JPH04180207A - Disk winding for induction electric apparatus - Google Patents

Disk winding for induction electric apparatus

Info

Publication number
JPH04180207A
JPH04180207A JP2307017A JP30701790A JPH04180207A JP H04180207 A JPH04180207 A JP H04180207A JP 2307017 A JP2307017 A JP 2307017A JP 30701790 A JP30701790 A JP 30701790A JP H04180207 A JPH04180207 A JP H04180207A
Authority
JP
Japan
Prior art keywords
cooling
horizontal
winding
horizontal cooling
outer vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2307017A
Other languages
Japanese (ja)
Other versions
JPH088173B2 (en
Inventor
Masumi Nakatate
真澄 中楯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2307017A priority Critical patent/JPH088173B2/en
Publication of JPH04180207A publication Critical patent/JPH04180207A/en
Publication of JPH088173B2 publication Critical patent/JPH088173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a partial and excessive temperature rise by a method wherein one cooling region is formed of a plurality of horizontal cooling passages between an inside blocking-up stopper and an outside blocking-up stopper which are installed side by side and a specific relationship is established among the following: the width of the horizontal cooling passages; the number of horizontal cooling passages inside one cooling region; and the width of an inside vertical cooling passage and an outside vertical cooling passage. CONSTITUTION:The number of horizontal cooling passages 5 in each cooling region is designated as (n); the height of the horizontal cooling passages 5 is designated as SH; and the width of an inside vertical cooling passage and an outside vertical cooling passage 8, 9 is designated as SV. The individual values SV, SH, (n) are set so that the relationship of SV>=(SHXn)/3 is established. That is to say, since the width of the inside and outside vertical cooling passages 8, 9 is kept at 1/3 or higher of the width of all the horizontal cooling passages 5 inside one cooling region, the difference in the speed of a refrigerant between the upper part and the lower part of the inside and outside vertical cooling passages 8, 9 in one cooling region is reduced. Consequently, the distribution of the speed of the refrigerant which flows into the horizontal cooling passages which are branched from the inside and outside vertical cooling passages is made uniform. Thereby, it is possible to prevent that the temperature rise of a disk winding becomes partially excessive, and the disl winding as a whole can uniformly be cooled.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、SF6ガスあるいは変圧器油等の冷媒により
冷却を行なう誘導電器円板巻線に係り、特に均一な冷却
が可能な誘導電器円板巻線に関する。
[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) The present invention relates to an induction electric disk winding that is cooled by a refrigerant such as SF6 gas or transformer oil, and particularly relates to an induction electric disk winding that is cooled by a refrigerant such as SF6 gas or transformer oil. Concerning possible induction electric disc windings.

(従来の技術) 従来、変圧器等の誘導電器の巻線として用いられる円板
巻線は第4図の径方向断面図と第5図の■−V線断面図
に示すように構成される。すなわち、内側絶縁筒1と外
側絶縁筒2との間に、素線導体を巻回した円板巻線3が
軸方向に間隔を開けて複数段積み重ねられ、それぞれの
円板巻線は渡り線(図示せず)により電気的に直列に接
続される。
(Prior Art) Conventionally, a disk winding used as a winding for an induction electric device such as a transformer is constructed as shown in a radial cross-sectional view in Fig. 4 and a cross-sectional view taken along the line ■-V in Fig. 5. . That is, between the inner insulating tube 1 and the outer insulating tube 2, a plurality of disk windings 3 each having a wire conductor wound thereon are stacked at intervals in the axial direction, and each disk winding serves as a crossover wire. (not shown) electrically connected in series.

