻線1の内周面と外周面に沿ってこの冷却ダクト3a,
3b内を流れるガス流10となる。そして、このガス流
10によって、巻線1Aの内周面と外周面の熱が奪わ
れ、この部分の冷却が行われた後、このガス流10は冷
却ダクト3a,3bの上部から吹き出す。
On the other hand, the gas supplied to the lower portions of the cooling ducts 3a and 3b on both sides of the innermost winding 1A are respectively
Along the inner and outer peripheral surfaces of the winding 1, the cooling duct 3a,
It becomes a gas flow 10 flowing in 3b. The gas flow 10 removes heat from the inner peripheral surface and the outer peripheral surface of the winding 1A to cool this portion, and then the gas flow 10 is blown out from the upper portions of the cooling ducts 3a and 3b.

【0054】なお、外側の冷却ダクト3の上部から吹き
出したガスと、最も内側の巻線1Aの両側の冷却ダクト
3a,3bから吹き出したガスは、タンク7の上部出合
流してタンク7外部の冷却器11に戻され、再び冷却さ
れた後、送風器12によって再び冷却用のガスとしてタ
ンク7内に戻される。
The gas blown from the upper portion of the outer cooling duct 3 and the gas blown from the cooling ducts 3a and 3b on both sides of the innermost winding 1A join the upper portion of the tank 7 and reach the outside of the tank 7. After being returned to the cooler 11 and cooled again, it is returned to the tank 7 again as a cooling gas by the blower 12.

【0055】以上のように、本実施例においては、比較
的大きいビルドを有する連続した3つの巻線1B〜1D
の整合した各間隙4をガスが順次通過する形で、ガスを
巻回方向外側に向かって並列に流すことができるため、
この3つの巻線1B〜1Dのガス流路の入口から出口ま
での圧力損失の総和を、大幅に小さくすることができ
る。したがって、本実施例においても、前記第1〜第3
実施例と同様の効果が得られる。なお、巻線1Aについ
ては、そのビルドが小さいため、内周面と外周面の冷却
だけで、巻線1A全体を十分に冷却することができる。
As described above, in this embodiment, three continuous windings 1B to 1D having a relatively large build are provided.
In the form in which the gas sequentially passes through each of the aligned gaps 4, the gas can flow in parallel outward in the winding direction.
The total pressure loss from the inlet to the outlet of the gas passages of the three windings 1B to 1D can be significantly reduced. Therefore, also in the present embodiment, the first to third
The same effect as the embodiment can be obtained. Since the build of the winding 1A is small, the entire winding 1A can be sufficiently cooled only by cooling the inner peripheral surface and the outer peripheral surface.

【0056】また、本実施例においては、下流側の2つ
の巻線1C,1Dのセクション1s間の間隙4にガス止
めカラー5を取り付け、上流側の隣接する巻線の間隙4
の近接位置間で伸びるように配置しているため、このガ
ス止めカラー5により、ガスの軸方向への流れを阻止し
て巻回方向への流れを促進可能であり、巻線1B〜1D
をより均一に冷却することができる。したがって、ガス
絶縁変圧器全体の冷却効率をより向上することができ
る。また、本実施例においては、同一の冷却ダクト31
から流入したガスによって、3つの巻線1B〜1Dを連
続的に冷却できるため、構成が簡略である。
Further, in this embodiment, the gas stop collar 5 is attached to the gap 4 between the sections 1s of the two windings 1C and 1D on the downstream side, and the gap 4 between the adjacent windings on the upstream side.
Since the gas stop collar 5 is arranged so as to extend between the adjacent positions, it is possible to prevent the gas from flowing in the axial direction and promote the flow in the winding direction, and the windings 1B to 1D.
Can be cooled more uniformly. Therefore, the cooling efficiency of the entire gas insulated transformer can be further improved. Further, in the present embodiment, the same cooling duct 31
Since the three windings 1B to 1D can be continuously cooled by the gas flowing in from, the configuration is simple.

