JPH02162727A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02162727A
JPH02162727A JP31750388A JP31750388A JPH02162727A JP H02162727 A JPH02162727 A JP H02162727A JP 31750388 A JP31750388 A JP 31750388A JP 31750388 A JP31750388 A JP 31750388A JP H02162727 A JPH02162727 A JP H02162727A
Authority
JP
Japan
Prior art keywords
heat treatment
disconnection
inner stress
metal
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31750388A
Other languages
Japanese (ja)
Inventor
Shogo Kobayashi
省吾 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP31750388A priority Critical patent/JPH02162727A/en
Publication of JPH02162727A publication Critical patent/JPH02162727A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the disconnection from occurring and to form a stable wiring by a method wherein, in order to perform the initial heat treatment process after the electrode wiring pattern formation process using a metal.metallic silicide, a heat treatment is performed at specific temperature as the preceding process. CONSTITUTION:When the whole body is heat-treated at 500-800 deg.C as for the said preceding process, the disconnection due to the inner stress as well as the volumic contraction resultant from the progress of crystallization can be avoided. For example, oxide films 2 as element isolating oxide films are formed on a silicon substrate 4. Next, a gate oxide film 3 is formed on an element forming region; the whole surface is coated with molybdenum disilicide by sputtering process; a specific pattern is transferred using a resist and then the surface is etched to form a gate electrode 1. Successively, a source region 6 and a drain region 7 are respectively formed by ion- implantation. Later, the whole body is annealed in nitrogen gas atmosphere at 700 deg.C for 60sec with lamp annealing process. Next, an NSG film is deposited by atmospheric CVD process using SiCl4+O2 at evaporation temperature of 380-420 deg.C. The inner stress of silicon thin film reaches peak value at around the said evaporation temperature however no disconnection is caused since the inner stress is relieved by the heat treatment at 700 deg.C in the preceding process.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電極配線材料として金属、金属シリサイドを
用いた半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device using metal or metal silicide as an electrode wiring material.

従来の技術 近年、電極配線薄膜として金属、金属シリサイドを用い
たデバイスが開発されている。
BACKGROUND OF THE INVENTION In recent years, devices using metals or metal silicides as electrode wiring thin films have been developed.

第2図にMO3電界効果トランジスタのゲート電極配線
薄膜としてかかる材料を用いた例の断面図を示す。
FIG. 2 shows a cross-sectional view of an example in which such a material is used as a gate electrode wiring thin film of an MO3 field effect transistor.

まず、シリコン基板4上に、素子分離酸化膜として、L
OCO8法で、酸化膜2を形成する。素子形成領域に、
ゲート酸化膜3を形成し、ゲート電極配線薄膜として前
記の金属、金属シリサイドによりゲート電極6を形成す
る。続いて、イオン注入法により、ソース領域、ドレイ
ン領域 7゜8をそれぞれ形成する。以上の工程により
MO8電界効果トランジスタが形成される。
First, L is formed on the silicon substrate 4 as an element isolation oxide film.
An oxide film 2 is formed using the OCO8 method. In the element formation area,
A gate oxide film 3 is formed, and a gate electrode 6 is formed using the metal or metal silicide described above as a gate electrode wiring thin film. Subsequently, a source region and a drain region 7.8 are respectively formed by ion implantation. Through the above steps, an MO8 field effect transistor is formed.

発明が解決しようとする課題 従来の製造方法では、薄膜電極配線形成後最初の熱工程
の際、熱ストレスにより段差部分で配線の断線が発生す
る。
Problems to be Solved by the Invention In the conventional manufacturing method, during the first thermal step after forming the thin film electrode wiring, disconnection of the wiring occurs at the stepped portion due to thermal stress.

すなわち、この最初の熱工程の処理温度が300℃〜5
00℃の場合には、電極薄膜材料の内部応力の増大によ
り、900℃以上の場合には、電極薄膜材料の結晶化の
進行に伴う体積収縮により、最も弱い配線の段差部分で
断線が発生する。
That is, the treatment temperature of this first heat step is 300°C to 5°C.
When the temperature is 00°C, the internal stress of the electrode thin film material increases, and when the temperature is 900°C or higher, the volume shrinks due to the progress of crystallization of the electrode thin film material, causing disconnection at the weakest interconnect step. .

金属配線の場合にも同様の原因で断線が発生する。Disconnection also occurs in metal wiring due to similar reasons.

本発明は、金属、金属シリサイドを用いた電極配線パタ
ーン形成工程後初の熱工程を行う際に、配線の断線を防
ぎ、安定な配線を形成する半導体装置の製造方法を提供
することを目的とするものである。
An object of the present invention is to provide a method for manufacturing a semiconductor device that prevents disconnection of wiring and forms stable wiring when performing the first thermal process after forming an electrode wiring pattern using metal or metal silicide. It is something to do.

課題を解決するための手段 この問題点を解決するための本発明の半導体装置の製造
方法は、断線発生の原因となる電極配線パターン形成工
程抜切の熱工程を行う際に、かかる熱工程の前工程とし
て、500℃〜800℃の熱処理を実施することである
Means for Solving the Problems In order to solve this problem, the method for manufacturing a semiconductor device of the present invention has a method for manufacturing a semiconductor device in which, when performing a thermal process for cutting out the electrode wiring pattern forming process, which causes disconnection, As a pre-process, heat treatment is performed at 500°C to 800°C.