また円板巻線3は径方向において、放射状に等間隔に配
置される絶縁間隔片4によって互いに仕切られる。その
結果、軸方向において各円板巻線3間には、隣合う絶縁
間隔片4に挟まれながら径方向に進む円板巻線3の水平
冷却路5が形成される。さらに内・外側絶縁筒1および
2と前記各円板巻線3との間には絶縁間隔片4と同径上
にそれぞれ内側垂直間隔片6と外側垂直間隔片7か、絶
縁間隔片4とそれぞれ内側絶縁筒1および外側絶縁筒2
に密着して軸方向に延びながら設置され、隣合う水平冷
却路5を軸方向に仕切る。そして、隣合う内側・外側垂
直間隔片6,7の間、すなわち円板巻線3と内・外側絶
縁筒1,2間には、それぞれ軸方向に延びて複数段の水
平冷却路5と連通する複数本の内側垂直冷却路8および
外側垂直冷却路9が形成される。
Further, the disc windings 3 are separated from each other in the radial direction by insulating spacing pieces 4 arranged radially at equal intervals. As a result, a horizontal cooling path 5 for the disk winding 3 is formed between each disk winding 3 in the axial direction, which extends in the radial direction while being sandwiched between adjacent insulating spacing pieces 4 . Further, between the inner and outer insulating cylinders 1 and 2 and each of the disk windings 3, an inner vertical spacing piece 6 and an outer vertical spacing piece 7 or an insulating spacing piece 4 are provided on the same diameter as the insulating spacing piece 4, respectively. Inner insulating tube 1 and outer insulating tube 2, respectively
The horizontal cooling passages 5 are installed in close contact with each other and extend in the axial direction, and partition the adjacent horizontal cooling passages 5 in the axial direction. Between the adjacent inner and outer vertical spacing pieces 6 and 7, that is, between the disc winding 3 and the inner and outer insulating cylinders 1 and 2, each extends in the axial direction and communicates with a plurality of horizontal cooling passages 5. A plurality of inner vertical cooling passages 8 and outer vertical cooling passages 9 are formed.

この円板巻線は、図示しないタンク内にSF6ガスなど
の絶縁ガスあるいは変圧器絶縁油等の絶縁性の冷媒とと
もに収納し、この冷媒を、強制対流あるいは自然対流さ
せて上述の内・外側垂直冷却路8,9および水平冷却路
5内に流通させ、円板巻線3の冷却を行なっている。
This disk winding is stored in a tank (not shown) together with an insulating refrigerant such as an insulating gas such as SF6 gas or an insulating oil for a transformer, and this refrigerant is forced to flow or naturally convect to form the inner and outer vertical It is made to flow through the cooling paths 8 and 9 and the horizontal cooling path 5 to cool the disk winding 3.

このような円板巻線は、冷却効果をより高めるため、第
5図に示すように、円板巻線3の数段毎に、内側垂直冷
却路8と外側垂直冷却路9に円板巻線3の全周に沿って
内側閉塞栓10および外側閉塞栓11を軸方向に交互に
設け、内側・外側垂直冷却路8および9を軸方向におい
て交互に閉塞する。その結果、隣り合う内側閉塞栓10
と外側閉塞栓11の間にはその中に納められる数段の円
板巻線3について、一つの冷却区域か形成される。
In order to further enhance the cooling effect, such a disk winding is provided with disk windings in the inner vertical cooling path 8 and the outer vertical cooling path 9 every several stages of the disk winding 3, as shown in FIG. Inner plugs 10 and outer plugs 11 are provided alternately in the axial direction along the entire circumference of the line 3, and the inner and outer vertical cooling passages 8 and 9 are alternately closed in the axial direction. As a result, the adjacent inner plugs 10
A cooling zone is formed between and the outer plug 11 for the several stages of disc windings 3 accommodated therein.

したがって、冷媒は、誘導電気円板巻線の軸方向におい
て、冷却区域毎に流入口および流出口か内側と外側に入
替るため、冷却領域毎に水平冷却路5をジグザグ状に進
む。すなわち、冷媒が内側・外側垂直冷却路8,9の他
、水平冷却路5をも確実に進むことになり、誘導電器円
板巻線全体の冷却が効率よく行なわれる。
Therefore, the refrigerant travels in a zigzag manner in the horizontal cooling channel 5 for each cooling zone in order to alternate between the inlet and the outlet for each cooling zone in the axial direction of the induction electric disc winding. That is, the refrigerant reliably travels through the horizontal cooling path 5 as well as the inner and outer vertical cooling paths 8 and 9, and the entire induction electric disk winding is efficiently cooled.

