JPH02177035A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH02177035A
JPH02177035A JP32885188A JP32885188A JPH02177035A JP H02177035 A JPH02177035 A JP H02177035A JP 32885188 A JP32885188 A JP 32885188A JP 32885188 A JP32885188 A JP 32885188A JP H02177035 A JPH02177035 A JP H02177035A
Authority
JP
Japan
Prior art keywords
optical recording
layer
magneto
composite oxide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32885188A
Other languages
Japanese (ja)
Other versions
JP2528173B2 (en
Inventor
Masahiko Sekiya
昌彦 関谷
Kiyoshi Chiba
潔 千葉
Takayuki Ishizaki
多嘉之 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP63328851A priority Critical patent/JP2528173B2/en
Priority to CA002004936A priority patent/CA2004936C/en
Priority to EP89122732A priority patent/EP0373539B1/en
Priority to DE68921308T priority patent/DE68921308T2/en
Priority to KR1019890018547A priority patent/KR900010687A/en
Publication of JPH02177035A publication Critical patent/JPH02177035A/en
Priority to US07/715,024 priority patent/US5192626A/en
Application granted granted Critical
Publication of JP2528173B2 publication Critical patent/JP2528173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve medium performance and durability by forming a transparent dielectric layer of a specific composite oxide. CONSTITUTION:The transparent dielectric layer consists of the oxide of at least either of In or Sn and Bi and the refractive index is required to be >=2.0, more preferably >=2.10. The content of the Bi is preferably >=6at.%, more preferably >=12at.% in the case of using this layer as a light interference layer. The refractive index improves if nitrogen is incorporated into this composite oxide and the content thereof is preferably in a several to 40at.% range. The method for producing the composite oxide is preferably a sputtering method and above all, sputtering with a gaseous mixture composed of Ar and N2. A material which allows recording and reproducing by a magneto-optical effect is preferable as the magneto-optical recording layer and the transparent substrate is preferably a polycarbonate resin. The transparent dielectric layer 2 consisting of the composite oxide, a thin transparent metallic film layer 3 consisting of a titanium alloy film, and the magneto-optical recording layer 4 are constituted in this order on the high-polymer resin substrate 1. The excellent medium performance and durability are obtd. in this way.

Description

【発明の詳細な説明】 [利用分野] 本発明はレーザー等の光により情報の記録・再生・消去
等を行う光記録媒体に関する。更に詳細には、透明基板
上に膜面に垂直な方向に磁化容易方向を有した金属薄膜
よりなる光磁気記録層を形成し、磁気光学効果により情
報を記録、再生する光磁気記録に好適な、媒体性能並び
に耐環境性の秀れた光記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to an optical recording medium on which information is recorded, reproduced, erased, etc. using light such as a laser. More specifically, a magneto-optical recording layer made of a metal thin film with the direction of easy magnetization perpendicular to the film surface is formed on a transparent substrate, and is suitable for magneto-optical recording in which information is recorded and reproduced by the magneto-optic effect. , relates to an optical recording medium with excellent medium performance and environmental resistance.

[従来技術] 光記録媒体中でも光磁気記録媒体は高密度・大容量でか
つ書き換え可能な情報記録媒体としてその実用化が待望
されている。
[Prior Art] Among optical recording media, magneto-optical recording media have been eagerly awaited for practical use as high-density, large-capacity, and rewritable information recording media.

上述の光磁気記録媒体の記録層としては、例えば、特開
昭52−31703号公報記載のTbFe、特開昭58
−73746号公報記載のTbFeCo等、既に多くの
提案がある。しかし、これらの材料はその磁気光学特性
の1つであるがカー(Kerr)回転角が0.3〜0.
5゜と極めて小さく、記録された信号の再生時のCNR
(Carrier to No1se Ratio)が
低いという問題点がある。同時にこれらの材料は大半は
酸化等の腐食を起こし易いという耐久性の面での問題点
もある。そこで、これらの問題点を解決するため、基板
と記録層の間に光干渉層兼用保護層として透明誘電体層
を設け、光干渉効果すなわち光の多重反射を利用してK
err回転角の向上をはかると同時に、基板側からの酸
素等のガスの拡散を防止することが提案されている。こ
のような透明誘電体層としては、Si:+ N4 、 
Ai!N、 HgFz 、 ZnS等の窒化物9弗化物
、FiA化物等で形成されることが好ましいとされてい
る。
As the recording layer of the above-mentioned magneto-optical recording medium, for example, TbFe described in JP-A-52-31703, JP-A-58
There have already been many proposals, such as TbFeCo described in Japanese Patent No. 73746. However, one of the magneto-optical properties of these materials is a Kerr rotation angle of 0.3 to 0.
Extremely small at 5°, CNR when playing back recorded signals
There is a problem that the (Carrier to No. 1se Ratio) is low. At the same time, most of these materials have problems in terms of durability, such as being susceptible to corrosion such as oxidation. Therefore, in order to solve these problems, a transparent dielectric layer is provided between the substrate and the recording layer as a protective layer that also serves as an optical interference layer.
It has been proposed to improve the err rotation angle and at the same time prevent the diffusion of gases such as oxygen from the substrate side. Such a transparent dielectric layer includes Si:+N4,
Ai! It is said that it is preferable to use nitrides such as N, HgFz, ZnS, hexafluorides, FiA oxides, and the like.

ところで、これらの中で耐環境性に秀れているといわれ
るzns、 Si3N4 、 AI!N等ニツイテ検討
したところ、その製膜速度が遅いこと、また、膜中ヒズ
ミが大きく、特にプラスチック基板上に多層膜を形成し
た場合、環境試験によりグループに沿った剥離等が生じ
る問題がおり、耐酸化性とは別の面で耐久性での問題が
あることがわかった。
By the way, among these, ZNS, Si3N4, and AI! are said to have excellent environmental resistance. After conducting a series of studies on N, etc., we found that the film forming speed was slow, the distortion in the film was large, and especially when a multilayer film was formed on a plastic substrate, there were problems such as peeling along the groups during environmental tests. It was found that there was a problem with durability in addition to oxidation resistance.

また、Kerr回転角向上についても、いずれも屈折率
が2.0程度であるために、光の多重反射を利用しても
O55〜O17°程度にまで増大するのが限界であり、
各種仕様に対応し得ない問題もある。従って実用化面か
らかかる諸点、特にKerr回転角の向上、耐久性の向
上の両面でより一掃の改善が必要であると考えられる。
In addition, regarding the improvement of the Kerr rotation angle, since the refractive index is about 2.0 in both cases, even if multiple reflections of light are used, the limit is to increase the Kerr rotation angle to about O55 to O17 degrees.
There are also problems that cannot be addressed with various specifications. Therefore, from a practical standpoint, it is considered that further improvements are needed in terms of both of these points, particularly in terms of improving the Kerr rotation angle and improving durability.

[発明の目的] 本発明はかかる現状に鑑みなされたもので、透明誘電体
層を改良して媒体性能が高く、耐久性の良い光記録媒体
を提供することを目的とするものである。すなわち、具
体的には前記記録媒体の誘電体層をその屈折率が比較的
大きなレベルで広範囲に調整できるものとすることによ
り、各種仕様に応じた媒体を可能とすると共に光磁気記
録媒体においてはKerr回転角を増大し、媒体性能を
アップすることを第1の目的とする。また該誘電体層を
内部応力が小さく、また接着性がよいものとすることに
より、特に媒体の反り、基板と誘電体層界面の劣化によ
る割れ、剥離を防止し同時にピンホール等の欠陥の発生
をおさえ、媒体全体の耐久性を向上せしめることを第2
の目的とする。
[Object of the Invention] The present invention was made in view of the current situation, and an object of the present invention is to provide an optical recording medium with high medium performance and good durability by improving the transparent dielectric layer. Specifically, by making the dielectric layer of the recording medium so that its refractive index can be adjusted over a wide range at a relatively high level, it is possible to create a medium that meets various specifications, and it is also possible to use magneto-optical recording media. The first objective is to increase the Kerr rotation angle and improve media performance. In addition, by making the dielectric layer have low internal stress and good adhesion, it prevents warping of the medium, cracking and peeling due to deterioration of the interface between the substrate and the dielectric layer, and at the same time prevents defects such as pinholes. The second objective is to suppress the
The purpose of

[発明の構成2作用] 上述の目的は、以下の本発明により達成される。[Configuration 2 of the invention] The above objects are achieved by the invention as follows.

すなわち、本発明は、保護層又は/及び光干渉層として
透明誘電体層を有する光記録媒体において、前記透明誘
電体層がIn又はSOの少なくとも一方と81の非晶質
の複合酸化物であることを特徴とする光記録媒体である
That is, the present invention provides an optical recording medium having a transparent dielectric layer as a protective layer and/or an optical interference layer, wherein the transparent dielectric layer is an amorphous composite oxide of 81 and at least one of In or SO. This is an optical recording medium characterized by the following.

上述の本発明は以下のようにしてなされたものである。The above-mentioned present invention was made as follows.