【0057】[5]他の実施例 なお、本発明は前記実施例に限定されるものではなく、
他にも多種多様の変形例を実施可能である。例えば、前
記第1実施例において、孔付き絶縁筒の貫通孔の面積
を、貫通孔の径を変えることで調整したが、貫通孔の数
を変えたり、あるいはこれらを組み合わせることで調整
することが可能である。また、前記第1、第2、第4実
施例において、孔付き絶縁筒を巻回方向反対側に設け
て、ガス流を逆方向に流すことも可能である。
[5] Other Embodiments The present invention is not limited to the above embodiments,
In addition, various modified examples can be implemented. For example, in the first embodiment, the area of the through holes of the insulating cylinder with holes is adjusted by changing the diameter of the through holes, but it can be adjusted by changing the number of through holes or a combination thereof. It is possible. In addition, in the first, second, and fourth embodiments, it is also possible to provide an insulating cylinder with a hole on the opposite side in the winding direction and allow the gas flow to flow in the opposite direction.

【0058】そしてまた、前記第3実施例においては、
冷却ダクトから2方向に分流させた2方向の各ガス流に
よって、1つの巻線をそれぞれ冷却するように構成した
が、2方向のうちの一方のガス流によって、2つ以上の
巻線を冷却するように構成することも可能である。一
方、前記第4実施例においては、冷却ダクトからの1方
向のガス流によって、3つの巻線を順次冷却するように
構成したが、2つの巻線のみを冷却するか、あるいは逆
に4つ以上の巻線を順次冷却するように構成することも
可能である。
Further, in the third embodiment,
One winding is cooled by each gas flow in two directions divided in two directions from the cooling duct, but one or more gas flows in two directions cool two or more windings. It can also be configured to do so. On the other hand, in the fourth embodiment, the three windings are sequentially cooled by the gas flow from the cooling duct in one direction, but only two windings are cooled, or conversely four windings are cooled. It is also possible to sequentially cool the above windings.

【0059】さらに、巻線の数や巻線を構成するセクシ
ョンの数、あるいは、セクション間の間隙の具体的な寸
法や冷却ダクトと間隙との具体的な寸法比などは、いず
れも設計上の選択事項であり、自由に設定可能である。
また、本発明は、特に、ガス絶縁変圧器のガス流路の構
成の改良に関するものであるため、前記各実施例で示し
たような巻線周辺のガス流路構成以外の部分については
自由に構成可能である。
Further, the number of windings, the number of sections constituting the windings, the specific size of the gap between the sections, the specific size ratio of the cooling duct and the gap, etc. are all designed. It is a matter of choice and can be set freely.
Further, since the present invention relates to the improvement of the gas flow path structure of the gas insulation transformer, the parts other than the gas flow path structure around the winding as shown in each of the embodiments can be freely arranged. It is configurable.

【0060】[0060]

【発明の効果】以上のように、本発明によれば、巻線の
内側または外側の絶縁筒に貫通孔を設けてこの貫通孔か
ら巻線の間隙内にガスを供給し、巻線内の巻回方向にガ
スを流すように構成したことにより、巻線のビルドが大
きい場合であっても、送風器の容量を増大させることが
なく、冷却効率および信頼性の高いガス絶縁変圧器を提
供することができる。
As described above, according to the present invention, a through hole is provided in the insulating cylinder inside or outside the winding, and gas is supplied from this through hole into the gap between the windings, so that By providing gas flow in the winding direction, it provides a gas-insulated transformer with high cooling efficiency and high reliability without increasing the capacity of the blower even when the build of the winding is large. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガス絶縁変圧器の第1実施例を示す模
式的断面図。
FIG. 1 is a schematic cross-sectional view showing a first embodiment of a gas insulation transformer of the present invention.

【図2】図1の絶縁筒を示す模式的斜視図。FIG. 2 is a schematic perspective view showing the insulating cylinder of FIG.