(発明が解決しようとする課題) ところが、このような誘導電器円板巻線において、一つ
の冷却区域内の各水平冷却路5に分流する冷媒の流れを
みると、第5図に示すように、流速は各段の水平冷却路
5において均一になっておらず、SF6ガス冷媒の場合
には、一つの冷却区域の流入口付近にある下部の水平冷
却路5内の流速は、流出口付近にある上部の水平冷却路
5内の流速に比較して非常に小さい。冷媒進路を示す矢
印12の水平方向の長さは、流速の大きさを表す。
(Problem to be Solved by the Invention) However, in such an induction electric disk winding, when looking at the flow of refrigerant that is divided into each horizontal cooling path 5 in one cooling area, as shown in FIG. , the flow velocity is not uniform in the horizontal cooling passages 5 of each stage, and in the case of SF6 gas refrigerant, the flow velocity in the lower horizontal cooling passage 5 near the inlet of one cooling zone is not uniform near the outlet. The flow velocity in the upper horizontal cooling passage 5 is very small compared to that in the upper horizontal cooling passage 5. The horizontal length of the arrow 12 indicating the refrigerant path represents the magnitude of the flow velocity.

すなわち、一つの冷却区域内における各水平冷却路5の
流速分布は、一つの冷却区域の流入口に近付くに従って
小さくなっており、特に内側・外側垂直冷却路8,9の
流速が速い流入口付近では、滞流あるいは逆流も起こり
得る。
That is, the flow velocity distribution of each horizontal cooling passage 5 within one cooling area becomes smaller as it approaches the inlet of one cooling area, and especially near the inlet where the flow velocity of the inner and outer vertical cooling passages 8 and 9 is high. In this case, stagnation or backflow may also occur.

これは、水平冷却路5だけについてみると、上方の水平
冷却路でも下方の水平冷却路でも冷媒の流速にはほとん
ど差がないのに、内側・外側垂直冷却路8.9の流路幅
が水平冷却路のそれに比して狭いと、−冷却区域におい
て内側・外側垂直冷却路8.9の流路抵抗か増大し、内
側・外側垂直冷却路8,9の上部と下部で冷媒の流速に
大きな差が生ずる(上部で運べ、下部で速い)。したが
って、流速の速い流入口付近では近くの水平冷却路5か
ら逆に冷媒を吸込み、上方に向かう冷媒の流速が相殺な
いしマイナスにされるためである。
This is because when looking only at the horizontal cooling passage 5, there is almost no difference in the flow velocity of the refrigerant between the upper horizontal cooling passage and the lower horizontal cooling passage, but the passage width of the inner and outer vertical cooling passages 8.9 If the horizontal cooling channels are narrow compared to that of the horizontal cooling channels, - the flow resistance of the inner and outer vertical cooling channels 8,9 increases in the cooling zone, and the flow velocity of the coolant at the top and bottom of the inner and outer vertical cooling channels 8,9 increases; It makes a big difference (carryer at the top, faster at the bottom). Therefore, near the inlet where the flow velocity is high, the refrigerant is sucked in from the nearby horizontal cooling path 5, and the flow velocity of the refrigerant moving upward is canceled out or made negative.

したがって、流出口付近に配置される円板巻線3に比べ
、流入口付近に配置される円板巻線3は冷却が充分にな
されない。このため、折角内側および外側閉塞栓10.
11を取り付けて、冷媒を水平冷却路5に確実に通すよ
うにしたにも拘らず、各冷却区域内においては、各円板
巻線3の−様な冷却効果が得られない。よって円板巻線
温度の均一化を行なうことかできず、各冷却区域内にお
いて部分的に過大な温度上昇か起こり、円板巻線3の絶
縁に係る絶縁間隔片4等を劣化させて変圧器の寿命を短
縮してしまうことがある。
Therefore, the disk winding 3 placed near the inlet is not sufficiently cooled compared to the disk winding 3 placed near the outlet. For this reason, the inner and outer obturators 10.
11 to ensure that the refrigerant passes through the horizontal cooling path 5, the cooling effect of each disk winding 3 cannot be obtained in each cooling zone. Therefore, it is not possible to equalize the temperature of the disc winding, and an excessive temperature rise occurs locally in each cooling zone, which deteriorates the insulation spacer 4 etc. that insulates the disc winding 3, resulting in voltage transformation. This may shorten the life of the device.