作用 この500℃〜800℃の熱処理によると、金属、金属
シリサイドの電極配線薄膜は次の作用をうける。
Effects According to this heat treatment at 500° C. to 800° C., the electrode wiring thin film of metal or metal silicide undergoes the following effects.

■ 上記熱処理温度では、薄膜の持つ内部応力は、30
0℃〜500℃熱処理の場合に薄膜が内部応力のピーク
値から外れ、且つその値も著しく小さくなるため、内部
応力に起因する断線の発生を回避できる。
■ At the above heat treatment temperature, the internal stress of the thin film is 30
In the case of heat treatment from 0° C. to 500° C., the internal stress of the thin film deviates from the peak value and also becomes significantly small, so that the occurrence of wire breakage due to internal stress can be avoided.

■ 上記熱処理温度では、配線材料の結晶化進行の遷移
状態に相当するため、900℃以上の熱処理温度で起こ
る結晶化の進行に伴う体積収縮が発生せず、これに起因
する断線の発生を回避できる。
■ The above heat treatment temperature corresponds to the transition state of the crystallization progress of the wiring material, so volumetric shrinkage accompanying the progress of crystallization that occurs at heat treatment temperatures of 900°C or higher does not occur, and the occurrence of wire breakage due to this is avoided. can.

以上の作用により、熱工程の前工程として500℃〜8
00℃の熱処理を実施することで、配線の断線を防ぎ、
安定な配線形成することができる。
Due to the above action, as a pre-process of the heat process, 500℃~8
Heat treatment at 00°C prevents wiring breakage,
Stable wiring can be formed.

実施例 本発明の半導体装置の製造方法の一実施例について、第
1図に示したMO8電界効果トランジスタの工程断面図
を参照しながら説明する。
Embodiment An embodiment of the method for manufacturing a semiconductor device according to the present invention will be described with reference to the process cross-sectional diagram of an MO8 field effect transistor shown in FIG.

ゲート電極配線薄膜として、金属シリサイドの一つであ
るモリブデンダイシリサイド(以下、MoSi2と略記
)を用いている。
Molybdenum disilicide (hereinafter abbreviated as MoSi2), which is one of metal silicides, is used as the gate electrode wiring thin film.

まず、シリコン基板4上に、素子分離酸化膜としてLO
CO8法で酸化膜2を形成する。素子分離酸化膜2の厚
みは、100OOAある。素子形成領域に、ゲート酸化
膜3を形成し、スパッタ法でモリブデンダイシリサイド
(以下、MoSi2と略記)を被着し、このMoSi2
膜にレジストで所望のパターンを転写、エツチングする
ことでゲート電極1を形成する。このゲート電極1の厚
みは4000Aである。続いて、イオン注入により、ソ
ース領域、ドレイン領域 6,7をそれぞれ形成する。
First, LO is formed on the silicon substrate 4 as an element isolation oxide film.
An oxide film 2 is formed using the CO8 method. The thickness of the element isolation oxide film 2 is 100OOA. A gate oxide film 3 is formed in the element formation region, and molybdenum disilicide (hereinafter abbreviated as MoSi2) is deposited by sputtering.
A gate electrode 1 is formed by transferring a desired pattern onto the film using a resist and etching it. The thickness of this gate electrode 1 is 4000A. Subsequently, source and drain regions 6 and 7 are formed by ion implantation.

この後、ランプアニールを用いて、700℃。After that, lamp annealing was performed at 700°C.

60秒、窒素ガス下で、このシリサイドをアニールする
Anneal the silicide under nitrogen gas for 60 seconds.

次に、ゲート電極であるMoSixのキャップアニール
用のキャップ材でもあり、次層配線との層間絶縁膜でも
あるNSC膜を常圧CVD法で成長させる。この膜厚は
、4000Aある。
Next, an NSC film, which is also a cap material for cap annealing of MoSix, which is a gate electrode, and is also an interlayer insulating film with the next layer wiring, is grown by normal pressure CVD. The thickness of this film is 4000A.

この常圧CVD法はつぎの条件でおこなわれる。This atmospheric pressure CVD method is carried out under the following conditions.

蒸着温度 380〜420℃ ガスS i C(14+Ch このため、本来ならば、シリサイド薄膜の内部応力は、
この蒸着温度付近でピーク値を取るので、配線の断線が
発生する。しかし、この熱工程の前工程として、700
℃の熱処理をおこなって内部応力の緩和を施しているた
め、断線は発生しない。
Vapor deposition temperature 380-420°C Gas S i C (14+Ch Therefore, originally, the internal stress of the silicide thin film is
Since the peak value is reached near this vapor deposition temperature, wire breakage occurs. However, as a pre-process to this heat process, 700
Since internal stress is relaxed by heat treatment at ℃, wire breakage does not occur.