【図3】本発明のガス絶縁変圧器の第2実施例を示す模
式的断面図。
FIG. 3 is a schematic cross-sectional view showing a second embodiment of the gas insulation transformer of the present invention.

【図4】本発明のガス絶縁変圧器の第3実施例を示す模
式的断面図。
FIG. 4 is a schematic cross-sectional view showing a third embodiment of the gas insulation transformer of the present invention.

【図5】本発明のガス絶縁変圧器の第4実施例を示す模
式的断面図。
FIG. 5 is a schematic sectional view showing a fourth embodiment of the gas insulation transformer of the present invention.

【図6】従来のガス絶縁変圧器の巻線の一例を示す模式
的断面図。
FIG. 6 is a schematic cross-sectional view showing an example of windings of a conventional gas insulated transformer.

【図7】従来のガス絶縁変圧器の巻線の別の一例を示す
模式的断面図。
FIG. 7 is a schematic cross-sectional view showing another example of windings of a conventional gas insulated transformer.

【図8】図6または図7の巻線を含む従来のガス絶縁変
圧器の一例を示す模式的断面図。
8 is a schematic cross-sectional view showing an example of a conventional gas insulated transformer including the winding shown in FIG. 6 or FIG.

【符号の説明】[Explanation of symbols]

1,1A〜1D…巻線 1s…(巻線の)セクション 2,2a,2b…絶縁筒 3,3a,3b,31…冷却ダクト 4…(セクション間の)間隙 5…ガス止めカラー 6…ダクトピース 7…タンク 8…鉄心 9…バッフル 10…ガス流 11…冷却器 12…送風器 13…ガス配管 21,21a,21b…孔付き絶縁筒 22…貫通孔 23…端部ガス止め 24…ガス供給口 25…ガス排出口 1, 1A to 1D ... Winding 1s ... (of winding) Section 2, 2a, 2b ... Insulating cylinder 3, 3a, 3b, 31 ... Cooling duct 4 ... Gap (between sections) 5 ... Gas stop collar 6 ... Duct Piece 7 ... Tank 8 ... Iron core 9 ... Baffle 10 ... Gas flow 11 ... Cooler 12 ... Blower 13 ... Gas pipes 21, 21a, 21b ... Insulation cylinder with hole 22 ... Through hole 23 ... End gas stop 24 ... Gas supply Mouth 25 ... Gas outlet

