JPH02185068A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPH02185068A
JPH02185068A JP374989A JP374989A JPH02185068A JP H02185068 A JPH02185068 A JP H02185068A JP 374989 A JP374989 A JP 374989A JP 374989 A JP374989 A JP 374989A JP H02185068 A JPH02185068 A JP H02185068A
Authority
JP
Japan
Prior art keywords
film
silicon
thickness
soi
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP374989A
Other languages
Japanese (ja)
Inventor
Hiroaki Hazama
博顕 間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP374989A priority Critical patent/JPH02185068A/en
Publication of JPH02185068A publication Critical patent/JPH02185068A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce a parasitic resistance effect and to increase the process margin of manufacturing an element by forming a field-effect transistor in which the thickness of source and drain regions are larger than that of a channel region. CONSTITUTION:Oxygen ions are implanted to a P-type silicon substrate 11, and a SOI board of a structure in which a silicon oxide film 12 is buried in the silicon substrate is manufactured. Then, this SOI silicon film 13 is partly oxidized to form a silicon oxide film 17, and the thickness of the SOI silicon film 13 corresponding to the channel of a field effect transistor is reduced. The silicon oxide film 17 is removed by etching, the exposed part of the silicon film 13 is oxidized to form a gate oxide film 18, and polycrystalline silicon is, for example, deposited on the whole surface as a gate electrode 19. It is so etched back that the thickness of the polycrystalline silicon film hold a sufficient value as a gate electrode. Thus, high mobility, high punchthrough voltage resistance, and high driving force are realized, sufficient film thickness is obtained for the source, drain regions 20 to reduce its parasitic resistance and to realize the easiness of forming a contact.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体装置の製造方法に係わり、%にSOI基
板上において、素子のチャネル領域の膜厚を十分に薄く
して、薄膜トランジスタとしてのメリットを得るととも
に、寄生抵抗の少ないコンタクト形成の容易な膜厚のソ
ース・ドレイン領域を有する超高速電界効果型トランジ
スタの製造方法に係わる。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and relates to a method for manufacturing a semiconductor device, in which the film thickness of a channel region of an element is sufficiently thinned on an SOI substrate. The present invention relates to a method of manufacturing an ultrahigh-speed field effect transistor that has the advantages of a thin film transistor and has source/drain regions with a thickness that allows easy contact formation with low parasitic resistance.

(従来の技術) LSIデバイスの高集積化にともない電界効果トランジ
スタのスイッチング動作の高速化およびそのサイズの微
細化に対する要求が高まっている。
(Prior Art) As LSI devices become more highly integrated, there is an increasing demand for faster switching operations and miniaturization of field effect transistors.

これらの要求を満足するトランジスタの構造の一つに、
80工構造のトランジスタを用いて、トランジスタのチ
ャネル部の膜厚をトランジスタの動作時にSOIJ[が
完全に空乏化するようにSOI膜を薄膜化した素子構造
がある。この薄膜トランジスタ特性については、例えば
、Yoshimi et、al。
One type of transistor structure that satisfies these requirements is
There is an element structure in which an SOI film is thinned so that the thickness of the channel portion of the transistor is completely depleted by SOIJ during operation of the transistor, using a transistor with an 80mm structure. Regarding the thin film transistor characteristics, see, for example, Yoshimi et al.

’High performance SOIMO8F
ET using ultra−thin 8CHfi
1m’ Technical Dig、of IBDM
1987 、 p、640 、1987  に示されて
いる。
'High performance SOIMO8F
ET using ultra-thin 8CHfi
1m' Technical Dig, of IBDM
1987, p. 640, 1987.

薄膜トランジスタの特性は従来の薄膜でない電界効果型
トランジスタの特性に比べて優れているが、薄いSOI
膜に電界効果壓トランジスタを形成する場合には、ソー
ス・ドレイン領域もまた薄膜であるために寄生抵抗が大
きく、十分に薄膜トランジスタのメリットを引き出せな
いこと、またソース・ドレイン領域の膜厚が薄いために
コンタクトを形成するための素子作製プロセスの余裕が
小さいこと等の欠点があった。
The characteristics of thin film transistors are superior to those of conventional non-thin film field effect transistors, but thin SOI
When forming a field effect transistor in a film, the parasitic resistance is large because the source/drain regions are also thin films, making it impossible to fully utilize the advantages of thin film transistors, and also because the source/drain regions are thin. However, there were drawbacks such as a small margin in the element manufacturing process for forming contacts.