すなわち、例えば光磁気記録媒体において誘電体層とし
て、酸化インジウム、酸化錫又はこれらの混合物を用い
た場合、透明基板との密着性が高く、高温高湿耐環境性
試験にみける亀裂や剥離は全く生じないという長所はあ
るものの屈折率が低いために、光の多重反射によるKe
rr回転角向上の効果が小さく、同時に記録を行う際の
レーザー光の閉じ込め効果が小さいために、媒体の記録
感度が低いという欠点がある。そこで酸化物として屈折
率の高い元素に看目し、該元素の添加によるTn又は/
及びSnの酸化物の改良を検討したところ、8jを添加
することにより得られる酸化物は、驚くべきことに非晶
質膜であり、その内部応力もその構成金属元素の各甲類
酸化物膜より小さく、その屈折率も31の添加量により
2.0以上の高いレベルで広範囲に調整でき、その上接
着性もIn又はSOの酸化物と同程度という光記録媒体
の透明誘電体層として理想に近い特性を有することを見
出し、なされたものである。
In other words, for example, when indium oxide, tin oxide, or a mixture thereof is used as a dielectric layer in a magneto-optical recording medium, it has high adhesion to a transparent substrate, and there is no cracking or peeling observed in a high-temperature, high-humidity environment resistance test. Although it has the advantage that it does not occur at all, due to the low refractive index, Ke due to multiple reflections of light
Since the effect of improving the rr rotation angle is small and the effect of confining the laser light during simultaneous recording is small, there is a drawback that the recording sensitivity of the medium is low. Therefore, we focused on elements with a high refractive index as oxides, and added Tn or /
When we investigated ways to improve the oxides of Sn and Sn, we found that the oxides obtained by adding 8j were surprisingly amorphous films, and the internal stress was similar to that of each class oxide film of the constituent metal elements. It is ideal as a transparent dielectric layer for optical recording media because its refractive index can be adjusted over a wide range to a high level of 2.0 or higher depending on the amount of 31 added, and its adhesive properties are on the same level as In or SO oxides. This was done after discovering that it has properties close to those of .

更に上述の従来例の酸化インジウム、酸化錫またはこれ
らの混合物は電気伝導性が高いために、電子が寄与する
熱伝導性が高く、記録を行う際に、記録したい部分から
の熱拡散によりビットの形状が乱れるという欠点がある
。ところが上述の81を添加することにより電気伝導性
は失われ、熱伝導度を大5幅に低減することができ、記
録ビット形状の乱れを抑えることができることを見出し
た。
Furthermore, since indium oxide, tin oxide, or a mixture thereof in the conventional examples described above has high electrical conductivity, the thermal conductivity contributed by electrons is high, and when recording, the bits are The disadvantage is that the shape is distorted. However, it has been found that by adding the above-mentioned 81, the electrical conductivity is lost, the thermal conductivity can be reduced by a large 50%, and the disturbance of the recorded bit shape can be suppressed.

上述の点で本発明の複合酸化物はIn又はSnの少なく
とも一方とBiの酸化物で、粒界等がなくノイズレベル
面、耐食性、ガスバリヤ性等の面で有利な非晶質のもの
であればよく、Biの含有量が1at%以下という微量
であっても非晶質になることを確認しており単なる保護
層として用いる場合には、特にその含有量に制限はない
。しかし大きな光干渉効果、具体的には光磁気記録のカ
ー回転角向上効果及びレーザー光の閉じ込め効果等を得
たい場合には、屈折率が2.0以上、より好ましくは2
.10以上必要といわれており、かかる光干渉層として
用いる場合にはBi含有量は6at%以上、更には12
at%以上が好ましい。なお、これらの含有量であれば
熱伝導度も大巾に低減され、記録ビット形状の乱れを抑
えることもできる。
In view of the above, the composite oxide of the present invention is an oxide of at least one of In or Sn and Bi, and may be an amorphous one that has no grain boundaries and is advantageous in terms of noise level, corrosion resistance, gas barrier properties, etc. It has been confirmed that even if the content of Bi is as small as 1 at % or less, it becomes amorphous, and when used as a mere protective layer, there is no particular restriction on the content. However, if you want to obtain a large optical interference effect, specifically the effect of improving the Kerr rotation angle of magneto-optical recording and the effect of confining laser light, the refractive index should be 2.0 or more, more preferably 2.0 or more.
.. It is said that Bi content is required to be 10 or more, and when used as such an optical interference layer, the Bi content is 6 at% or more, and even 12 at%.
At% or more is preferable. Note that with these contents, the thermal conductivity is also greatly reduced, and it is also possible to suppress disturbances in the recording bit shape.

一方、Bi含有量が増加すると、高分子基板等との接着
力が低下し、媒体全体としての耐久性が低下する。また
、Bi含有量が多すぎると、屈折率が高くなりすぎて媒
体反射率が低下し、記録・再生装置の検出感度以下にな
ってしまう可能性がある。
On the other hand, when the Bi content increases, the adhesive force with a polymer substrate etc. decreases, and the durability of the medium as a whole decreases. In addition, if the Bi content is too large, the refractive index becomes too high and the medium reflectance decreases, potentially lowering the detection sensitivity of the recording/reproducing device.

かかる点よりBi含有量は50at%以下、更には40
at%以下が好ましい。
From this point of view, the Bi content should be 50 at% or less, and even 40 at%.
At% or less is preferable.

また、以上の複合酸化物に窒素を含有させると検討例か
ら明らかなように屈折率が向上する効果があり、窒素を
含有させることが好ましいが、窒素含有量が多くなると
前述の接着力が低下する傾向がある。かかる点から窒素
含有量は数at%〜40at%の範囲が好ましい。
In addition, when nitrogen is included in the above composite oxide, it has the effect of improving the refractive index, as is clear from the study example, and it is preferable to include nitrogen, but as the nitrogen content increases, the aforementioned adhesive strength decreases. There is a tendency to From this point of view, the nitrogen content is preferably in the range of several at% to 40 at%.

なお、以上の本発明の複合酸化物には、上記のBi、 
In、 sn、 o、 N以外の元素も不純物オーダー
で含まれてよいことは言うまでもない。
Note that the above-mentioned complex oxide of the present invention includes the above-mentioned Bi,
It goes without saying that elements other than In, sn, o, and N may also be included on the order of impurities.

前記本発明の複合酸化物膜の製造方法としては、公知の
真空蒸着法、スパッタリング法等のPVD法、あるいは
CVD法等種々の薄膜形成法が適用できる。しかし、光
記録媒体としては高温高湿耐環境性試験で生じるハガレ
を生じさせないために特にプラスチックス基板との接着
性が大きい条件で作製することが好ましい。このために
はスパッタリング法が好ましい。中でもArとN2の混
合ガスでのスパッタリングが異常放電等が少なく安定運
転面で好ましい。
As a method for manufacturing the composite oxide film of the present invention, various thin film forming methods such as a known vacuum evaporation method, a PVD method such as a sputtering method, or a CVD method can be applied. However, as an optical recording medium, it is preferable to produce the optical recording medium under conditions that have particularly high adhesion to a plastic substrate in order to avoid peeling that occurs during a high temperature, high humidity environment resistance test. For this purpose, a sputtering method is preferred. Among these, sputtering with a mixed gas of Ar and N2 is preferable in terms of stable operation since it causes fewer abnormal discharges.

ところで本発明の光記録媒体は、前述の通り前記複合酸
化物を保護層又は光干渉層としたものであり、その他の
構成は特に限定されないことは本発明の趣旨から明らか
である。例えば、光反射記録層、相変化光記録層、光磁
気記録層等公知の各種の光記録方式の光記録媒体に適用
できる。
By the way, as mentioned above, the optical recording medium of the present invention uses the composite oxide as a protective layer or an optical interference layer, and it is clear from the spirit of the present invention that other configurations are not particularly limited. For example, it can be applied to optical recording media of various known optical recording methods, such as a light reflective recording layer, a phase change optical recording layer, and a magneto-optical recording layer.

しかし、前述の本発明の複合酸化物の特性、特に大きな
光干渉効果が得られる点から、特に光磁気記録媒体に有
利に適用できる。光磁気記録媒体としては、以下のもの
が挙げられる。
However, because of the above-mentioned properties of the composite oxide of the present invention, particularly in that a large optical interference effect can be obtained, it can be particularly advantageously applied to magneto-optical recording media. Examples of magneto-optical recording media include the following.

すなわち、光磁気記録層としては、光磁気効果により記
録、再生できるもの、具体的には膜面に垂直な方向に磁
化容易方向を有し任意の反転磁区を作ることにより光磁
気効果に基いて情報の記録再生が可能な磁性金属薄膜、
例えばFeTb合金系のFeTbCo合金、 FeTb
Gd合金、 NdDyFeCo合金、FB−Nd系の合
金、 Fe−Pr、 Fe−Ce等の希土類金属と遷移
金属との非晶質合金膜、あるいはガーネット膜等各種公
知のものが適用できる。中でも本発明は酸化し易い希土
類金属と遷移金属との非晶質合金膜に効果的である。
In other words, the magneto-optical recording layer is one that can be recorded and reproduced by the magneto-optical effect. Specifically, the magneto-optical recording layer has an easy magnetization direction perpendicular to the film surface and can be created based on the magneto-optic effect by creating arbitrary reversal magnetic domains. A magnetic metal thin film that can record and reproduce information.
For example, FeTbCo alloy based on FeTb alloy, FeTb
Various known materials can be used, such as Gd alloy, NdDyFeCo alloy, FB-Nd alloy, amorphous alloy film of rare earth metal and transition metal such as Fe-Pr and Fe-Ce, or garnet film. Among these, the present invention is effective for amorphous alloy films of rare earth metals and transition metals that are easily oxidized.

その透明基板の材料としてはポリカーボネート樹脂、ア
クリル樹脂、エポキシ樹脂、4−メチル−ペンテン樹脂
などまたそれらの共重合体等の高分子樹脂もしくはガラ
スなどが適用できる。中でも機械強度、耐候性、耐熱性
、透湿」の点でポリカーボネート樹脂が好ましく用いら
れる。
As the material of the transparent substrate, polymer resins such as polycarbonate resin, acrylic resin, epoxy resin, 4-methyl-pentene resin, or copolymers thereof, or glass can be used. Among them, polycarbonate resin is preferably used in terms of mechanical strength, weather resistance, heat resistance, and moisture permeability.