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 絶縁ガスを充填したタンク内部に、鉄心
とこの鉄心軸方向周囲に複数のセクションを積層する形
で構成した巻線を配置し、前記セクション間長手方向に
前記絶縁ガスを流す間隙を設けてなるガス絶縁変圧器に
おいて、 前記巻線の巻回方向内外に第1と第2の絶縁筒をそれぞ
れ配置し、この第1と第2の絶縁筒のいずれか一方と巻
線との間に第3の絶縁筒を配置してこの第3の絶縁筒と
隣接する第1または第2の絶縁筒との間に前記絶縁ガス
が流れるダクトを形成し、前記第3の絶縁筒の軸方向に
複数の貫通孔を設けたことを特徴とするガス絶縁変圧
器。
1. A gap formed by arranging an iron core and a winding formed by laminating a plurality of sections around an axial direction of the iron core inside a tank filled with insulating gas, and flowing the insulating gas in the longitudinal direction between the sections. In the gas-insulated transformer, the first and second insulating cylinders are respectively arranged inside and outside the winding direction of the winding, and one of the first and second insulating cylinders is connected to the winding. A third insulating cylinder is arranged between the third insulating cylinder and the first or second insulating cylinder adjacent to the third insulating cylinder to form a duct through which the insulating gas flows, and a shaft of the third insulating cylinder. A gas-insulated transformer characterized in that a plurality of through holes are provided in the direction.
【請求項2】 絶縁ガスを充填したタンク内部に、鉄心
とこの鉄心軸方向周囲に複数のセクションを積層する形
でそれぞれ構成した複数の巻線を内外に配置し、前記セ
クション間長手方向に前記絶縁ガスを流す間隙を設けて
なるガス絶縁変圧器において、 前記複数の巻線の各々の巻回方向内外に絶縁筒をそれぞ
れ配置し、隣接する内外の巻線の間の隣接する2つの絶
縁筒の間に前記絶縁ガスが流れるダクトを形成し、この
ダクトを構成するいずれか一方の絶縁筒の軸方向に複数
の貫通孔を設けたことを特徴とするガス絶縁変圧器。
2. Inside a tank filled with an insulating gas, an iron core and a plurality of windings, each of which is formed by laminating a plurality of sections around the iron core axial direction, are arranged inside and outside, and in the longitudinal direction between the sections. In a gas-insulated transformer provided with a gap through which an insulating gas flows, insulating cylinders are respectively arranged inside and outside the winding direction of each of the plurality of windings, and two adjacent insulating cylinders are provided between adjacent inner and outer windings. A gas-insulated transformer, characterized in that a duct through which the insulating gas flows is formed between the two, and a plurality of through holes are provided in the axial direction of one of the insulating cylinders constituting the duct.
【請求項3】 絶縁ガスを充填したタンク内部に、鉄心
とこの鉄心軸方向周囲に複数のセクションを積層する形
でそれぞれ構成した複数の巻線を内外に配置し、前記セ
クション間長手方向に前記絶縁ガスを流す間隙を設けて
なるガス絶縁変圧器において、 前記複数の巻線の各々の巻回方向内外に絶縁筒をそれぞ
れ配置し、隣接する内外の巻線の間の隣接する2つの絶
縁筒の間に前記絶縁ガスが流れるダクトを形成し、この
ダクトを構成する両方の絶縁筒の軸方向に複数の貫通孔
を設けたことを特徴とするガス絶縁変圧器。
3. An iron core and a plurality of windings respectively configured by laminating a plurality of sections around the axial direction of the iron core are arranged inside and outside in a tank filled with an insulating gas, and the windings are arranged in the longitudinal direction between the sections. In a gas-insulated transformer provided with a gap through which an insulating gas flows, insulating cylinders are respectively arranged inside and outside the winding direction of each of the plurality of windings, and two adjacent insulating cylinders are provided between adjacent inner and outer windings. A gas-insulated transformer, characterized in that a duct through which the insulating gas flows is formed between the two, and a plurality of through holes are provided in the axial direction of both insulating cylinders constituting the duct.
【請求項4】 絶縁ガスを充填したタンク内部に、鉄心
とこの鉄心軸方向周囲に複数のセクションを積層する形
でそれぞれ構成した複数の巻線を内外に配置し、前記セ
クション間長手方向に前記絶縁ガスを流す間隙を設けて
なるガス絶縁変圧器において、 前記複数の巻線間には絶縁筒を配置せずに、最も内側の
巻線の内側と最も外側の巻線の外側に第1と第2の絶縁
筒をそれぞれ配置し、この第1と第2の絶縁筒のいずれ
か一方とこの絶縁筒が付属する巻線との間に第3の絶縁
筒を配置してこの第3の絶縁筒と隣接する第1または第
2の絶縁筒との間にガスを流すダクトを形成し、前記第
3の絶縁筒の軸方向に複数の貫通孔を設けたことを特徴
とするガス絶縁変圧器。
4. An iron core and a plurality of windings respectively configured by laminating a plurality of sections around the axial direction of the iron core are arranged inside and outside in a tank filled with an insulating gas, and the winding is formed in the longitudinal direction between the sections. In a gas-insulated transformer provided with a gap for flowing an insulating gas, an insulating cylinder is not arranged between the plurality of windings, and the first and second windings are provided inside the innermost winding and outside the outermost winding. The second insulating cylinders are arranged, and the third insulating cylinder is arranged between one of the first and second insulating cylinders and the winding to which the insulating cylinder is attached. A gas-insulated transformer, characterized in that a duct for flowing gas is formed between the cylinder and an adjacent first or second insulating cylinder, and a plurality of through holes are provided in the axial direction of the third insulating cylinder. .
【請求項5】 2つの絶縁筒の間に形成される前記ダク
トの間隔を、貫通孔を設けた絶縁筒とこれに対向する巻
線との間の間隔より大きくしたことを特徴とする請求項
1、請求項2、請求項3、または請求項4記載のガス絶
縁変圧器。
5. The distance between the ducts formed between the two insulating cylinders is set to be larger than the distance between the insulating cylinder having a through hole and the winding facing the insulating cylinder. The gas-insulated transformer according to claim 1, claim 2, claim 3, or claim 4.
【請求項6】 貫通孔を設けた絶縁筒の単位面積あたり
の貫通孔の面積を、絶縁筒の下部から上部に向かって大
きくしたことを特徴とする請求項1、請求項2、請求項
3、請求項4、または請求項5記載のガス絶縁変圧器。
6. The insulating cylinder having a through hole, wherein the area of the through hole per unit area of the insulating cylinder is increased from the lower part to the upper part of the insulating cylinder. The gas insulated transformer according to claim 4 or claim 5.
JP6146864A 1994-06-28 1994-06-28 Gas insulation transformer Pending JPH0817645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6146864A JPH0817645A (en) 1994-06-28 1994-06-28 Gas insulation transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6146864A JPH0817645A (en) 1994-06-28 1994-06-28 Gas insulation transformer