(発明が解決しようとする課題) 本発明は薄11SOI)ランジスタにおけるソース・ド
レインの寄生抵抗効果を低減し、素子作製プロセスのプ
ロセス余裕を大きくするために、ソース書ドレイン領埴
の膜厚をチャネル領域よりも厚くした電界効果型トラン
ジスタの形成方法を提供するものである。
(Problems to be Solved by the Invention) The present invention aims to reduce the parasitic resistance effect of the source/drain in a thin 11 SOI transistor and increase the process margin of the device fabrication process by adjusting the film thickness of the source/drain region to the channel. A method of forming a field effect transistor having a thickness greater than a region is provided.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明はSOI )ランジスタにおいてチャネル領域の
みを酸化またはエツチングによシ所望の膜厚に薄膜化し
、ソース・ドレインは前記チャネル領域よりも厚く形成
する。特に、チャネル領域の薄膜化とゲート形成を自己
整合で行なうために、薄膜領域とゲート領域の合わせ余
裕の考慮が不用であり、素子領域を増加させることなく
ソース・ドレイン領域のみを厚膜化した電界効果型トラ
ンジスタの製造方法を提供する。
(Means for Solving the Problems) The present invention is an SOI transistor in which only the channel region is thinned to a desired thickness by oxidation or etching, and the source and drain are formed thicker than the channel region. In particular, since thinning of the channel region and gate formation are carried out in a self-aligned manner, there is no need to consider the alignment margin between the thin film region and the gate region, and it is possible to thicken only the source/drain region without increasing the device area. A method of manufacturing a field effect transistor is provided.

(作用) 本発明によればSOI膜として、チャネル領域よシもソ
ース拳ドレインを十分厚く形成できるので、ソース・ド
レインに対する薄膜化による寄生効果、寄生抵抗の増大
を生じることないデフζイスを作製することが可能であ
り、チャネル領域を薄膜化するので、デバイスの特性と
しては薄膜トランジスタの特長を有するデバイスを作製
することが可能である。更に、チャネル領域を薄膜化す
る際のマスクに対して、電界効果型トランジスタのゲー
ト電極を自己整合で形成することが可能である。
(Function) According to the present invention, as the SOI film, the source and drain can be formed sufficiently thick as well as the channel region, so a differential chair can be manufactured without causing parasitic effects or increases in parasitic resistance due to thinning of the source/drain film. Since the channel region is made thinner, it is possible to manufacture a device having characteristics of a thin film transistor. Furthermore, it is possible to form the gate electrode of the field effect transistor in self-alignment with respect to the mask used when thinning the channel region.

(実施例) 以下本発明の一実施についてN型チャネル電界効果型ト
ランジスタの製造方法を例にとシ、図面を用いて説明す
る。
(Example) An embodiment of the present invention will be described below with reference to the drawings, taking a method of manufacturing an N-type channel field effect transistor as an example.

第1図はその工程断面図である。FIG. 1 is a sectional view of the process.

まず、第1図(a)のようにP型のシリコン基板αυに
酸素イオンを例えば加速電圧400kVで、濃度10譚
 イオン注入し、それを1300℃でアニールすること
によりシリコン基板中にシリコン酸化膜Q3が埋め込ま
れた構造のSOI基板を作製する。
First, as shown in Fig. 1(a), oxygen ions are implanted into a P-type silicon substrate αυ at a concentration of 10 ions at an acceleration voltage of 400 kV, and then annealed at 1300°C to form a silicon oxide film in the silicon substrate. An SOI substrate having a structure in which Q3 is embedded is manufactured.

このときのそれぞれの基板膜厚は、例えばシリコン酸化
膜αりは2oooi、SOIシリコン膜a3の膜厚は2
000Aとする。
At this time, the film thickness of each substrate is, for example, 2oooi for the silicon oxide film α, and 2oooi for the SOI silicon film a3.
Let it be 000A.

次に例えばLOC08法を用いて素子分離を行なう。こ
のときSOIシリコン膜α3の膜厚が2000λ程度で
あるので、素子分離は各素子領域が島状に残るように素
子分離を行なう。素子分離後にSOIシリコン膜(13
を例えば200λ酸化QS して、次いで全面に絶縁膜
として例えばシリコン窒化膜顧をCVD法により100
OA堆積し、パターニングを行ない、ゲート電極の形成
予定領域のシリコン窒化膜を除去する(第1図(b))
Next, element isolation is performed using, for example, the LOC08 method. At this time, since the film thickness of the SOI silicon film α3 is about 2000λ, element isolation is performed so that each element region remains in the form of an island. After element isolation, SOI silicon film (13
For example, 200λ QS is oxidized, and then a 100λ
OA is deposited, patterned, and the silicon nitride film in the area where the gate electrode is to be formed is removed (Fig. 1(b)).
.