なお、実施例ではシリサイドの内部応力の緩和を取り上
げたが、この熱工程の前工程として熱処理をおこなうこ
とで、シリサイドの体積収縮の緩和、もしくは金属薄膜
の内部応力、体積収縮の緩和にも利用できることは言う
までもない。
In addition, although the example dealt with the relaxation of the internal stress of silicide, by performing heat treatment as a step before this thermal process, it can also be used to alleviate the volumetric contraction of silicide, or the internal stress and volumetric contraction of a metal thin film. It goes without saying that it can be done.

発明の効果 本発明の半導体装置の製造方法によれば、金属、金属シ
リサイドを用いた、電極配線パターン形成工程抜切の熱
工程を行う際に、かかる熱工程の前工程に、500〜8
00℃の熱処理を行うことで下地段差部分での電極配線
薄膜の断線を制御することができる。
Effects of the Invention According to the method for manufacturing a semiconductor device of the present invention, when performing a thermal process excluding the electrode wiring pattern forming process using metal or metal silicide, in the pre-process of the thermal process, 500 to 8
By performing heat treatment at 00° C., it is possible to control disconnection of the electrode wiring thin film at the step portion of the base.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の製造方法の一実施例を示
すMO8電界効果トランジスタの工程断面図、第2図は
従来の半導体装置の製造方法を示すMO8電界効果トラ
ンジスタの断面図である。 1・・・・・・モリブデンダイシリサイドのゲート電極
、2・・・・・・LOCO3酸化膜、3・・・・・・ゲ
ート酸化膜、4・・・・・・シリコン基板、5・・・・
・・NS金属、金属シリサイドのゲート電極、 ス領域、8・・・・・・ドレイン領域。 代理人の氏名 弁理士 粟野重孝 G、6・・・・・・ 7・・・・・・ソー ほか1名 s−−−tvscl
FIG. 1 is a process cross-sectional view of an MO8 field effect transistor showing an embodiment of the semiconductor device manufacturing method of the present invention, and FIG. 2 is a cross-sectional view of an MO8 field effect transistor showing a conventional semiconductor device manufacturing method. 1... Gate electrode of molybdenum disilicide, 2... LOCO3 oxide film, 3... Gate oxide film, 4... Silicon substrate, 5...・
... NS metal, metal silicide gate electrode, S region, 8...Drain region. Name of agent: Patent attorney Shigetaka Awano G, 6... 7... Thor and 1 other person s---tvscl

Claims (1)

【特許請求の範囲】[Claims] 金属、金属シリサイドを用いて、電極配線パターンを形
成した直後に、500℃〜800℃の予備的な熱処理を
行うことを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device, which comprises performing preliminary heat treatment at 500° C. to 800° C. immediately after forming an electrode wiring pattern using metal or metal silicide.
JP31750388A 1988-12-15 1988-12-15 Manufacture of semiconductor device Pending JPH02162727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31750388A JPH02162727A (en) 1988-12-15 1988-12-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31750388A JPH02162727A (en) 1988-12-15 1988-12-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02162727A true JPH02162727A (en) 1990-06-22

Family

ID=18088958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31750388A Pending JPH02162727A (en) 1988-12-15 1988-12-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02162727A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244048A (en) * 1984-05-11 1985-12-03 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of forming aluminum alloy conductor having electromigration resistance
JPH01235253A (en) * 1988-03-15 1989-09-20 Seiko Epson Corp Manufacture of semiconductor device
JPH01272138A (en) * 1987-07-29 1989-10-31 Sharp Corp Manufacture of wiring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244048A (en) * 1984-05-11 1985-12-03 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of forming aluminum alloy conductor having electromigration resistance
JPH01272138A (en) * 1987-07-29 1989-10-31 Sharp Corp Manufacture of wiring
JPH01235253A (en) * 1988-03-15 1989-09-20 Seiko Epson Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPH0367334B2 (en)
JP3689756B2 (en) Method for forming gate electrode of semiconductor element
JPS639925A (en) Manufacture of semiconductor device
JP3654285B2 (en) Manufacturing method of semiconductor device
JPH0794731A (en) Semiconductor device and its manufacturing method
JPH03227516A (en) Manufacture of semiconductor device
JP2001210606A (en) Method of manufacturing semiconductor device
JPH02162727A (en) Manufacture of semiconductor device
JPH023244A (en) Manufacture of semiconductor device
JP2001015754A (en) Method for forming conductive line of semiconductor device
JPH01160009A (en) Manufacture of semiconductor device
JPS6384154A (en) Manufacture of semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPH04303944A (en) Manufacture of semiconductor device
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
JPS6112374B2 (en)
JPH11186548A (en) Semiconductor device and manufacture thereof
JPH04208570A (en) Manufacture of semiconductor device
JPH02307218A (en) Manufacture of semiconductor device
JPS61263277A (en) Manufacture of semiconductor device
KR100256246B1 (en) Method of forming gate electrode in semiconductor device
JP2638285B2 (en) Method for manufacturing semiconductor device
JPH02181918A (en) Manufacture of semiconductor device
JP2667840B2 (en) Method for manufacturing compound semiconductor device
JPS6151941A (en) Manufacture of electrode wiring film