JPH02164799A - 酸化亜鉛ウィスカーの製造法 - Google Patents

酸化亜鉛ウィスカーの製造法

Info

Publication number
JPH02164799A
JPH02164799A JP63321177A JP32117788A JPH02164799A JP H02164799 A JPH02164799 A JP H02164799A JP 63321177 A JP63321177 A JP 63321177A JP 32117788 A JP32117788 A JP 32117788A JP H02164799 A JPH02164799 A JP H02164799A
Authority
JP
Japan
Prior art keywords
powder
zinc
whiskers
zinc oxide
zinc powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63321177A
Other languages
English (en)
Other versions
JP2584032B2 (ja
Inventor
Minoru Yoshinaka
芳中 實
Eizo Asakura
朝倉 栄三
Motoi Kitano
基 北野
Jun Yagi
順 八木
Hideyuki Yoshida
吉田 英行
Takashige Sato
佐藤 隆重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63321177A priority Critical patent/JP2584032B2/ja
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to EP90900992A priority patent/EP0407601B1/en
Priority to DE68924646T priority patent/DE68924646T2/de
Priority to US07/566,475 priority patent/US5158643A/en
Priority to PCT/JP1989/001246 priority patent/WO1990007022A1/ja
Priority to KR1019900701787A priority patent/KR930007857B1/ko
Priority to CA002005737A priority patent/CA2005737C/en
Publication of JPH02164799A publication Critical patent/JPH02164799A/ja
Application granted granted Critical
Publication of JP2584032B2 publication Critical patent/JP2584032B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、巨大なテトラボッド状構造を有する酸化亜鉛
ウィスカーの製造方法に係る。
従来の技術 現在、−船釣工業素材として使用される酸化亜鉛は、い
わゆるフランス法によるものが多く1粒子の大きさ、特
に形状がまちまちの団塊状粒子の集合体である。
又、細く短い針状結晶粒子を高収率で形成させる方法(
例えば特公昭60−5529号公報)があるが、これは
上記フランス法の改良法で、加熱亜鉛蒸気を急速に冷却
するものであり、このため巨大結晶体は生成せず、微小
寸法(長さが0.1〜1.6μm)の針状結晶となる。
このような寸法の針状結晶体は、現在市販されている各
種工業用ウィスカーと比較すると寸法面で約2桁小さい
。このため前記ウィスカーの共通的特長である金属、セ
ラミックス、樹脂等への補強効果は前記団塊状酸化亜鉛
の水準と大差なく、ウィスカー的な顕著な効果は認めら
れない。繊維形状の単結晶性であるウィスカーは同材質
の団塊状物質よりは格段と機械的強度が大で、これを他
の物質中に混入して高い機械的強度を得るための強化物
質として注目されており、現在では、金属、金属酸化物
、金属炭化物、金属窒化物等の工業用ウィスカーが市販
されている。
又、酸化亜鉛においても長さが咽桁のウィスカーの例の
例(特開昭50−15697号公報)等があるが、これ
らは単純針状体のもので、わざわざ亜鉛の合金を用いる
ため、結晶中に不純物を含んだり、成長時に基板を必要
としたり、低収率であったり、複雑な装置、操作で長時
間を要する等の実験室的検討に過ぎないものが多い。