次にこのシリコン窒化膜αGをマスクとしてSOIシリ
コン膜a謙を一部酸化してシリコン酸化膜αDを形成し
、電界効果型トランジスタのチャネル部にあたる前記S
OIシリコン膜03の膜厚を薄膜化する。その膜厚は、
電界効果型トランジスタのチャネル部のシリコン膜厚が
デバイスが動作す・るときにSOI基板が完全に空乏化
する程度の膜厚、例えば基板嬢度が5X10 eve 
 のときには1500Aになるように酸化して、チャネ
ル部を薄膜化する(第1図(C))。
Next, using this silicon nitride film αG as a mask, the SOI silicon film a is partially oxidized to form a silicon oxide film αD.
The thickness of the OI silicon film 03 is reduced. The film thickness is
The thickness of the silicon film in the channel part of the field effect transistor is such that the SOI substrate is completely depleted when the device is operated, for example, when the substrate density is 5×10 eve.
In this case, the channel portion is thinned by oxidation to 1500A (FIG. 1(C)).

次に、前記シリコン酸化JIIQ?)をエツチング除去
し、再びシリコン膜Q3の露出した部分を酸化して、ゲ
ート酸化膜Q8を例えば200A形成する。そののちゲ
ート電極■として、例えば多結晶シリコンを全面に4o
ooi堆積する(第1図(d))。
Next, the silicon oxide JIIQ? ) is removed by etching, and the exposed portion of the silicon film Q3 is oxidized again to form a gate oxide film Q8 having a thickness of, for example, 200 Å. After that, as the gate electrode
ooi is deposited (Fig. 1(d)).

次に例えばレジストを用いた平坦化法を用いてエッチバ
ック平坦化を行ない、シリコン蟹化膜αe上の多結晶シ
リコンα場が完全に除去され、それ以外の部分の多結晶
シリコン膜厚がゲート電極として十分な膜厚を保つよう
(例えば3000A以上)Kエッチバックを行なう。そ
ののちシリコン窒化膜αeの剥離を行なう。次にゲート
電極αlをマスクとしてソース・ドレイン領域に不純物
イオン、例えばヒ素を加速電圧140kVで10鋼 イ
オン注入してソース・ドレイン領域(至)を形成する(
第1図(e))。
Next, etch-back planarization is performed using, for example, a planarization method using a resist, and the polycrystalline silicon α field on the silicon crab film αe is completely removed, and the polycrystalline silicon film thickness in other parts is reduced to the gate. K etchback is performed to maintain a sufficient film thickness as an electrode (eg, 3000A or more). Thereafter, the silicon nitride film αe is removed. Next, using the gate electrode αl as a mask, impurity ions, for example arsenic, are implanted into the source/drain regions at an acceleration voltage of 140 kV to form the source/drain regions (
Figure 1(e)).

そののち絶縁膜として例えばCVD8i0.を200O
N堆積しく21)、ソース・ドレイン・ゲートにコンタ
クトホール■を開口して電極として例えばAI(至)を
配線、バターニングして、本発明の実施例による電界効
果型トランジスタが得られる。この実施例によればSO
I膜上に形成された電界効果厖トランジスタにおいてチ
ャネル領域のみを薄膜化し、薄膜電界効果型トランジス
タの利点である高移動度、高パンチスルー耐圧、高駆動
力を実現しかつ、ソース・ドレイン領域CAKついては
十分な膜厚を得られるととKよシ、寄生抵抗の低減およ
びコンタクト形成の容易性を実現できる。
After that, as an insulating film, for example, CVD8i0. 200O
After N is deposited (21), contact holes (2) are opened in the source, drain, and gate, wiring is made of, for example, AI (to) as electrodes, and patterning is performed to obtain a field effect transistor according to an embodiment of the present invention. According to this embodiment, S.O.
In a field effect transistor formed on an I film, only the channel region is made thinner, achieving the advantages of a thin film field effect transistor such as high mobility, high punch-through breakdown voltage, and high driving force, while also reducing the source/drain region CAK. Therefore, if a sufficient film thickness is obtained, it is possible to reduce parasitic resistance and facilitate contact formation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば高移動度、高パンチスルー耐圧、高゛駆
動力を実現し、かつ寄生抵抗の低減したコンタクト形成
の容易な電界効果屋トランジスタの製造方法が得られる
According to the present invention, a method for manufacturing a field effect transistor that achieves high mobility, high punch-through breakdown voltage, high driving force, reduced parasitic resistance, and easy contact formation can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例を示す工程断面図である
。 11・・・シリコン基板、12・・・シリコン酸化膜(
層間絶縁膜)、13・・・シリコン基板、14・・・シ
リコン酸化膜(素子分離)、15・・・シリコン酸化膜
、16・・・シリコン9化膜、17・・・シリコン酸化
膜、18・・・ゲート酸化膜、19・・・ゲート電極、
20・・・ソース・ドレイン、21・・・シリコン酸化
膜(CVDSiOz ) 、22−・・コニylり)ホ
ール、23・・・電極。 代理人 弁理士  則 近 憲 佑 同       松  山 光 2 第1図 第1図
FIG. 1 is a process sectional view showing an embodiment according to the present invention. 11...Silicon substrate, 12...Silicon oxide film (
interlayer insulating film), 13... silicon substrate, 14... silicon oxide film (element isolation), 15... silicon oxide film, 16... silicon 9ide film, 17... silicon oxide film, 18 ...gate oxide film, 19...gate electrode,
20... Source/drain, 21... Silicon oxide film (CVDSiOz), 22-... Hole, 23... Electrode. Agent Patent Attorney Noriyuki Chika Yudo Hikaru Matsuyama 2 Figure 1Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁膜上のSOI膜に電界効果型トランジスタを
形成する方法において、前記SOI膜上に前記SOI膜
の一部が露出するようにマスクパターンを形成する工程
と、前記露出したSOI膜を前記マスクパターンに対し
て選択的に酸化した後、前記酸化した膜をエッチングす
ることにより前記マスクパターンの形成されないSOI
膜の部分を薄膜化した後、前記薄膜化したSOI膜上に
ゲート酸化膜及びゲート電極を形成する工程を含む電界
効果型トランジスタの製造方法。
(1) A method for forming a field effect transistor on an SOI film on an insulating film, which includes forming a mask pattern on the SOI film so that a part of the SOI film is exposed; After selectively oxidizing the mask pattern, the oxidized film is etched to form an SOI film on which the mask pattern is not formed.
A method for manufacturing a field effect transistor, comprising the step of thinning a film portion and then forming a gate oxide film and a gate electrode on the thinned SOI film.
(2)前記ゲート電極の形成は前記マスクパターンを残
置したまま行ない、その後前記ゲート電極をマスクパタ
ーン表面まで平坦化エッチングすることを特徴とする請
求項1記載の電界効果型トランジスタの製造方法。
(2) The method of manufacturing a field effect transistor according to claim 1, wherein the gate electrode is formed with the mask pattern left in place, and then the gate electrode is planarized and etched to the surface of the mask pattern.
JP374989A 1989-01-12 1989-01-12 Manufacture of field-effect transistor Pending JPH02185068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP374989A JPH02185068A (en) 1989-01-12 1989-01-12 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP374989A JPH02185068A (en) 1989-01-12 1989-01-12 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPH02185068A true JPH02185068A (en) 1990-07-19