ところで、本発明の複合酸化物は前述の通り接着性、膜
の内部応力、ガスバリヤ性等の面で優れた特性を有して
おり、かかるポリカーボネート樹脂等の透明高分子基板
を用いた光磁気記録媒体において特に効果的である。そ
してこの構成において複合酸化物膜と光磁気記録膜との
間に、さらに金属チタンもしくは金属チタン合金からな
る透明金属薄膜層を設けることが耐酸化性、耐透湿性の
面より好ましい。チタン合金として組み合わせる元素は
Cr、 丁a、 Reの群から選ばれる少なくとも1種
の金属であることが耐酸性の面で好ましい。この金属チ
タンもしくは金属チタン合金の膜厚は、記録・再生の面
から50Å以下であることが必要で、更に媒体のCNR
を高めるという点から20Å以下が好ましい。
By the way, as mentioned above, the composite oxide of the present invention has excellent properties in terms of adhesiveness, internal stress of the film, gas barrier properties, etc., and can be used for magneto-optical recording using transparent polymer substrates such as polycarbonate resin. Particularly effective in media. In this configuration, it is preferable in terms of oxidation resistance and moisture permeation resistance to further provide a transparent metal thin film layer made of metallic titanium or a metallic titanium alloy between the composite oxide film and the magneto-optical recording film. From the viewpoint of acid resistance, it is preferable that the element to be combined in the titanium alloy is at least one metal selected from the group of Cr, Ti, and Re. The film thickness of this metallic titanium or metallic titanium alloy must be 50 Å or less from the viewpoint of recording and reproduction, and the CNR of the medium must be
The thickness is preferably 20 Å or less in terms of increasing the .

このように本発明は、高分子樹脂基板上に、前述の複合
酸化物よりなる透明誘電体層、上述のチタン又はチタン
合金膜よりなる透明金属簿膜層。
As described above, the present invention provides a transparent dielectric layer made of the above-mentioned composite oxide and a transparent metal film layer made of the above-mentioned titanium or titanium alloy film on a polymer resin substrate.

光磁気記録層をこの順序で具備した構成の光磁気記録媒
体においてその効果は顕著である。
This effect is remarkable in a magneto-optical recording medium having the magneto-optical recording layers in this order.

なお、以上説明した光磁気記録媒体は、公知の通り光磁
気記録層の基板と反対側に裏面保護層を設ける構成、更
にはこれら構成の媒体を貼り合わせた両面媒体等の構成
等全て適用できる。
It should be noted that the magneto-optical recording medium described above can be applied to any of the well-known configurations, including a configuration in which a back protective layer is provided on the side opposite to the substrate of the magneto-optical recording layer, and a double-sided medium in which media with these configurations are bonded together. .

裏面保護層を設ける構成としては、誘電体、金属等から
なる無機保護層、感光性樹脂等の有機樹脂からなる有機
保護層、更には透明平板の貼り合わせ、及びこれらの組
み合わせ等が知られている。
Known configurations for providing the back protective layer include an inorganic protective layer made of dielectric material, metal, etc., an organic protective layer made of organic resin such as photosensitive resin, lamination of transparent flat plates, and combinations thereof. There is.

誘電体保護層としては、膜表面から光磁気記録層への酸
素やH2Oの侵入を防ぐために、亀裂やピンホールの少
ない物質が好ましく、AeN、 MgFz 。
The dielectric protective layer is preferably made of a material with few cracks or pinholes, such as AeN or MgFz, in order to prevent oxygen and H2O from entering the magneto-optical recording layer from the film surface.

ZnS、CeF+、AffiF3争3NaF、Si3 
N4  、Sin。
ZnS, CeF+, AffiF3 3NaF, Si3
N4, Sin.

5iOz、 Zrz 03. In203.5n02な
どの窒化物、弗化物、酸化物、又はこれらの混合体など
が適用できる。得に、本発明の前述のIn又はSnの少
なくとも1元素とBiとの複合酸化物は、耐久性試験に
よる剥離・亀裂を生じないという理由から、かかる保護
層としても適したものである。
5iOz, Zrz 03. Nitride such as In203.5n02, fluoride, oxide, or a mixture thereof can be used. In particular, the composite oxide of at least one element of In or Sn and Bi according to the present invention is suitable as such a protective layer because it does not cause peeling or cracking in a durability test.

また、光磁気記録層と上記複合酸化物等からなる誘電体
保護層の界面に存在する酸素や、酸化物保護層自身の持
つ遊離または結合不完全な酸素が光磁気記録層に侵入す
るのをさらに抑えるため、光磁気記録層と該誘電体保護
層の間に、膜厚50Å以下の金属チタン膜もしくは前述
のチタン合金膜からなるバリヤ層を設けることが好まし
い。この金属チタンもしくは金属チタン合金からなるバ
リヤ層の膜厚は、記録時の感度の面から20Å以下が好
ましい。
It also prevents oxygen present at the interface between the magneto-optical recording layer and the dielectric protective layer made of the above-mentioned composite oxide, or free or incompletely bound oxygen in the oxide protective layer itself, from entering the magneto-optical recording layer. In order to further suppress this, it is preferable to provide a barrier layer made of a metallic titanium film or the aforementioned titanium alloy film with a thickness of 50 Å or less between the magneto-optical recording layer and the dielectric protective layer. The thickness of this barrier layer made of metallic titanium or metallic titanium alloy is preferably 20 Å or less from the viewpoint of sensitivity during recording.

裏面保護層として金属膜保護層を用いる場合には、Ai
、 Cu、 Au、 Ag、 Si、 Ti、 Cr、
 Ta、 Re、 Zrまたはこれらの合金などからな
る金属膜が適用できるが、記録時レーザービームスポッ
トからの熱拡散を少なくするために熱伝導度の小さい物
質、即ちri、 cr、 ra、 Re、またはこれら
の合金からなる金属膜が特に好ましい。以上の無機物保
護層は公知の真空蒸着法、スパッタリング法等で作製で
きる。
When using a metal film protective layer as the back surface protective layer, Ai
, Cu, Au, Ag, Si, Ti, Cr,
A metal film made of Ta, Re, Zr, or an alloy thereof can be applied, but in order to reduce heat diffusion from the laser beam spot during recording, a material with low thermal conductivity, such as ri, cr, ra, Re, or Metal films made of alloys of these are particularly preferred. The above-mentioned inorganic protective layer can be produced by a known vacuum evaporation method, sputtering method, or the like.

更に裏面保護層として前述の通り有機物保護層を用いる
ことができる。かかる有機物保護層としては公知の各種
感光性樹脂等が適用でき、コーティング法等により形成
できる。なお有機保護層は前述の無機保護層と組み合わ
せ、無機保護層が記録層に接するように配置して用いる
ことが好ましい。裏面保護層としては上記各保護層の組
み合わせでもよい。なお裏面保護層は少なくとも記録層
の側面まで被覆するように設けるのが好ましい。
Furthermore, as the back surface protective layer, an organic protective layer can be used as described above. As such an organic substance protective layer, various known photosensitive resins can be used, and it can be formed by a coating method or the like. Note that it is preferable to use the organic protective layer in combination with the above-mentioned inorganic protective layer so that the inorganic protective layer is in contact with the recording layer. The back surface protective layer may be a combination of the above protective layers. Note that the back surface protective layer is preferably provided so as to cover at least the side surfaces of the recording layer.

なお、上述の各種保護層は光磁気記録媒体以外の例えば
相変化型等の光記録媒体にも適用できることはその特性
等から明らかである。
Note that it is clear from the characteristics thereof that the various protective layers described above can be applied to optical recording media other than magneto-optical recording media, such as phase-change type optical recording media.

上述の本発明の作用効果は以下のとおりである。The effects of the above-described present invention are as follows.

透明プラスチック基板を用い、膜面反射によるカー回転
角を大きくするため基板と光磁気記録層との間に透明誘
電体膜を設けた光磁気記録媒体では、前述の通り、誘電
体膜として代表的な従来例のSin、 Ai’N、 S
i3N4 、 ZnS等を用イテディスクを構成した場
合、これらの媒体のKerr回転角は0.5〜0.7°
であり、誘電体層における光の多重反射の効果によるK
err回転角の向上がまだ十分とは言えない。これは、
上記各誘電体の屈折率Nが1.9〜2.0程度と小さい
ためであると考えられる。
In magneto-optical recording media that use a transparent plastic substrate and provide a transparent dielectric film between the substrate and the magneto-optical recording layer in order to increase the Kerr rotation angle due to film surface reflection, as mentioned above, the typical dielectric film is Conventional example Sin, Ai'N, S
When ite disks are constructed using i3N4, ZnS, etc., the Kerr rotation angle of these media is 0.5 to 0.7°.
, and K due to the effect of multiple reflections of light in the dielectric layer
It cannot be said that the improvement in the err rotation angle is still sufficient. this is,
This is believed to be because the refractive index N of each of the dielectrics mentioned above is as small as about 1.9 to 2.0.

ざらに、これら従来の誘電体を用いた光磁気ディスクを
高温高湿及び/又はヒートサイクルによる耐久性試験を
行うと、ディスクに亀裂がはいり、光磁気特性が急激に
劣化することが観察された。
In general, when durability tests were conducted on magneto-optical disks using these conventional dielectric materials under high temperature, high humidity and/or heat cycles, it was observed that the disks cracked and the magneto-optical properties rapidly deteriorated. .

これは主にプラスチック基板界面での誘電体膜のはがれ
に起因する。
This is mainly due to peeling of the dielectric film at the interface of the plastic substrate.