発明が解決しようとする課題 本発明は、工業用ウィスカー級の寸法性あるいはそれ以
上の寸法を有する酸化亜鉛の巨大結晶体を得る製造法を
提供することを目的とする。また本発明は巨大テトラボ
ッド状構造の酸化亜鉛ウィスカーの新規な製造方法を提
供するものである。
課題を解決するための手段 本発明による酸化亜鉛ウィスカーの製造方法は金属亜鉛
粉末にセラミック粉末を添加して、酸素を含む雰囲気下
で加熱処理して酸化亜鉛を生成させることを特徴とする
ここにおいて、金属亜鉛粉末に予め各種セラミック粉末
を添加混合して上記条件下で加熱処理するのが望ましい
作用 本発明の方法によって得られる酸化亜鉛ウィスカーは、
中心の核部とこの核部から異なる4軸方向に伸びた針状
結晶部からなり、前記針状結晶部の基部の径が0.7〜
14μmであり、前記針状結晶部の基部から先端までの
長さが3〜200μmである。又、針状結晶部が3軸或
は2軸のものも少量混入するが、これらは成長中或は後
に他のウィスカーと接触しで、その一部が折損したり、
震長が停止した結果である。又この成長中の接触により
完全なテトラボッド形の一部に他のテトラボッドが付着
したものも冬季みられる。他の形状即ち板状晶が針状部
に付着することもあるが、本発明の製造方法によればテ
トラボッド状のものが主体となる。
本発明者らは針状部の寸法が前述の如く細く短くかつ二
次的成長部を付着させた従来の結晶体からは飛躍的に巨
大で、かって実現されたことのない巨大テトラボッド状
ウィスカーを発現させるべき種々実験研究の結果、使用
する亜鉛原料系に極めて大きい要因のあることを確認し
た。
更に詳細には、従来の如く亜鉛金属溶湯や、還元亜鉛、
亜鉛化合物からの金属亜鉛等を使用しての焼成雰囲気条
件の選定だけでは形状の優れた巨大テトラボッド状ウィ
スカーを発現させるが不可能であるが、亜鉛金属粉末に
セラミック粉末を混合して使用することにより、これを
達成できることを確認した。
即ち、上記セラミック粉末は巨大テトラボッド状ウィス
カーの初期過程で成長の基板的役割をなし、これは金属
亜鉛粉末表面の酸化皮膜即ち酸化亜鉛層も上記セラミッ
クス粉末と同様な作用を行うことが判る。又ここにいう
セラミックには、各種金属酸化物、金属複合酸化物、天
然鉱物、特に天然ゼオライト、人工鉱物、特に合成ゼオ
ライト等があり、これを加熱処理時に亜鉛粉末と混合し
て用いるのが好ましい。尚、上記セラミックの二種以上
を亜鉛粉末と混合して用いる場合もある。
又、表面の酸化皮膜の量、ち密度が高い亜鉛粉末の場合
は、上記セラミック粉末の混合比を少とし逆の場合は増
大して用いることにより効果を発揮させることができる
し、セラミック粉末にも少量混合で効果の大なるものや
逆の場合のものもある。
次に亜鉛粉末の酸化皮膜は粉末の製造時に達成されるも
のが多い。このため酸化皮膜の厚み、組織、金属部と皮
膜の体積比等が混合されるセラミ。
ツクと複合して作用し、前述の形状の優れた巨大テトラ
ボッド状ウィスカーが発現する。ここに形状の優れたと
は、二次成長部等のない要素的にテトラボッド形状を示
すウィスカーである。特に酸化皮膜の厚み、組織は金属
粉末の製造時に達成されるものが多い。即ち溶融亜鉛粉
末を経て得られるものは特に制御しない限り、厚くてや
や多孔質な酸化皮膜が得られる。逆に固体のまま粉砕し
た系では皮膜厚は小でかなりち密なものが得られる。
又これら膜厚の均等性は前者の方が良好であるが、後者
の場合は形状がやや複雑で凹凸部を有する粉末形となる
ため、膜厚が不均一となる場合も多い。
次に亜鉛粉末を水と共存下で抽潰し熟成させた後に水分
を乾燥させることにより、金属亜鉛粉末表面に酸化皮膜
を生じさせたり、酸化皮膜を厚化させたりして、セラミ
ック質部分を増大させることができる。このため捕潰、
熟成処理を行った亜鉛粉末ではこの処理を省いたものよ
り、セラミック粉末を力pえることにより、二次成長部
分の少なく、形状も単純な巨大テトラボッド状ウィスカ
ーを発現させることができる。又、この処理により、混
合するセラミック粉末量を減することが可能な場合もあ
る。
次T本発明に使用する金属亜鉛粉末について詳記する。
これらの粒子径は0.1〜600μmのものが使用可能
であり、なかでも10〜300μmのものが最良の結果
となる。これらの金属亜鉛粉末は亜鉛線や亜鉛粉末をア
ーク式の溶射装置で空気中に溶射することにより得た粉
末、溶湯化によるもの、即ち粒状化法、アトマイズ法に
よる粉末がある。又機械的粉砕による方法即ち地金等を
切削又はジョー・クラッシャー、ジャイレートリ・クラ
ッシャーで粗粉砕されたものを再粉砕したものがあり、
その中粉砕には、いろいろの形式があるが、スタンプミ