そこで、円板巻線3を形成する素線導体の断面積を大き
くして電流密度を下げるなど、冷媒の水平冷却路5内の
最小流速を基準とした巻線冷却設計が考えられるか、変
圧器に大型にし、コスト高を招くなどの欠点がある。
Therefore, is it possible to consider a winding cooling design based on the minimum flow velocity of the refrigerant in the horizontal cooling path 5, such as increasing the cross-sectional area of the wire conductor forming the disk winding 3 to lower the current density? There are disadvantages such as the large size of the container and high cost.

本発明は、上述した事情を考慮してなされたもので、誘
導電器を大型化することなく、冷却区域内を通過する冷
媒について各水平冷却路の冷却に必要な流速を確保し、
部分的に過大な温度上昇を生じることのない冷却を行な
うことができる誘導電器円板巻線を提供することを目的
とする。
The present invention has been made in consideration of the above-mentioned circumstances, and it is possible to secure the flow rate necessary for cooling each horizontal cooling path for the refrigerant passing through the cooling area without increasing the size of the induction device.
It is an object of the present invention to provide an induction electric disk winding that can be cooled without causing an excessive temperature rise in some parts.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、上記課題を解決するために、内側絶縁筒と外
側絶縁筒との間に軸方向に複数段配置される円板巻線と
、円板巻線の径方向において各円板巻線を仕切りながら
軸方向に延びる複数個の絶縁間隔片であって、隣合う絶
縁間隔片の間で径方向に延びる円板巻線の水平冷却路を
複数段形成する絶縁間隔片と、この絶縁間隔片と同径上
において前記内側絶縁筒と円板巻線との間に軸方向に延
びながら介装される複数個の内側垂直間隔片であって、
隣合う内側垂直間隔片の間で前記水平冷却路と連通する
内側垂直冷却路を形成する内側垂直間隔片と、前記絶縁
間隔片と同径上において前記外側絶縁筒と円板巻線との
間に軸方向に延びなから介装される複数個の外側垂直間
隔片であって、隣合う外側垂直間隔片の間で前記水平冷
却路と連通する外側垂直冷却路を形成する外側垂直間隔
片と、前記内側垂直冷却路と外側垂直冷却路において円
板巻線の全周に亘って軸方向に内側垂直冷却路と外側垂
直冷却路にそれぞれ交互に配置される内側閉塞栓と外側
閉塞栓であって、隣合う内側閉塞栓と外側閉塞栓の間で
前記複数の水平冷却路で1つの冷却区域を形成する内側
閉塞栓と外側閉塞栓とを具備する誘導電器円板巻線にお
いて、前記水平冷却路の幅5l11一つの冷却区域内の
水平冷却路の数n、および前記内側・外側垂直冷却路の
幅S の間に、S■≧(SHXn) /’3の関係を■ 成立させた誘導電器円板巻線を提供する。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a disc winding arranged in multiple stages in the axial direction between an inner insulating cylinder and an outer insulating cylinder, and a disc winding. a plurality of insulating spacing pieces extending in the axial direction while partitioning each disc winding in the radial direction, forming a plurality of horizontal cooling passages for the disc winding extending in the radial direction between adjacent insulating spacing pieces; a plurality of inner vertical spacing pieces extending in the axial direction and interposed between the inner insulating cylinder and the disc winding on the same diameter as the insulating spacing pieces,
between an inner vertical spacing piece that forms an inner vertical cooling passage that communicates with the horizontal cooling passage between adjacent inner vertical spacing pieces, and the outer insulating cylinder and the disc winding on the same diameter as the insulation spacing piece; a plurality of outer vertical spacing pieces extending in the axial direction and interposed between the outer vertical spacing pieces, the outer vertical spacing pieces forming an outer vertical cooling passage communicating with the horizontal cooling passage between adjacent outer vertical spacing pieces; , inner and outer blocking plugs are arranged alternately in the inner vertical cooling path and the outer vertical cooling path, respectively, in the axial direction over the entire circumference of the disk winding in the inner vertical cooling path and the outer vertical cooling path; In the induction electric disc winding, the induction electric disc winding includes an inner blocker and an outer blocker, the plurality of horizontal cooling paths forming one cooling zone between the adjacent inner blocker and outer blocker, wherein the horizontal cooling Channel width 5l11 An induction electric appliance that holds the relationship S≧(SHXn)/'3 between the number n of horizontal cooling channels in one cooling zone and the width S of the inner and outer vertical cooling channels. Disk windings are provided.