これに対して、上述の構成で透明誘電体層に前述のIn
、 Snの少なくとも一方とBiの複合酸化物膜を用い
た本発明の光磁気ディスクではKerr回転角は0.9
〜1.1°と大巾に増大させることができると同時に、
プラスチック基板との界面での劣化による剥離や亀裂は
生じない。これは該複合酸化膜の屈折率Nが2.0〜2
.4と大きなレベルで選択でき、更にIn又は/及びS
nの酸化物の特性が維持され、ポリカーボネート基板等
の有機高分子樹脂基板との親和性が大きいことによるも
のと思われる。
On the other hand, in the above structure, the above-mentioned In is added to the transparent dielectric layer.
In the magneto-optical disk of the present invention using a composite oxide film of at least one of Sn and Bi, the Kerr rotation angle is 0.9.
It is possible to greatly increase the angle by ~1.1°, and at the same time,
No peeling or cracking occurs due to deterioration at the interface with the plastic substrate. This means that the refractive index N of the composite oxide film is 2.0 to 2.
.. You can choose from a large level of 4, and also In or/and S.
This is thought to be due to the fact that the characteristics of the oxide of n are maintained and the affinity with organic polymer resin substrates such as polycarbonate substrates is high.

これらの効果は媒体性能向上をはかると共に、通常の環
境下での長期安定性ならびにヒートサイクル、ヒートシ
ョックに対して特に有効となる。
These effects not only improve the performance of the medium, but also are particularly effective against long-term stability under normal environments, heat cycles, and heat shock.

更に、媒体の記録・再生・消去の際に生じるノイズの原
因として、従来の結晶構造の誘電体膜ではその結晶粒界
に起因する光の散乱、記録ビットの乱れが挙げられるが
、上述の複合誘電体膜は非晶質であり、且つ熱伝導度が
小さいために、かかる散乱、乱れは殆んどなく、前述の
従来例の光磁気ディスクに比べ、記録・再生時のノイズ
が低減できることがわかった。
Furthermore, the causes of noise generated during recording, playback, and erasing of media include light scattering and disturbance of recorded bits caused by crystal grain boundaries in conventional crystalline dielectric films, but the above-mentioned complex Since the dielectric film is amorphous and has low thermal conductivity, there is almost no such scattering or disturbance, and compared to the conventional magneto-optical disk described above, noise during recording and reproduction can be reduced. Understood.

以上の本発明の作用効果は、光磁気記録媒体に限られる
ことはなく、相変化型2反射型等公知の光記録媒体にお
いても同様に奏し得るものであることは明らかであり、
よって本発明は広く光記録媒体に適用できるものである
。このように本発明は光記録媒体の中でも特に光磁気記
録媒体の耐久性を含めた特性向上に大きな寄与をなすも
のである。
It is clear that the effects of the present invention described above are not limited to magneto-optical recording media, but can be similarly achieved in known optical recording media such as phase change type two-reflection type.
Therefore, the present invention is widely applicable to optical recording media. As described above, the present invention makes a significant contribution to improving the characteristics, including the durability, of optical recording media, especially magneto-optical recording media.

以下本発明を、上述の複合誘電体の特性把握のだめの実
験例及び実施例に基いて説明する。
The present invention will be explained below based on experimental examples and examples for understanding the characteristics of the above-mentioned composite dielectric.

[実験例] 本発明の基礎となるIn、Snの少なくとも一方とBi
との複合酸化物、窒素含有酸化物をBiの含有橙を変え
て以下のように作成し、評価した。
[Experimental example] At least one of In and Sn, which is the basis of the present invention, and Bi
Composite oxides and nitrogen-containing oxides were prepared and evaluated as follows by changing the orange content of Bi.

実験例1〜7 長さ76mm、幅26mm、厚さ111′1mのスライ
ドガラス。
Experimental Examples 1 to 7 A slide glass with a length of 76 mm, a width of 26 mm, and a thickness of 111'1 m.

厚さ’1mmで’1cm平方のS:ウェハー及び薄板ガ
ラス(直径18mmx厚さ0.1mmの円盤)を3ター
ゲツトの高周波マグネトロンスパッタ装置(アネルハ(
!木製5PF−4308型)の真空槽内に固定し、4 
x 10−+ T。
A 3-target high-frequency magnetron sputtering device (ANELHA
! Fix it in a wooden vacuum chamber (model 5PF-4308), and
x 10−+T.

rrになるまで排気する。Exhaust until rr.

次にAr10z混合ガス<02:VOI%)を真空槽内
に導入し、圧力10m Torrになるように^r10
2ガス流量を調整した。ターゲットとしては直径100
mm 。
Next, Ar10z mixed gas <02:VOI%) was introduced into the vacuum chamber, and the pressure was increased to 10m Torr.
2. The gas flow rate was adjusted. Diameter 100 as a target
mm.

厚さ5mmの円盤で、組成がBixIn、 5n201
00−(X、+y+z)  (X、V、Z G、を原子
%)において。
A disk with a thickness of 5 mm, the composition is BixIn, 5n201
00-(X, +y+z) (X, V, Z G, in atomic %).

(x、 y、 z)が(34,6,O)、 (2B、 
12.O)、 (20,20,O)、 (12゜28.
0)、 (6,34,0)、 (22,14,4)、 
(22,4,14)の各組成の酸化物焼結体からなる7
種類を適宜使用した。放電電力ioow、放電周波数1
3.56 MHzで高周波スパッタリングを行い、表1
の膜組成の欄に示すところの組成をもつ複合酸化物膜(
BiInSnO膜)を約1ooo入堆積した。
(x, y, z) is (34,6,O), (2B,
12. O), (20,20,O), (12°28.
0), (6,34,0), (22,14,4),
7 consisting of an oxide sintered body with each composition of (22, 4, 14)
Types were used as appropriate. Discharge power ioow, discharge frequency 1
High frequency sputtering was performed at 3.56 MHz, and Table 1
Composite oxide film with the composition shown in the film composition column (
A BiInSnO film) was deposited to a thickness of about 100 m.

まず、Siウェハー上に堆積したサンプルを用いて波長
830nmの光に対する薄膜の屈折率を求めた。
First, the refractive index of the thin film with respect to light with a wavelength of 830 nm was determined using a sample deposited on a Si wafer.

測定装置としては、■溝尻光学工業所製、自動エリプソ
メーターDNA−0LWを用いた。その結果を表1の屈
折率の欄に示す。
As a measuring device, an automatic ellipsometer DNA-0LW manufactured by Mizojiri Optical Co., Ltd. was used. The results are shown in the refractive index column of Table 1.

次に、薄板ガラス上に堆積したサンプルを用いで、薄膜
の内部応力を求めた。測定にはTENCORINSTI
?UHENTS製、触針式表面粗さ計alpha−st
ep200を用い触針により2mmの長さ走査したとき
のそり量を測定し、内部応力σを求めた。その結果を表
1の内部応力の欄に示す。
Next, the internal stress of the thin film was determined using a sample deposited on a thin glass plate. For measurement, TENCORINSTI
? Made by UHENTS, stylus type surface roughness meter alpha-st
The amount of warpage was measured when a length of 2 mm was scanned with a stylus using EP200, and the internal stress σ was determined. The results are shown in the internal stress column of Table 1.

さらに、スライドガラス上に堆積したサンプルを用い、
結晶状態の測定を行った。測定には理学iiu製強力X
線回折装置HIGHPOWERUNIT )IODEL
D−3Fを用いた。結果を表1の結晶状態の欄に示す。
Additionally, using samples deposited on glass slides,
The crystalline state was measured. For measurement, Rigaku IIU powerful X
Linear diffraction device HIGHPOWERUNIT) IODEL
D-3F was used. The results are shown in the column of crystalline state in Table 1.

実験例8〜14 実験例1〜7と同様に、長さ78mm、幅26mm、厚
さ1mmのスライドガラス、厚さ1mmで1cm平方の
Siウェハー及び薄板ガラス(直径18mmx厚ざ0.
1市の円盤)を3ターゲツトの高周波マグネトロンスパ
ッタ装置(アネルバ(Il製、 5PF−4308型)
の真空槽内に固定し、4 x tO−7丁orrになる
まで排気する。
Experimental Examples 8 to 14 As in Experimental Examples 1 to 7, a slide glass with a length of 78 mm, a width of 26 mm, and a thickness of 1 mm, a Si wafer with a thickness of 1 mm and a square of 1 cm, and a thin plate glass (18 mm in diameter x 0.0 mm in thickness) were prepared.
A three-target high-frequency magnetron sputtering device (ANELVA (manufactured by IL, model 5PF-4308)
The tube was fixed in a vacuum chamber and evacuated to 4 x tO-7 tons orr.

スパッタリングガスとしてAr/Nz混合ガス(N2:
30Vo 1%)を用いる以外は実験例1〜7と全く同
じ条件で表1の膜組成の欄に示すところの組成をもつ窒
素含有複合酸化膜(BiInSnON膜)を約1000
人堆積した。実験例1〜7と全く同じようにして屈折率
、内部応力σ、結晶状態の測定を行った。
Ar/Nz mixed gas (N2:
A nitrogen-containing composite oxide film (BiInSnON film) having the composition shown in the film composition column of Table 1 was prepared under the same conditions as in Experimental Examples 1 to 7 except that 30Vo 1%) was used.
People piled up. The refractive index, internal stress σ, and crystal state were measured in exactly the same manner as in Experimental Examples 1 to 7.

結果を表1に示す。The results are shown in Table 1.

実験例15 実験例1〜7と同じように、長さ76mm、幅26mm
Experimental example 15 Same as experimental examples 1 to 7, length 76 mm, width 26 mm
.