Family

ID=11565846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP374989A Pending JPH02185068A (en) 1989-01-12 1989-01-12 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPH02185068A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100227644B1 (en) * 1995-06-20 1999-11-01 김영환 Manufacturing method of a transistor
JP2008277475A (en) * 2007-04-27 2008-11-13 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999772A (en) * 1982-11-29 1984-06-08 Seiko Epson Corp Manufacture of thin film transistor
JPS63250874A (en) * 1987-04-08 1988-10-18 Nec Corp Led array chip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999772A (en) * 1982-11-29 1984-06-08 Seiko Epson Corp Manufacture of thin film transistor
JPS63250874A (en) * 1987-04-08 1988-10-18 Nec Corp Led array chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100227644B1 (en) * 1995-06-20 1999-11-01 김영환 Manufacturing method of a transistor
JP2008277475A (en) * 2007-04-27 2008-11-13 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JPH0294477A (en) Semiconductor device and manufacture thereof
US4939154A (en) Method of fabricating an insulated gate semiconductor device having a self-aligned gate
JPH0575117A (en) Semiconductor device and manufacture thereof
JPH08255846A (en) Semiconductor device and manufacture thereof
JPH09260655A (en) Manufacture of semiconductor device
US5879997A (en) Method for forming self aligned polysilicon contact
JPS61226942A (en) Isolating method between elements for semiconductor integrated circuit
JP3147161B2 (en) Field effect transistor and method of manufacturing the same
JP3170610B2 (en) Manufacturing method of vertical field effect transistor
JPH09237841A (en) Semiconductor device and its manufacture
JPH02185068A (en) Manufacture of field-effect transistor
JP2968078B2 (en) Method for manufacturing MOS transistor
KR100263475B1 (en) Semiconductor device and method for fabricating the same
JPS6025028B2 (en) Manufacturing method of semiconductor device
JP2544438B2 (en) Semiconductor device and manufacturing method thereof
JPH0225073A (en) Manufacture of semiconductor element
JPH0521789A (en) Field effect type transistor and its manufacture
JPH0341773A (en) Semiconductor device and manufacture thereof
KR100214077B1 (en) Mosfet and method for fabricating the same
JP2594121B2 (en) Method for manufacturing semiconductor device
JP3259439B2 (en) Method for manufacturing semiconductor device
JPH06232394A (en) Manufacture of semiconductor device
JPH0410564A (en) Semiconductor integrated circuit device and manufacture thereof
JPH08111511A (en) Fabrication of semiconductor device
JPH02134827A (en) Semiconductor device and its manufacture