(作用) 本発明にかかる誘導電器円板巻線においては、水平冷却
路の高さSH1一つの冷却区域を構成する水平冷却路の
数nおよび内側・外側垂直冷却路の幅S、が、S、≧(
S Hx n ) / 3の関係を満たす。すなわち、
内側・外側垂直冷却路の幅が一つの冷却区域内の全水平
冷却路の幅の1/3以上に保たれるため、内側・外側垂
直冷却路の流路抵抗は水平冷却路に比して減少し、−冷
却区域における内側・外側垂直冷却路の上部と下部間の
冷媒の流速差は縮小する。したがって、内側・外側垂直
冷却路から分岐する水平冷却路に流込む冷媒の流速分布
は均一化する。
(Function) In the induction electric disk winding according to the present invention, the height SH of the horizontal cooling passages, the number n of horizontal cooling passages constituting one cooling area, and the width S of the inner and outer vertical cooling passages are S , ≧(
It satisfies the relationship S Hx n )/3. That is,
Since the width of the inner and outer vertical cooling channels is kept at least 1/3 of the width of all horizontal cooling channels in one cooling zone, the flow resistance of the inner and outer vertical cooling channels is smaller than that of the horizontal cooling channels. - the coolant flow velocity difference between the upper and lower parts of the inner and outer vertical cooling channels in the cooling zone is reduced; Therefore, the flow velocity distribution of the refrigerant flowing into the horizontal cooling path branching from the inner and outer vertical cooling paths becomes uniform.

(実施例) 以下、本発明の実施例を、第1図ないし第3図を参照し
て説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.

本実施例に係る誘導電器円板巻線の基本的構成は、第4
図と第5図に示したものと実質的には異ならないため、
対応する部分には同一の符号を付して説明を省略する。
The basic configuration of the induction electric disc winding according to this embodiment is as follows:
Since it is not substantially different from that shown in FIG.
Corresponding parts are denoted by the same reference numerals and explanations will be omitted.

第1図は本実施例の誘導電器円板巻線の軸方向断面図で
、第5図に対応する。
FIG. 1 is an axial sectional view of the induction electric disc winding of this embodiment, and corresponds to FIG. 5.

ここで、図に示すように、各冷却区域内の水平冷却路5
の数をnlこの水平冷却路5の高さをSH1前記内側・
外側垂直冷却路8,9の幅をSvとすると、本実施例に
おいては、 Sv≧(SHXn)/3     ・・・・!・(1)
の関係が成立するように、多値SV、SH,nを設定す
る。
Here, as shown in the figure, horizontal cooling channels 5 in each cooling zone
The number of nl is the height of this horizontal cooling passage 5.
Assuming that the width of the outer vertical cooling passages 8 and 9 is Sv, in this embodiment, Sv≧(SHXn)/3...!・(1)
Multi-value SV, SH, n are set so that the following relationship holds true.

このように構成された本実施例の誘導電器円板巻線にS
F6ガス等の絶縁冷却媒体が流れた場合は、内側・外側
垂直冷却路の幅S、が一つの冷却区域内の全水平冷却路
の幅(S)Ixn)の1/3以上に保たれるため、内側
・外側垂直冷却路8゜9の流路抵抗は水平冷却路に比し
て減少し、上方の水平冷却路と下方の水平冷却路間での
冷媒の流速差が少ないのに加えて、−冷却区域における
内側・外側垂直冷却路の上部と下部間の冷媒の流速差も
縮小する。したがって、内側・外側垂直冷却路から分岐
する各水平冷却路における冷媒の流速分布は均一化する
The induction electric disk winding of this embodiment configured in this way has S
When an insulating cooling medium such as F6 gas flows, the width S of the inner and outer vertical cooling channels is kept at least 1/3 of the width (S)Ixn) of all horizontal cooling channels in one cooling area. Therefore, the flow resistance of the inner and outer vertical cooling passages 8°9 is reduced compared to the horizontal cooling passage, and in addition to the fact that the difference in refrigerant flow velocity between the upper horizontal cooling passage and the lower horizontal cooling passage is small. , - the coolant flow velocity difference between the upper and lower parts of the inner and outer vertical cooling channels in the cooling zone is also reduced. Therefore, the flow velocity distribution of the refrigerant in each horizontal cooling path branching from the inner and outer vertical cooling paths is made uniform.