厚さimmのスライドガラス、厚さ’1mmで1cm平
方のSiウェハー及び薄板ガラス(直径t8mmx厚さ
0.7mmの円盤)を実験例1〜7に用いたスパッタ装
置内に固定し、4 x 10−7 Torrになるまで
排気する。
A slide glass with a thickness of imm, a 1 cm square Si wafer with a thickness of 1 mm, and a thin plate glass (a disk with a diameter of t8 mm and a thickness of 0.7 mm) were fixed in the sputtering apparatus used in Experimental Examples 1 to 7, and a 4 x 10 -7 Torr.

ターゲットとして”60In40 (添数字は原子%)
の合金ターゲットを用い、またスパッタリングガスとし
てはAr10z混合ガス(Oz : loVOI%)を
用いた。放電時の電圧400V、電流0.5AでDC反
応性スパッタリングを行い、組成が”24In1606
0(添数字は原子%)の複合酸化物膜的i ooo人を
堆積した。
"60In40" as a target (subscript number is atomic%)
An Ar10z mixed gas (Oz: loVOI%) was used as the sputtering gas. DC reactive sputtering was performed at a discharge voltage of 400 V and a current of 0.5 A, and the composition was "24In1606".
A composite oxide film of 0 (subscript number is atomic %) was deposited.

実験例1〜7と全く同じようにして屈折率、内部応力σ
及び結晶状態の測定を行った。結果を表1に示す。
The refractive index and internal stress σ were determined in exactly the same manner as in Experimental Examples 1 to 7.
And the crystal state was measured. The results are shown in Table 1.

実験例16.17 比較のため、従来例のxn2 Q3膜及びBi2O3膜
を以下のように作成し評価した。
Experimental Example 16.17 For comparison, conventional xn2 Q3 films and Bi2O3 films were prepared and evaluated as follows.

実験例1〜7と全く同様にして長さ76mm、幅26m
m、厚さ’1mmのスライドガラス、厚さ1市で1Cm
平方のS1ウエハー及び薄板ガラス(直径18mn+x
厚ざ0.1mmの円盤)を3ターゲツトの高周波マグネ
トロンスパッタ装置(アネルバ■l、 5PF−43叶
型)の真空槽内に固定し、4 x 10−7 丁orr
になるまで排気する。
The length was 76 mm and the width was 26 m in exactly the same manner as in Experimental Examples 1 to 7.
m, 1mm thick slide glass, 1cm thick for 1 city
Square S1 wafer and thin glass (diameter 18mm+x
A disk with a thickness of 0.1 mm) was fixed in a vacuum chamber of a 3-target high-frequency magnetron sputtering device (Anelva II, 5PF-43 leaf type), and
Exhaust until

ターゲットとしてIn2O3焼結体、 B!z 03焼
結体を夫々用いる以外は実験例1〜7と全く同じ条件で
Inz 03111. Biz 03膜を夫々的100
OA(7)厚すkl積した。実験例1〜7と全く同じよ
うにして屈折率、内部応力σ、結晶状態の測定を行った
。結果を表1に示す。
In2O3 sintered body as target, B! Inz 03111.inz 0311. Biz 03 films each 100
OA (7) thickness was multiplied. The refractive index, internal stress σ, and crystal state were measured in exactly the same manner as in Experimental Examples 1 to 7. The results are shown in Table 1.

本発明に係る実験例1〜7,15及び従来例の実験例1
6より、複合酸化物膜はBiの含有量により、その屈折
率が2.0以上の高いレベルで広範囲に調整できると共
に、内部応力σはBiの含有量に係わらずIn203に
比べ顕著に低減することがわかった。更に複合酸化物の
内部応力は従来例の実験例17の8i203膜の内部応
力よりも小さく、これはBiとIn又は/及びSnとの
混合による相乗効果により得られるものと思われる。こ
れらの点より、この複合酸化物を光磁気記録媒体の誘電
体層として用いれば、レーザー光の閉じ込め効果が向上
し、記録感度の向上、CNRの向上が実現されると考え
られる。また、剥離・亀裂等の欠陥の発生を抑える効果
が期待できる。
Experimental Examples 1 to 7 and 15 according to the present invention and Experimental Example 1 of the conventional example
6, the refractive index of the composite oxide film can be adjusted over a wide range to a high level of 2.0 or more depending on the Bi content, and the internal stress σ is significantly reduced compared to In203 regardless of the Bi content. I understand. Furthermore, the internal stress of the composite oxide is smaller than that of the 8i203 film of Experimental Example 17, which is a conventional example, and this is thought to be obtained by the synergistic effect of the mixture of Bi and In and/or Sn. From these points, it is thought that if this composite oxide is used as a dielectric layer of a magneto-optical recording medium, the laser light confinement effect will be improved, and recording sensitivity and CNR will be improved. Furthermore, it can be expected to have the effect of suppressing the occurrence of defects such as peeling and cracking.

更に、実験例8〜14に示したように、この複合酸化物
に更に窒素を含有せしめることにより、屈折率の一層の
向上をはかることができた。
Furthermore, as shown in Experimental Examples 8 to 14, by further incorporating nitrogen into this composite oxide, it was possible to further improve the refractive index.

また、実験例16.17から明らかな如く、従来より公
知のB!z 03. Ir1203の中種薄膜は結晶状
態を有する薄膜である。一方、実験例1〜15から明ら
かの如く、本発明に係わる複合酸化物膜は、驚くべきこ
とに非晶質状態となることがわかった。
Furthermore, as is clear from Experimental Examples 16 and 17, the conventionally known B! z 03. The intermediate thin film of Ir1203 is a thin film having a crystalline state. On the other hand, as is clear from Experimental Examples 1 to 15, the composite oxide film according to the present invention was surprisingly found to be in an amorphous state.

従って、記録・再生時のレーザー光の結晶粒界による散
乱や、ビット形成時の熱伝導の不均一性によるビット形
状の乱れが小さいなどの媒体ノイズを低減する効果をも
つと考えられる。
Therefore, it is thought to have the effect of reducing media noise, such as scattering of laser light during recording/reproduction by crystal grain boundaries and disturbance of bit shape due to non-uniformity of heat conduction during bit formation.

[実施例] 前述の実験例の複合酸化物を光干渉層又は/及び保護層
とした光磁気ディスクを作成し、本発明の効果を確認し
た。
[Example] A magneto-optical disk using the composite oxide of the above-mentioned experimental example as an optical interference layer and/or a protective layer was prepared, and the effects of the present invention were confirmed.

実施例1〜7 以下のようにして、第1図に示す構成の光磁気記録媒体
を作成し、評価した。図において1は基板、2は誘電体
層、3は透明金属薄膜層、4は記録層、5は裏面像3層
である。
Examples 1 to 7 Magneto-optical recording media having the configuration shown in FIG. 1 were produced and evaluated as follows. In the figure, 1 is a substrate, 2 is a dielectric layer, 3 is a transparent metal thin film layer, 4 is a recording layer, and 5 is a back image 3 layer.

直径130mm 、厚さ1.2mmの円盤で、1.6 
μmピッチのグループを有するポリカーボネート樹脂(
PC)のディスク基板1を3ターゲツトの高周波マグネ
トロンスパッタ装置(アネルバ■製5PF−430H型
)の真空槽内に固定し、4X10−7Torrになるま
で排気する。なお、膜形成において基板1は15 pp
mで回転させた。
A disk with a diameter of 130 mm and a thickness of 1.2 mm, 1.6
Polycarbonate resin with groups of μm pitch (
The disk substrate 1 of the PC is fixed in a vacuum chamber of a three-target high-frequency magnetron sputtering device (Model 5PF-430H manufactured by ANELVA), and the vacuum chamber is evacuated to 4.times.10@-7 Torr. In addition, during film formation, the substrate 1 has a concentration of 15 pp
Rotated at m.

次に前述の実験例1〜7と同じようにして、81含有量
の異なる複合酸化物からなる透明誘電体層2を形成した
。すなわちターゲットとしては直径ioomm 、厚さ
5mmの円盤で、組成がBixIn、 5n70100
−(x+y+z)  (X、y’は原子%)において。
Next, in the same manner as in Experimental Examples 1 to 7 described above, transparent dielectric layers 2 made of composite oxides having different 81 contents were formed. That is, the target is a disk with a diameter of iomm and a thickness of 5 mm, and the composition is BixIn, 5n70100.
-(x+y+z) (X, y' are atomic %).

(X、 V、 Z)が(34,6,0)、 (28,1
2,0)、 (20,20,0)、 (12゜28、 
O)、 (6,34,0)、 (22,14,4) 、
 (22,4,14)の各組成の酸化物焼結体からなる
7種類を適宜用意し、これを前記スパッタ装置に順次取
り付しプ以下の条件で膜作成した。まず^r102混合
ガス(02: I VO+%)を真空槽内に導入し、圧
力10m TorrになるようにAr10z混合ガスの
流量を調整した。次いで、放電電力100W、放電周波
数13.56MHzで高周波スパッタリングを行い、誘
電体層2として表2に示すところの組成、及び厚さをも
つ複合酸化物膜を堆積した。ここで、それぞれの膜厚は
、誘電体層2の屈折率Nから光学的に決定される性能指
数FR・θk(R:媒体反射率、θに二にerr回転角
)が最大となる値であり、同時に実際の媒体においても
誘電体の膜厚を変化させたときのCNRが最大となる値
とした。
(X, V, Z) is (34,6,0), (28,1
2,0), (20,20,0), (12°28,
O), (6,34,0), (22,14,4),
Seven types of oxide sintered bodies having the respective compositions (22, 4, 14) were appropriately prepared, and these were sequentially attached to the sputtering apparatus to form films under the following conditions. First, ^r102 mixed gas (02: I VO +%) was introduced into the vacuum chamber, and the flow rate of the Ar10z mixed gas was adjusted so that the pressure was 10 m Torr. Next, high frequency sputtering was performed at a discharge power of 100 W and a discharge frequency of 13.56 MHz to deposit a composite oxide film having the composition and thickness shown in Table 2 as the dielectric layer 2. Here, each film thickness is a value that maximizes the figure of merit FR·θk (R: medium reflectance, err rotation angle second to θ) optically determined from the refractive index N of the dielectric layer 2. At the same time, the CNR was set to a value that maximized when the dielectric film thickness was changed in an actual medium.