ル、渦流ミル等があり、よシ微細粉にするためにハンマ
ーミル、カッチングミル。
ミクロナイザー等を使用して得た粉末がある。又電解に
よるもの、金属の蒸発、凝固等を利用した物理的方法、
化学的反応を利用した亜鉛粉末を用いることができる。
上記の各方法では、通常は酸化度11りが厚く生成しな
い様な条件で製造されているが、本発明に使用する場合
は逆に酸化皮膜が形成されれば有効であるため、水分共
存下や高酸素濃度(大気中等)高湿度中等の酸化促進雰
囲気中で製造することも可能である。又高温、高機械的
応力下で製造する場合にも良好な粉砕粉末を得ることが
できる。
又、上記の亜鉛粉末法を採っても、更に酸化皮膜部分を
増大させたい場合や、酸化皮膜が有効な程度に形成され
ない粉末製造法が採られた場合には以下に示す好ましい
方法が採られる。
まず、水共存下での機械的処理として乳鉢式捕潰機、ロ
ール等で処理を行い、粒子に圧力を加える。更にこれを
水中に24時間以上、なかでも72時間以上ならば、い
かなる粒子径のものでも完成できる。放置熟成温度は2
0℃以上に保つことが好ましい。酸化皮膜の形成、厚化
は上記メカノケミカル反応によらなくても熟成等による
ケミカル反応だけでも形成できるが、通常後者の場合は
時間がかかりすぎる。
このように酸化皮膜の形成、増大、成長の要因は多岐に
わたるが総括すると、■機械的圧力の付加、■水中ない
し高湿度下での酸化反応、■、■。
■の相剰効果(メカノケミカル反応)、■酸素濃度効果
、■温度効果等が関係する。生成する酸化皮膜量から評
定すると上記■による時間の影響が大である。即ち単位
時間当りの膜厚増加分が大で効果が著しい。
このように金属亜鉛粉末上に形成された酸化皮膜部は添
加するセラミック粉末と複合して、前述の如く巨大テト
ラボッド状ウィスカーを発現させるか、上記酸化皮膜は
厚化が進行した場合に表面部がぜい化しクラックを生じ
たりしてこの部分が粉末から脱落分離を起こすことも多
く、この離脱部分を前記亜鉛粉末と他のセラミック粉末
の混合系に混入させても効果を示すことも同時に確認し
た。
次に乾燥した粉末はセラミック粉末と混合して耐熱容器
、通常は金属、カーボン、磁器(多孔質アルミナ等)の
ルツボに入れ酸素を含む雰囲気下で700〜13oO°
C1中でも900〜110゜°Cで加熱するのが、いか
なる粒子径でも良好な結果を与える。
又、上記温度域の炉内に前記ルツボを保持しておき八、
調整した粉末を投入して焼成しても好ましい結果を与え
る。焼成時間は700〜130゜℃において、120〜
10分間、900〜11oO℃では90〜10分間が適
当である。
前記加熱焼成は通常空気中で行えば良いが、窒素と酸素
の混合比を調整したガスや酸素ガスを用いても同様な結
果が得られる。
金属亜鉛粉末表面の酸化皮膜はX線回折法や電子顕微鏡
観察により確認できるため、この結果から混合するセラ
ミックの種類、量等が決定され焼成に供される。
又本発明の混合系を用いない系では、前記焼成時に焼成
条件即ち、温度、酸素濃度を調整しても、種々の色調の
団塊状酸化亜鉛と未燃焼の金属亜鉛が共存した系が生成
し、ウィスカーは生成しない。
一方、セラミック粉末を混合した系では高温焼成が均一
かつ完全に進行して、金属亜鉛部は完全に酸化されて高
収率で巨大テトラボッド状ウィスカーに成長する。
尚、混合するセラミック粉末は合成ゼオライトの様に粉
末を造粒したものも有効である。
又、焼成製造時、混合調整された粉体のみかけ体積に比
し、ウィスカー生成系は急激に体積を増大するが、通常
の完全気相法等でみられるソース部外への微小結晶体が
付着発現、成長のタイプではなく、基本的に大部分のも
のは原料設置部分に連続的に生成する体積増加型のもの
である。
実施例 以下本発明の実施例について説明する。
実施例1 溶湯粉化法の1つであるアトマイズ(噴霧)法で製造さ
れた亜鉛粉末を用いた。粉末製造に際して圧力媒体とし
ては空気を用いた。粉末形状は球体状で粒子径は60〜
200μmのものである。
亜鉛純度は99.6%であった。この粉末に重量比40
チの合成ゼオライト(モレギュラーシーブス3A)を混
合し、これをアルミナ磁器性のルツボに入れ、予め97
5°Cに保たれた炉内に前記ルツボを配置させて35分
間の加熱処理を行う。この結果、上記ルツボ内の下層部
には団塊状酸化亜鉛と上記合成ゼオライトが堆積し上層
部には嵩比重0.12の巨大テトラボッド状酸化亜鉛ウ
ィスカー集合体が生成された。生成酸化亜鉛中の上記ウ
ィスカー集合体の割合は81チであった。得られた酸化
亜鉛ウィスカーの電子顕微鏡写真を第1図に示す。核部
とこの核部から異なる4軸方向に伸びた針状結晶部から