第2図(A)と(B)は、それぞれ5V=1゜3x (
S  xn)□/3 (すなわちS ≧(SHXn  
                 Vn)/3)と5
v=0.7×(SHXn)/3(すなわちS  < (
SHXn)/3)の場合で、■ 一冷却区域の各水平冷却路における冷媒の流速分布を示
したものである。
Figures 2 (A) and (B) are 5V=1°3x (
S xn)□/3 (i.e. S ≧(SHXn
Vn)/3) and 5
v=0.7×(SHXn)/3 (i.e. S < (
In the case of SHXn)/3), (1) shows the flow velocity distribution of the refrigerant in each horizontal cooling path in one cooling area.

第2図(A)は、本実施例における冷媒の流速分布であ
るが、本実施例の誘導電器円板巻線においては、1つの
冷却区域内の各水平冷却路内流速分布が均一化されるの
に対し、S、SH,n間に本発明(1)式が成立しない
場合には、1つの冷却区域の下部付近で流速がゼロにな
り、上部と下部で水平冷却路内の流速に大きな差か生じ
ている。
Figure 2 (A) shows the flow velocity distribution of the refrigerant in this embodiment. In the induction electric disc winding of this embodiment, the flow velocity distribution in each horizontal cooling path within one cooling area is made uniform. On the other hand, if the formula (1) of the present invention does not hold between S, SH, and n, the flow velocity becomes zero near the bottom of one cooling zone, and the flow velocity in the horizontal cooling channel at the top and bottom becomes zero. There is a big difference.

第3図は(SHXn)/”’S、と円板巻線最高温度と
の関係を示すグラフ図であるか、3 HX n7S〜7
=3の付近に変曲点がある。したかって(S  X n
 ) 7’ S y≦3、すなわちS ≧(S  xH
〜      H n)/3の領域では、第2図(A)に示すような比較的
均一な流速分布が得られることから、円板巻線の最高温
度は低い。一方、(S HX n ) /S  >’3
、すなわち斜< (SHXn)/3の領域では、第2図
(B)に示すような流速が00水平冷却路もある流速分
布となるため、円板巻線最高温度が高くなると考えられ
る。なお、Sl、;(S HX n ) / 3は、滞
流あるいは逆流の生じない限界の条件である。
Figure 3 is a graph showing the relationship between (SHXn)/''S and the maximum temperature of the disk winding, 3 HX n7S~7
There is an inflection point near =3. I want to do it (S X n
) 7' S y≦3, that is, S ≧(S xH
In the region of ˜H n)/3, a relatively uniform flow velocity distribution as shown in FIG. 2(A) is obtained, so the maximum temperature of the disk winding is low. On the other hand, (S HX n ) /S >'3
That is, in the region where the slope is < (SHXn)/3, the maximum temperature of the disc winding is considered to be high because the flow velocity distribution is as shown in FIG. Note that Sl; (S HX n ) / 3 is the limit condition where stagnation or backflow does not occur.