続いて、透明金属薄膜層3としてターゲットを”80”
20合金(添数字は組成(原子%)を示す)の円盤に変
え、スパッタリングガスをAr10zより純Ar(5N
>とする以外は上述と同様の放電条件でT1Cr合金膜
を約15人堆積した。
Next, a target of “80” was used as the transparent metal thin film layer 3.
20 alloy (the subscript indicates the composition (atomic %)), and the sputtering gas was changed from Ar10z to pure Ar (5N
About 15 people deposited a T1Cr alloy film under the same discharge conditions as described above except for the following.

次に光磁気記録層4としてターゲットをTb23Fe6
.COB合金(添数字は組成(原子%)を示す)の円盤
に変え、ricr合金膜と同様の放電条件で1bFeC
o合金膜を約400人堆積した。
Next, a target of Tb23Fe6 was used as the magneto-optical recording layer 4.
.. A disk of COB alloy (the suffix indicates the composition (atomic %)) was used, and 1bFeC was used under the same discharge conditions as the RICR alloy film.
About 400 people deposited o-alloy films.

さらに、裏面保護層5としてターゲットをTta。Further, a target of Tta was used as the backside protective layer 5.

Cr2oに戻し、上述と同様の放電条件でT’ i C
r合金膜を約500人堆積した。
Return to Cr2o and T' i C under the same discharge conditions as above.
Approximately 500 people deposited r-alloy films.

以上の順序で各B1含有最の複合酸化物を透明誘電体層
とし、その他は同じ構成の第1図に示すところのP C
/ [BixIn、 Sri□0100−(x+y+z
) ] /T1Cr/TbFeCo/T1Crの積層構
成の光磁気ディスクを得た。
In the above order, each B1-containing composite oxide is used as a transparent dielectric layer, and the other components are the same as those shown in FIG. 1.
/ [BixIn, Sri□0100-(x+y+z
) ] A magneto-optical disk having a laminated structure of /T1Cr/TbFeCo/T1Cr was obtained.

この光磁気ディスクのKerl’回転角の測定結果(レ
ーザー波長λ: 633nm)を表2のKerr回転角
の欄に示す。次にこのディスクのCNRを測定した。
The measurement results of the Kerr rotation angle of this magneto-optical disk (laser wavelength λ: 633 nm) are shown in the Kerr rotation angle column of Table 2. Next, the CNR of this disk was measured.

測定には光磁気記録再生装@(ナカミチ083−100
0丁VpeIV )を用い、ディスクをtaoorpm
 テ回転すセ半径30mm Rの位置で記録・再生・消
去を行った。
For measurements, magneto-optical recording and reproducing equipment @ (Nakamichi 083-100) was used.
0 to taoorpm)
Recording, playback, and erasing were performed at a position with a rotation radius of 30 mm.

信号の再生は0.8mWのレーザーパワーで行った。Signal reproduction was performed with a laser power of 0.8 mW.

記録時の最適レーザーパワーは、信号再生時の1次高調
波と2次高調波の差が最大となる値に決定した。信号の
周波数はIMH2とした。各媒体の最適レーザーパワー
を表2の記録パワーの欄に示す。尚、記録・消去の際の
印加磁界は500Qe(エルステッド)である。媒体の
CNR及びノイズレベルの評価結果を表2のCNR,ノ
イズレベルの欄に示す。ノイズレベルは1−を基準とし
た絶対レベルを示すdamの単位で表示した。
The optimum laser power during recording was determined to be a value that maximizes the difference between the first and second harmonics during signal reproduction. The frequency of the signal was set to IMH2. The optimum laser power for each medium is shown in the column of recording power in Table 2. The applied magnetic field during recording and erasing is 500Qe (Oersted). The evaluation results of the CNR and noise level of the medium are shown in the CNR and noise level columns of Table 2. The noise level was expressed in units of dam, which indicates the absolute level with 1- as a reference.

これらのディスクの面を観察したところ、ピンホールや
剥離、亀裂等の欠陥は観察されなかった。
When the surfaces of these disks were observed, no defects such as pinholes, peeling, or cracks were observed.

次にこれらのディスクを80℃、85%RHの高温高湿
雰囲気下に1000時間放置した。その後Kerr回転
角及び記録時最適レーザーパワー、CNRノイズレベル
を測定したところ、放置前の測定結果と比較して全く変
化は見られなかった。また、媒体面のピンホールや剥離
・亀裂等の欠陥の発生は全く見られなかった。
Next, these disks were left in a high temperature and high humidity atmosphere of 80° C. and 85% RH for 1000 hours. Thereafter, when the Kerr rotation angle, the optimum laser power during recording, and the CNR noise level were measured, no changes were observed at all compared to the measurement results before being left. Furthermore, no defects such as pinholes, peeling, or cracks on the medium surface were observed.

実施例8〜14 以下のようにして前述の実験例8〜14と同じ窒素含有
複合酸化物を透明誘電体層2とした第1図に示す構成の
光磁気ディスクを作成し、評価した。
Examples 8 to 14 Magneto-optical disks having the structure shown in FIG. 1 in which the transparent dielectric layer 2 was made of the same nitrogen-containing composite oxide as in Experimental Examples 8 to 14 were prepared and evaluated as follows.

直径1301111+1 、厚さ1.2mmの円盤で、
1.6/lピツチのグループを有するポリカーボネート
樹脂(PC>のディスク基板1を、実施例1〜7で用い
たものと全く同じスパッタ装置中に、全く同じ条件で固
定した。
A disk with a diameter of 1301111+1 and a thickness of 1.2mm,
A disk substrate 1 of polycarbonate resin (PC>) having groups of 1.6/l pitch was fixed in exactly the same sputtering apparatus as used in Examples 1 to 7 under exactly the same conditions.

誘電体層2を形成する際のスパッタリングガスとして^
r102に変えてAr/Nz混合ガス(N2 : 30
Vo1%)を用いる以外は、実施例1〜7と全く同じ条
件でスパッタリングを行い、各層を形成し、誘電体層2
が表2に示すところの膜組成、及び膜厚をもつ窒素含有
複合酸化物からなり、その他は実施例1〜7と同じの第
1図に示すところのPC/ [8!XInySnz(o
loo−a Na) 100−(×+y+z) 1/ 
T i Cr/ TbFeCo/ T i Crの積層
構成の光磁気デ、イスクを得た。
As a sputtering gas when forming dielectric layer 2 ^
Ar/Nz mixed gas (N2: 30
Sputtering was performed under exactly the same conditions as in Examples 1 to 7, except that the dielectric layer 2 was
PC/[8! XInySnz(o
loo-a Na) 100-(x+y+z) 1/
A magneto-optical disc with a laminated structure of T i Cr/TbFeCo/T i Cr was obtained.

なお、誘電体層2の膜厚は実施例1〜7と同様にして設
定した。
Note that the film thickness of the dielectric layer 2 was set in the same manner as in Examples 1 to 7.

実施例1〜7と同様に、Kerr回転角、記録パワ、C
NR,ノイズレベルの測定を行った。結果を表2の実施
例8〜14に示す。
As in Examples 1 to 7, Kerr rotation angle, recording power, C
NR and noise level were measured. The results are shown in Examples 8 to 14 in Table 2.

これらのディスクの面を観察したところ、ピンホールや
剥離・亀裂等の欠陥は観察されなかった。
When the surfaces of these disks were observed, no defects such as pinholes, peeling, cracks, etc. were observed.

次にこれらのディスクを80℃、85%RHの高温高湿
雰囲気下に1000時間放置した。その後のKerr回
転角及び記録時最適レーザーパワー、CNR,ノイズレ
ベルを測定したところ、実施例1〜7と同様放置前の測
定結果と比較して全く変化は見られなかった。また、媒
体面のピンホールや剥離・亀裂等の欠陥の発生は全く見
られなかった。
Next, these disks were left in a high temperature and high humidity atmosphere of 80° C. and 85% RH for 1000 hours. When the Kerr rotation angle, optimum laser power during recording, CNR, and noise level were measured after that, no changes were observed at all compared with the measurement results before leaving as in Examples 1 to 7. Furthermore, no defects such as pinholes, peeling, or cracks on the medium surface were observed.

実施例15 以下のようにして前述の実験例15と同じ複合酸化物を
透明誘電体層2とした第1図に示す構成の光磁気ディス
クを作成し評価した。
Example 15 A magneto-optical disk having the structure shown in FIG. 1 in which the transparent dielectric layer 2 was made of the same composite oxide as in Experimental Example 15 was prepared and evaluated in the following manner.

直径13h+m、厚さ1.2mmの円盤で、1.6 μ
mピッチのグループを有するポリカーボネート樹脂(P
C)のディスク基板を、実施例1〜7で用いたものと全
く同じスパッタ装置中に全く同じ条件で固定した。
A disk with a diameter of 13h+m and a thickness of 1.2mm, 1.6μ
Polycarbonate resin (P
The disk substrate of C) was fixed in exactly the same sputtering apparatus as used in Examples 1 to 7 under exactly the same conditions.