なるテトラボッド状の結晶体が明確に認められる。この
集合体中では針状結晶部が3軸あるいは2軸のものも認
められるが、これらは基本形4軸のものの一部が互いに
接触して生長時あるいは生長後に折損したものと思われ
る。
又板状晶のものはきわめて少なかったが、いずれにして
も、上記の方法によると、テトラボッド状のものが87
チ以上を占めた。第2図は上記ウィスカーのX線回折図
を示す。すべて酸化亜鉛のピークを示し、電子線回折の
結果も転移、格子欠陥の極めて少ない単結晶性を示した
。又、不純物含有量も少なく、原子吸光分析の結果、酸
化亜鉛が99.98係であった。
実施例2 純度99.99%の亜鉛線を、アーク放電方式による溶
射法で空気中に溶射し、金属亜鉛粉末を回収した。この
粉末は表面に酸化皮膜が発現しており、電子顕微鏡、酸
素元素分析からも確認された。
この粉末に実施例1と同じ合成ゼオライトを16チ重量
を混合し、990’Cで25分間焼成処理した。他は全
て実施例1と同様に行った。
こうしてみかけ嵩比重0.1の酸化亜鉛ウィスカーが7
0%重ffi%得られた。他は団塊状酸化亜鉛であった
。尚、混合した合成ゼオライトの重量は反応前後で変化
がなかった。このウィスカーの電子顕微鏡写真を第3図
に示す。得られたウィスカー中4軸テトラボッド状のも
のは約90%であった。二次成長的な板状晶は僅少であ
った。X線回折、電子線回折の結果は実施例1と同様で
あった。
原子吸光分析では酸化亜鉛が99.96%であった。
実施例3 実施例2でアーク放電方式による溶射法で得た亜鉛粉末
を用いて、粉末1却にイオン交換水700ノの比率で混
合して乳鉢型捕潰機で10分間攪拌処理した。その後3
1°Cの水中に72時間放置熟成する。水量は粉体層か
ら約I Cmの水位を保って大気中で保管した。この水
中放置後、160°Cで12時間乾燥を行うことにより
、粉末を得た。これに活性アルミナ7重量%を加え混合
して1000℃、35分間焼成処理した。他は全て実施
例1と同様であった。こうして、みかけ嵩比重0.1の
巨大酸化亜鉛ウィスカーが75%得られた。他は団塊状
酸化亜鉛であった。尚、混合した活性アルミナの重量は
反応前後で変化がなかった。このウィスカーの電子顕微
鏡写真を第4図に示す。得られたウィスカー中4軸テト
ラボッド状のものは94係であった。二次成長的な板状
晶は僅少であった。
X線回折、電子線回折の結果は実施例1と同様であった
。原子吸光分析では酸化亜鉛が99.97%であった。
尚、実施例1.2.3に対応して各セラミック粉末を省
いて同条件で焼成した系でも巨大テトラボッド状酸化亜
鉛ウィスカーは発現するが、実施例1,2.3に対して
は、やや形状が乱れ、二次成長的な板状晶の付着したも
のが共通して多くなる。
実施例1.2.3に対応した比較例を4.5゜6として
その電子顕微鏡写真を第6図、第6図。
第7図にそれぞれ示す。X線、電子線回折の結果や原子
吸光分析の結果も対応する実施例と差がなかった。又団
塊状酸化亜鉛の堆積量も大差なかった。又、混合するセ
ラミック粉末も他に酸化マグネシウム、酸化硅素、チタ
ン酸バリウム、酸化銅。
酸化鉄等用いても実施例1〜3と同様な結果となった。
上記実施例及び比較例を法衣にまとめる。
(以下余白) 発明の効果 本発明の製造方法によると巨大テトラボッド状の酸化亜
鉛ウィスカーが得られる。又製造方法として、金属亜鉛
粉末の調整、水共存下での機械的抽潰処理、水中での熟
成、乾燥、セラミック粉との混合後の焼成工程を採った
場合、これらの工程条件の設定で上記テトラボッド状酸
化亜鉛ウィスカーの各種の大きさのものが得られる。
本発明で得られるウィスカーは形状的には異方性のない
立体構造を有し、単結晶性のため、各種材料の強化材と
して用いる場合や電子材料として用いる場合にも機械的
、電気的特性に異方性を生じさせない。又、従来の酸化
亜鉛の微細針状結晶に比べて寸法的に飛曜的に大きく、
金属や樹脂、セラミックと複合させて、“それらの機械
的強度を強化できる等の効果の他、他の同種目的の炭化
硅素や窒化硅素等に比べて安価に製造できる利点を有し
ており、工業的に(経済的にも樺めて大きな効果を奏す
るものである。
【図面の簡単な説明】
第1図、第3図及び第4図は本発明による酸化亜鉛ウィ
スカーの結晶構造を示す電子顕微鏡写真、第2図はX線
回折図である。第6図、第6図及び第7図は比較例のウ
ィスカーの結晶構造を示す電子顕微鏡写真である。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第 図 第 々( 第 図 勇 図 イQQ、人!f+1 1001irh 派 珂 ・唆 第 梳I 第 図