本実施例によれば、このように、前記(1)式が成立す
るように多値S、、、SH,nを設定するため、水平冷
却路各段の冷媒流速の均一化かなされ、円板巻線の温度
上昇が部分的に過大になるような不具合をなくして冷却
効率を向上させることができる。このため、円板巻線を
形成する素線導体の断面積を小さくして電流密度を上げ
ることも可能になり、誘導電器円板巻線の小型化、軽量
化を図ることができる。
According to this embodiment, in order to set the multi-values S, ..., SH,n so that the above formula (1) holds true, the refrigerant flow velocity in each stage of the horizontal cooling path is made uniform, and the circular Cooling efficiency can be improved by eliminating the problem that the temperature rise of the plate winding becomes excessive in some parts. Therefore, it is possible to increase the current density by reducing the cross-sectional area of the wire conductor forming the disk winding, and it is possible to reduce the size and weight of the induction electric disk winding.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明の誘導電器円板巻線によれ
ば、円板巻線全体の均一な冷却か可能になり、誘導電器
円板巻線の小型化・経済性の向上を図ることができる。
As explained above, according to the induction electric disk winding of the present invention, it is possible to uniformly cool the entire disk winding, thereby reducing the size and improving the economic efficiency of the induction electric disk winding. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る誘導電器円板巻線の要
部軸方向断面図、第2図(A)は本実施例の誘導電器円
板巻線の一冷却区域における各水平冷却路の流速分布を
示すグラフ図、第2図(B)は本発明の要件を満さない
誘導電器円板巻線の−冷却区域における各水平冷却路の
流速分布を示すグラフ図、第3図は(SHXn)/Sv
の値と円板巻線最高温度との関係を示すグラフ図、第4
図は従来の誘導電器円板巻線の径方向断面図、第5図は
第4図のV−V線断面図である。 1・・・内側絶縁筒、2・・・外側絶縁筒、3・・・円
板巻線、4・・・絶縁間隔片、6・・・内側垂直間隔片
、7・・・外側垂直間隔片、5・・・水平冷却路、8・
・・内側垂直冷却路、9・・・外側垂直冷却路、10・
・・内側閉塞栓、11・・・外側閉塞栓。 代理人弁理士   則 近  憲 佑 jた速            流速 (A> Sv≧多Pkn4合  (B) Sv <”’
 ” f’) 4 合冶2 回 Sv 名3 ヒ
FIG. 1 is an axial cross-sectional view of a main part of an induction electric disk winding according to an embodiment of the present invention, and FIG. Fig. 2 (B) is a graph showing the flow velocity distribution of the cooling passages, and Fig. 3 is a graph showing the flow velocity distribution of each horizontal cooling passage in the cooling zone of the induction electric disk winding that does not meet the requirements of the present invention. The figure is (SHXn)/Sv
Graph showing the relationship between the value of and the maximum temperature of the disk winding, 4th
The figure is a radial cross-sectional view of a conventional induction electric disk winding, and FIG. 5 is a cross-sectional view taken along the line V-V in FIG. 4. DESCRIPTION OF SYMBOLS 1...Inner insulating tube, 2...Outer insulating tube, 3...Disc winding, 4...Insulating spacing piece, 6...Inner vertical spacing piece, 7...Outer vertical spacing piece , 5... horizontal cooling path, 8.
...Inner vertical cooling path, 9...Outer vertical cooling path, 10.
...Inner obstructing plug, 11...Outer obstructing plug. Agent Patent Attorney Rules Ken Chika Velocity Flow Velocity (A> Sv ≧ Pkn4 Go (B) Sv <”'
"f') 4 Goji 2 times Sv Name 3 Hi

Claims (1)