誘電体層2の複合酸化物膜は、前述の実験例15と同じ
ようにして形成した。すなわち、ターゲットとして[”
60In40 (添数字は原子%)の合金ターゲットを
用い、またその際のスパッタリングガスとしてはAr1
0z混合ガス(02: 10Vo1%)を用いた。放電
時の電圧400V、電流0.5Aで、DC反応性スパッ
タリングを行い、誘電体層2として実験例15と同じ組
成が”24In16060 (添数字は原子%〉の複合
酸化物膜約720人を形成した。なお、この膜厚は実施
例1〜7と同様にして設定した。
The composite oxide film of dielectric layer 2 was formed in the same manner as in Experimental Example 15 described above. In other words, as a target [”
An alloy target of 60In40 (subscript number is atomic%) was used, and the sputtering gas was Ar1.
A 0z mixed gas (02: 10Vo1%) was used. DC reactive sputtering was performed at a voltage of 400 V and a current of 0.5 A during discharge to form a composite oxide film of about 720 layers having the same composition as in Experimental Example 15 as dielectric layer 2, 24In16060 (subscript number is atomic %). Note that this film thickness was set in the same manner as in Examples 1 to 7.

以下、実施例1〜7と全く同じ条件でスパッタリングを
行い、誘電体層2が上記複合酸化物で、それ以外の構成
は実施例1〜7と全く同じの、第1図に示すところのP
C/Bi241016060/T1Cr/TbFeCo
/T1Crの積層構成の光磁気ディスクを得た。
Hereinafter, sputtering was carried out under exactly the same conditions as in Examples 1 to 7.
C/Bi241016060/T1Cr/TbFeCo
A magneto-optical disk having a laminated structure of /T1Cr was obtained.

実施例1〜7と同様にKerr回転角、記録パワーCN
R,ノイズレベルの測定を行った。結果を表2の実施例
15に示す。
Kerr rotation angle and recording power CN as in Examples 1 to 7
R. The noise level was measured. The results are shown in Example 15 in Table 2.

このディスクの面を観察したところピンホールや剥離・
亀裂等の欠陥は観察されなかった。
When I observed the surface of this disc, I found that there were no pinholes or peeling.
No defects such as cracks were observed.

次にこのディスクを80℃、85%RHの高温高湿雰囲
気下に1000時間放置した。その後のKel’r回転
角、及び記録時最適レーザーパワー、CNR,ノイズレ
ベルを測定したところ、実施例1〜7と同様放置前の測
定結果と比較して全く変化は見られなかった。また、媒
体面のピンホールや剥離・亀裂等の欠陥の発生は全く見
られなかった。
Next, this disk was left in a high temperature, high humidity atmosphere of 80° C. and 85% RH for 1000 hours. When the Kel'r rotation angle, optimum laser power during recording, CNR, and noise level were measured after that, no changes were observed at all compared to the measurement results before leaving as in Examples 1 to 7. Furthermore, no defects such as pinholes, peeling, or cracks on the medium surface were observed.

比較例 以下のようにして比較のため、従来例のInz 03を
透明誘電体層2とした第1図に示す構成の光磁気ディス
クを作成し評価しノだ。
Comparative Example For comparison purposes, a magneto-optical disk having the structure shown in FIG. 1 using the conventional Inz 03 as the transparent dielectric layer 2 was prepared and evaluated as follows.

直径130mm 、厚さ1.2mmの円盤で、1,6μ
mピッチのグループを有するポリカーボネート樹脂(P
C)のディスク基板を、実施例1〜7で用いたものと全
く同じスパッタ装置中に全く同じ条件で固定した。
A disc with a diameter of 130mm and a thickness of 1.2mm, 1.6μ
Polycarbonate resin (P
The disk substrate of C) was fixed in exactly the same sputtering apparatus as used in Examples 1 to 7 under exactly the same conditions.

誘電体層2のIn20:l膜は、前述の実験例16と全
く同様にしてターゲットとしてIn203焼結体を用い
て800人厚さに成形し、それ以外の各層は実施例1〜
7と全く同じ条件でスパッタリングを行い、誘電体層が
Ir1z Owlで、その他の構成は実施例1〜″lと
同じの、第1図に示すところのPC/In20x/T1
Cr/丁bFeCo/口Crの積層構成の光磁気ディス
クを得た。なお、Inz 0wl膜の膜厚は実施例1〜
7と同様にして設定した。
The In20:l film of dielectric layer 2 was molded to a thickness of 800 mm using an In203 sintered body as a target in exactly the same manner as in Experimental Example 16, and the other layers were formed in the same manner as in Experimental Example 16.
Sputtering was performed under exactly the same conditions as in Example 7, and the dielectric layer was Ir1z Owl, and the other configurations were the same as in Examples 1 to 1.
A magneto-optical disk having a laminated structure of Cr/FeCo/Cr was obtained. In addition, the film thickness of the Inz 0wl film is from Example 1 to
I set it up in the same way as 7.

実施例1〜7と同様に、Kerr回転角、記録パワ、C
NR,ノイズレベルの測定を行った。結果を表2の比較
例の放置前の欄に示す。
As in Examples 1 to 7, Kerr rotation angle, recording power, C
NR and noise level were measured. The results are shown in the column of Comparative Example in Table 2 before standing.

この媒体面を観察したところピンホールや剥離・亀裂等
の欠陥は観察されなかった。
When the surface of this medium was observed, no defects such as pinholes, peeling, cracks, etc. were observed.

次にこの媒体を80℃、85%RH高温高湿雰囲気下に
1ooo時間放置した。その後のKerr回転角及び記
録時最適レーザーパワー、CNR,ノイズレベルを測定
した。結果を表2の比較例の放置後の欄に示す。放置前
に比べKerr回転角、記録感度、 CNR,ノイズレ
ベルともに劣化していることがわかる。また、媒体面に
はピンホールの発生が見られた。
Next, this medium was left in a high temperature, high humidity atmosphere at 80° C. and 85% RH for 100 hours. The subsequent Kerr rotation angle, optimum laser power during recording, CNR, and noise level were measured. The results are shown in the column of Comparative Examples in Table 2 after standing. It can be seen that the Kerr rotation angle, recording sensitivity, CNR, and noise level have all deteriorated compared to before being left unused. In addition, pinholes were observed on the medium surface.

実施例16 以下のようにして、フッ・ラブイー効果も利用する金属
反射層を備えた第2図に示す構成の光磁気記録媒体を作
成し評価した。第2図において、1゜2.3.4は第1
図と同じで、5a、 5bは裏面保護層、6は金属反射
層である。
Example 16 A magneto-optical recording medium having the configuration shown in FIG. 2 and having a metal reflective layer that also utilizes the Hu-Lovey effect was prepared and evaluated in the following manner. In Figure 2, 1°2.3.4 is the first
As shown in the figure, 5a and 5b are back protective layers, and 6 is a metal reflective layer.

直径130mm 、厚さ1.2n+mの円盤で、1.6
μmピッチのグループを有するポリカーボネート樹脂(
PC)のディスク基板を、実施例1〜7で用いたものと
全く同じスパッタ装置中に全く同じ条件で固定した。
A disk with a diameter of 130mm and a thickness of 1.2n+m, 1.6
Polycarbonate resin with groups of μm pitch (
A disk substrate of PC) was fixed in exactly the same sputtering apparatus as used in Examples 1 to 7 under exactly the same conditions.

先ず誘電体層2として窒素含有複合酸化物膜を以下のよ
うにして形成した。Ar/N、+混合ガス(N2:30
Vo 1%)を真空槽内に導入し、圧力10m Tor
rになるようにAr/N2混合ガスの流量を調整した。
First, a nitrogen-containing composite oxide film was formed as the dielectric layer 2 in the following manner. Ar/N, + mixed gas (N2:30
Vo 1%) was introduced into the vacuum chamber, and the pressure was 10 m Tor.
The flow rate of the Ar/N2 mixed gas was adjusted so that r.

ターゲットとしては直径100mm 、厚さ5mmの円
盤で組成が8!2oIn1asロ2060(添数字は原
子%)の焼結体ターゲットを用いた。放電電力ioow
、放電周波数13.56 MH2で高周波スパッタリン
グを行い、誘電体層2として、”20”183’205
ON10なる組成の窒素含有酸化物膜を約500人堆積
した。この膜厚は実施例1〜7と同様にして設定した。
The target used was a sintered target having a diameter of 100 mm, a thickness of 5 mm, and a composition of 8!2oIn1asro2060 (subscripts are atomic %). Discharge power ioow
, high frequency sputtering was performed at a discharge frequency of 13.56 MH2 to form dielectric layer 2 of "20"183'205
About 500 people deposited a nitrogen-containing oxide film with a composition of ON10. This film thickness was set in the same manner as in Examples 1-7.

次に、スパッタリングガスをAr/Nzから純Ar(5
N)に変え、ターゲットとして”60”30Re10゜
及びNd5 DV15TbB Fe60CO12(添数
字は原子%)の組成をもつ2種の合金ターゲットを用い
、上述と同様の放電条件で、ターゲットを交換してスパ
ッタリングを行い、第2図に示すところの金属薄膜層3
.光磁気記録層4.裏面金属保護層5aとして、T1C
rRe、 NdDyTbFeCo、 T1CrReの順
にそれぞれ15人。
Next, the sputtering gas was changed from Ar/Nz to pure Ar (5
Sputtering was performed under the same discharge conditions as above, replacing the target with two alloy targets having the compositions "60" 30Re10° and Nd5 DV15TbB Fe60CO12 (subscripts are atomic %) instead of N). The metal thin film layer 3 shown in FIG.
.. Magneto-optical recording layer 4. As the back metal protective layer 5a, T1C
15 people each for rRe, NdDyTbFeCo, and T1CrRe.

200人、15人の膜厚で堆積させた。It was deposited at a film thickness of 200 and 15.