Publications (1)

Publication Number Publication Date
JPH0817645A true JPH0817645A (en) 1996-01-19

Family

ID=15417299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6146864A Pending JPH0817645A (en) 1994-06-28 1994-06-28 Gas insulation transformer

Country Status (1)

Country Link
JP (1) JPH0817645A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543564B2 (en) * 2000-05-11 2010-09-15 富士電機システムズ株式会社 Transformer
JP2011529633A (en) * 2008-07-31 2011-12-08 イー2ヴイ テクノロジーズ (ユーケイ) リミテッド Multi toroid transformer
JP2021009969A (en) * 2019-07-03 2021-01-28 三菱電機株式会社 Inductive electric winding device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543564B2 (en) * 2000-05-11 2010-09-15 富士電機システムズ株式会社 Transformer
JP2011529633A (en) * 2008-07-31 2011-12-08 イー2ヴイ テクノロジーズ (ユーケイ) リミテッド Multi toroid transformer
JP2021009969A (en) * 2019-07-03 2021-01-28 三菱電機株式会社 Inductive electric winding device

Similar Documents

Publication Publication Date Title
EP0250980B1 (en) Ventilated end turns for rotor windings of a dynamoelectric machine
US5473207A (en) Cooling pads for water-cooled stator cores in dynamoelectric machines and methods of fabrication
JP2853505B2 (en) Stationary guidance equipment
US6844637B1 (en) Rotor assembly end turn cooling system and method
US7190094B2 (en) Multi-path cooling of a turbo-generator rotor winding
JP2004521504A (en) Transformer with forced liquid cooling
JPH0817645A (en) Gas insulation transformer
JPH10243608A (en) Gas-cooled electric machine
KR20120004367U (en) Method for cooling a coil coil cooling system and liquid cooled coil
JPH07307227A (en) Multiwinding transformer
JPH08124757A (en) Gas-insulated transformer
JP2924533B2 (en) Stationary guidance equipment
JPS58157115A (en) Induction apparatus
JPH0864426A (en) Stationary induction device
JPS60227407A (en) Winding of stationary induction apparatus
JPS6281014A (en) Reactor
JPH07176435A (en) Coil structure for induction equipment
JPH0310649Y2 (en)
JPH06267756A (en) Winding of induction apparatus
JPS6255283B2 (en)
JP3535562B2 (en) Gas-cooled power equipment
JPH11317313A (en) Static guide equipment
JPH05234776A (en) Gas-insulated transformer
JPH0864424A (en) Gas-insulated stationary induction device
JPH06251956A (en) Transformer winding