【特許請求の範囲】[Claims]  内側絶縁筒と外側絶縁筒との間に軸方向に複数段配置
される円板巻線と、円板巻線の径方向において各円板巻
線を仕切りながら軸方向に延びる複数個の絶縁間隔片で
あって、隣合う絶縁間隔片の間で径方向に延びる円板巻
線の水平冷却路を複数段形成する絶縁間隔片と、この絶
縁間隔片と同径上において前記内側絶縁筒と円板巻線と
の間に軸方向に延びながら介装される複数個の内側垂直
間隔片であって、隣合う内側垂直間隔片の間で前記水平
冷却路と連通する内側垂直冷却路を形成する内側垂直間
隔片と、前記絶縁間隔片と同径上において前記外側絶縁
筒と円板巻線との間に軸方向に延びながら介装される複
数個の外側垂直間隔片であって、隣合う外側垂直間隔片
の間で前記水平冷却路と連通する外側垂直冷却路を形成
する外側垂直間隔片と、前記内側垂直冷却路と外側垂直
冷却路において円板巻線の全周に亘って軸方向に内側垂
直冷却路と外側垂直冷却路にそれぞれ交互に配置される
内側閉塞栓と外側閉塞栓であって、隣合う内側閉塞栓と
外側閉塞栓の間で前記複数の水平冷却路で1つの冷却区
域を形成する内側閉塞栓と外側閉塞栓とを具備する誘導
電器円板巻線において、前記水平冷却路の幅S_H、一
つの冷却区域内の水平冷却路の数n、および前記内側・
外側垂直冷却路の幅S_vの間に、S_v≧(S_HX
_n)/3の関係を成立させた誘導電器円板巻線。
A disc winding arranged in multiple stages in the axial direction between an inner insulating cylinder and an outer insulating cylinder, and a plurality of insulation intervals extending in the axial direction while partitioning each disc winding in the radial direction of the disc winding. an insulating spacing piece that forms a plurality of horizontal cooling passages for a disc winding extending radially between adjacent insulating spacing pieces; A plurality of inner vertical spacing pieces are interposed between the plate windings while extending in the axial direction, and an inner vertical cooling passage communicating with the horizontal cooling passage is formed between adjacent inner vertical spacing pieces. an inner vertical spacing piece; and a plurality of outer vertical spacing pieces that are interposed between the outer insulating cylinder and the disc winding on the same diameter as the insulating spacing pieces while extending in the axial direction, and that are adjacent to each other. an outer vertical spacing piece forming an outer vertical cooling passage communicating with the horizontal cooling passage between the outer vertical spacing pieces; and an outer vertical spacing piece forming an outer vertical cooling passage communicating with the horizontal cooling passage; Inner and outer blocking plugs are arranged alternately in the inner vertical cooling path and the outer vertical cooling path, respectively, and one cooling is performed in the plurality of horizontal cooling paths between adjacent inner and outer blocking plugs. In an induction disk winding comprising an inner blocker and an outer blocker forming a zone, the width S_H of the horizontal cooling channel, the number n of horizontal cooling channels in one cooling zone, and the inner
Between the width S_v of the outer vertical cooling passage, S_v≧(S_HX
An induction electric disk winding that satisfies the relationship of _n)/3.
JP2307017A 1990-11-15 1990-11-15 Induction electric disk winding Expired - Lifetime JPH088173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2307017A JPH088173B2 (en) 1990-11-15 1990-11-15 Induction electric disk winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2307017A JPH088173B2 (en) 1990-11-15 1990-11-15 Induction electric disk winding

Publications (2)

Publication Number Publication Date
JPH04180207A true JPH04180207A (en) 1992-06-26
JPH088173B2 JPH088173B2 (en) 1996-01-29

Family

ID=17964025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2307017A Expired - Lifetime JPH088173B2 (en) 1990-11-15 1990-11-15 Induction electric disk winding

Country Status (1)

Country Link
JP (1) JPH088173B2 (en)

Also Published As

Publication number Publication date
JPH088173B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
JPH06275443A (en) Stationary induction apparatus
EP2372728B1 (en) Transformation device
US3551863A (en) Transformer with heat dissipator
JPH04180207A (en) Disk winding for induction electric apparatus
KR20140005166U (en) Power transformaer
JP6502423B2 (en) electromagnet
JPH0249408A (en) Self-cooled stationary electromagnetic induction apparatus
JP2508994B2 (en) Induction electric disk winding
JPS58157115A (en) Induction apparatus
JP3254914B2 (en) Transformer winding
JPH0749775Y2 (en) Stationary induction equipment
JPH0218909A (en) Disc winding for induction electric apparatus
JPS59155108A (en) Winding for natural cooling induction electric apparatus
JPS59155110A (en) Winding for natural cooling induction electric apparatus
JPH01313913A (en) Disk winding for induction electrical equipment
JPH09293617A (en) Guided spiral
JPS60173811A (en) Winding of electric apparatus
JPH02148809A (en) Disc winding for induction device
JPS607457Y2 (en) electrical equipment winding
JPH01183107A (en) Induction electric apparatus disk winding
JPH07176435A (en) Coil structure for induction equipment
JPH01313912A (en) Winding for induction electrical equipment
JPH11317313A (en) Static guide equipment
JPH08130123A (en) Winding construction for induction electromagneitc apparatus
JPS59155109A (en) Winding for natural cooling induction electric apparatus