再びターゲットを誘電体層2の複合酸化物膜を形成した
Bf20InIBSn2060の焼結体ターゲットに戻
し、誘電体層2と全く同じ放電条件で、B1In5nO
Nからなる裏面誘電体保護層5bを約200人堆積した
The target was returned to the Bf20InIBSn2060 sintered target on which the composite oxide film of dielectric layer 2 had been formed, and under exactly the same discharge conditions as dielectric layer 2, B1In5nO
About 200 people deposited the back dielectric protective layer 5b made of N.

最後に、ターゲットを金属薄膜層3及び裏面金属薄膜1
1i5aの形成に用いたT ’60”30RelO合金
ターゲットに戻し、金属薄膜層3と全く同じ放電条件で
、金属反射層6としてT i CrRe膜を約500人
堆積した。
Finally, the target is coated with the metal thin film layer 3 and the back metal thin film 1.
The T'60"30RelO alloy target used for forming 1i5a was returned to, and approximately 500 T i CrRe films were deposited as the metal reflective layer 6 under exactly the same discharge conditions as the metal thin film layer 3.

この媒体の830nmのレーザー光に対する反射率を調
べたところ、13%であった。また、ノイズレベルを測
定したところ、−59dBmという低ノイズレベルであ
ることが確認された。
When the reflectance of this medium to 830 nm laser light was examined, it was found to be 13%. Furthermore, when the noise level was measured, it was confirmed that the noise level was as low as -59 dBm.

本実施例1〜16.及び比較例より、本発明に係わるI
n、 Snの少なくとも一方と81の複合酸化物薄膜を
誘電体層として用いることにより、その特性から期待さ
れる通りKerr回転角、記録感度、CNRの向上、な
らびにノイズレベルの低減された光磁気記録媒体を実現
できることがわかった。これは、実験例1〜15で示し
たごとく、上記複合酸化物により誘電体層の屈折率が増
大し、これによって光干渉効果、具体的にはレーザー光
の閉じ込め効果が向上し、kerr回転角、記録感度、
 CNRの向上を実現できることが確認された。また、
本実施例1〜16の透明誘電体層の複合酸化物薄膜は実
験例1〜7に示すごとく非晶質状態である。
Examples 1 to 16. From the and comparative examples, I related to the present invention
By using a composite oxide thin film of 81 and at least one of n and Sn as a dielectric layer, magneto-optical recording with improved Kerr rotation angle, recording sensitivity, CNR, and reduced noise level as expected from its characteristics. It turns out that the medium can be realized. As shown in Experimental Examples 1 to 15, the above composite oxide increases the refractive index of the dielectric layer, which improves the optical interference effect, specifically the laser light confinement effect, and increases the Kerr rotation angle. , recording sensitivity,
It was confirmed that an improvement in CNR can be achieved. Also,
The composite oxide thin films of the transparent dielectric layers of Examples 1 to 16 were in an amorphous state as shown in Experimental Examples 1 to 7.

このため結晶状態のInz 03やBi2O3単独の膜
に比べ、記録・再生時におけるレーザー光の結晶粒界に
よる散乱やビット形成時の熱伝導の不均一性によるビッ
ト形状の乱れが少なく、ノイズレベルの低減が期待され
るが、実施例1〜16と比較例により期待通りノイズレ
ベルが大きく、具体的には2dBm以上低減できること
が確認された。
Therefore, compared to films made of crystalline Inz 03 or Bi2O3 alone, there is less disturbance in the bit shape due to scattering of laser light by crystal grain boundaries during recording and reproduction and non-uniformity of heat conduction during bit formation, and the noise level is reduced. Although a reduction is expected, it was confirmed in Examples 1 to 16 and the comparative example that the noise level was large as expected, and specifically, it was confirmed that the noise level could be reduced by 2 dBm or more.

また、実施例8〜14に示したように、ざらに窒素を含
有せしめた複合酸化物にすることにより、上述の効果は
より向上することがわかった。
Further, as shown in Examples 8 to 14, it was found that the above-mentioned effects were further improved by using a composite oxide containing nitrogen.

更に、実施例1〜16の複合酸化物膜は、実験例1〜1
5に示したごとく、比較例のInz 03膜(実験例1
6)に比べ、内部応力が顕著に低下している。このため
、高温高湿下での加速劣化試験を行っても、膜の内部応
力による剥離・亀裂が全く発生せず、耐久性向上に大ぎ
な効果を奏することがわかった。
Furthermore, the composite oxide films of Examples 1 to 16 were prepared in Experimental Examples 1 to 1.
5, the Inz 03 film of the comparative example (Experimental Example 1)
Compared to 6), the internal stress is significantly reduced. For this reason, even when accelerated deterioration tests were conducted under high temperature and high humidity conditions, no peeling or cracking due to the internal stress of the film occurred, and it was found that this had a great effect on improving durability.

以上、本発明の有意性が示された。The significance of the present invention has been demonstrated above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1〜15及び比較例、第2図は実施例
16の構成を示す断面図である。 1:基板、2:誘電体層、3:金属薄膜層。 4:記録層、 5.5a、 5b:裏面保護層、6:金
属反射層
FIG. 1 is a sectional view showing the structure of Examples 1 to 15 and a comparative example, and FIG. 2 is a sectional view showing the structure of Example 16. 1: Substrate, 2: Dielectric layer, 3: Metal thin film layer. 4: Recording layer, 5.5a, 5b: Back protective layer, 6: Metal reflective layer

Claims (1)

【特許請求の範囲】 1、保護層又は/及び光干渉層として透明誘電体層を有
する光記録媒体において、前記透明誘電体層がIn又は
Snの少なくとも一方とBiの非晶質の複合酸化物であ
ることを特徴とする光記録媒体。 2、透明高分子基板上に前記複合酸化物からなる透明誘
電体層、Ti膜又はTiとRe,Cr,Taの少なくと
も一つとの合金膜からなる透明金属薄膜層、希土類金属
と遷移金属の非晶質合金膜からなる光磁気記録層をこの
順序で具備した請求項第1項記載の光記録媒体。 3、前記複合酸化物が窒素を含む窒素含有酸化物である
請求項第1項又は第2項記載の光記録媒体。 4、前記窒素含有酸化物の窒素含有量が40at%以下
である請求項第3項記載の光記録媒体。
[Claims] 1. An optical recording medium having a transparent dielectric layer as a protective layer and/or an optical interference layer, wherein the transparent dielectric layer is an amorphous composite oxide of Bi and at least one of In or Sn. An optical recording medium characterized by: 2. A transparent dielectric layer made of the above composite oxide, a transparent metal thin film layer made of a Ti film or an alloy film of Ti and at least one of Re, Cr, and Ta, and a non-containing layer of rare earth metals and transition metals on a transparent polymer substrate. 2. The optical recording medium according to claim 1, comprising magneto-optical recording layers made of crystalline alloy films in this order. 3. The optical recording medium according to claim 1 or 2, wherein the composite oxide is a nitrogen-containing oxide containing nitrogen. 4. The optical recording medium according to claim 3, wherein the nitrogen content of the nitrogen-containing oxide is 40 at% or less.
JP63328851A 1988-12-14 1988-12-28 Optical recording medium Expired - Lifetime JP2528173B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63328851A JP2528173B2 (en) 1988-12-28 1988-12-28 Optical recording medium
CA002004936A CA2004936C (en) 1988-12-14 1989-12-08 Optical recording medium
EP89122732A EP0373539B1 (en) 1988-12-14 1989-12-09 Optical recording medium
DE68921308T DE68921308T2 (en) 1988-12-14 1989-12-09 Optical recording medium.
KR1019890018547A KR900010687A (en) 1988-12-14 1989-12-14 Optical recording media
US07/715,024 US5192626A (en) 1988-12-14 1991-06-13 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63328851A JP2528173B2 (en) 1988-12-28 1988-12-28 Optical recording medium

Publications (2)

Publication Number Publication Date
JPH02177035A true JPH02177035A (en) 1990-07-10
JP2528173B2 JP2528173B2 (en) 1996-08-28

Family

ID=18214799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63328851A Expired - Lifetime JP2528173B2 (en) 1988-12-14 1988-12-28 Optical recording medium

Country Status (1)

Country Link
JP (1) JP2528173B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450258A (en) * 1987-08-21 1989-02-27 Sumitomo Metal Mining Co Production of thin film of high-refractive index dielectric material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450258A (en) * 1987-08-21 1989-02-27 Sumitomo Metal Mining Co Production of thin film of high-refractive index dielectric material

Also Published As

Publication number Publication date
JP2528173B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
US5786078A (en) Magneto-optical recording medium
JPH0325737A (en) Magneto-optical recording medium
US5512364A (en) Magneto-optical recording medium
US4954841A (en) Optical recording medium and method of manufacturing the same
JPH02177035A (en) Optical recording medium
GB2158281A (en) Optical recording medium
US4950547A (en) Magneto-optical recording medium having protective film with increased Kerr effect and improved protection characteristic and manufacturing method of the same
JPH03288346A (en) Optical recording medium
JPH03156753A (en) Optical recording medium
JPH02265052A (en) Production of optical recording medium
JP2523180B2 (en) Optical recording medium and manufacturing method thereof
JP2507592B2 (en) Optical recording medium
JP2528188B2 (en) Optical recording medium
JP2548311B2 (en) Magneto-optical recording medium and manufacturing method thereof
JPH03122845A (en) Optical recording medium
JP2960470B2 (en) Magneto-optical recording medium
JP2804165B2 (en) Magneto-optical recording medium
JP2550118B2 (en) Magneto-optical recording medium
JP2882915B2 (en) Magneto-optical recording medium
JPH03273543A (en) Magneto-optical recording medium
JP2559871B2 (en) Optical recording medium
KR100194131B1 (en) Optical recording media
JP2938233B2 (en) Magneto-optical recording medium
JP2503268B2 (en) Magneto-optical recording medium and manufacturing method thereof
JPH04324141A (en) Optical information recording medium