Claims (1)

    【特許請求の範囲】
  1. 金属亜鉛粉末または表面に酸化皮膜を有する亜鉛粉末に
    セラミック粉末を添加して酸素を含む雰囲気下で加熱処
    理して酸化亜鉛を生成させることを特徴とする酸化亜鉛
    ウィスカーの製造法。
JP63321177A 1988-12-16 1988-12-20 酸化亜鉛ウィスカーの製造法 Expired - Lifetime JP2584032B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63321177A JP2584032B2 (ja) 1988-12-20 1988-12-20 酸化亜鉛ウィスカーの製造法
DE68924646T DE68924646T2 (de) 1988-12-16 1989-12-13 Verfahren zur herstellung von zinkoxid-whiskern.
US07/566,475 US5158643A (en) 1988-12-16 1989-12-13 Method for manufacturing zinc oxide whiskers
PCT/JP1989/001246 WO1990007022A1 (en) 1988-12-16 1989-12-13 Production method of zinc oxide whisker
EP90900992A EP0407601B1 (en) 1988-12-16 1989-12-13 Production method of zinc oxide whisker
KR1019900701787A KR930007857B1 (ko) 1988-12-16 1989-12-13 산화아연위스커의 제조방법
CA002005737A CA2005737C (en) 1988-12-16 1989-12-15 Manufacturing method of zinc oxide whiskers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63321177A JP2584032B2 (ja) 1988-12-20 1988-12-20 酸化亜鉛ウィスカーの製造法

Publications (2)

Publication Number Publication Date
JPH02164799A true JPH02164799A (ja) 1990-06-25
JP2584032B2 JP2584032B2 (ja) 1997-02-19

Family

ID=18129651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63321177A Expired - Lifetime JP2584032B2 (ja) 1988-12-16 1988-12-20 酸化亜鉛ウィスカーの製造法

Country Status (1)

Country Link
JP (1) JP2584032B2 (ja)

Also Published As

Publication number Publication date
JP2584032B2 (ja) 1997-02-19

Similar Documents

Publication Publication Date Title
KR920009567B1 (ko) 산화아연위스커 및 그 제조방법
JPS6272522A (ja) アルミナ−チタニア複合粉体及びその製造方法
JPS5850929B2 (ja) 炭化ケイ素粉末の製造方法
CA2058075C (en) Composite ceramic powder and production process thereof
US5246683A (en) Process for producing small particles of aluminum nitride and particles so-produced
JP2600762B2 (ja) 酸化亜鉛ウィスカーの製造方法
JPH07309618A (ja) 酸化アルミニウム粒子の製造方法,この方法により製造される酸化アルミニウム粉末及びその使用
KR100374704B1 (ko) 나노 Cu-Al₂O₃복합분말 제조방법
JPH05254830A (ja) 分散性に優れた希土類酸化物微粉体及びその製造方法
JP2697431B2 (ja) 酸化亜鉛結晶及びその製造方法
JPH02164799A (ja) 酸化亜鉛ウィスカーの製造法
JP2001199718A (ja) α−アルミナ超微粒子とその製造方法
JP2563544B2 (ja) 酸化亜鉛ウイスカーの製造法
JP2605847B2 (ja) 酸化亜鉛ウイスカーの製造法
JPS63239104A (ja) β相含有窒化ケイ素微粉末の製造方法
JP2584035B2 (ja) 酸化亜鉛ウィスカ−の製造法
JPS62132711A (ja) 窒化アルミニウム質粉末の製造法
JPS62100403A (ja) 高純度六方晶窒化硼素微粉末の製造方法
CN116143516B (zh) 高纯稳定相γ-焦硅酸钇陶瓷粉体及其制备方法
JPS5891019A (ja) 窒化アルミニウム質粉末の製造方法
JP2600761B2 (ja) 酸化亜鉛ウイスカー
JPH02271919A (ja) 炭化チタン微粉末の製造方法
JPH0829923B2 (ja) 窒化ケイ素粉末
JPH05330919A (ja) 窒化珪素質焼結体及びその製造方法
JP2731333B2 (ja) 窒化珪素焼結体、その製造方法、窒化珪素粉末及びその製造方法