JPS639925A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS639925A
JPS639925A JP15437686A JP15437686A JPS639925A JP S639925 A JPS639925 A JP S639925A JP 15437686 A JP15437686 A JP 15437686A JP 15437686 A JP15437686 A JP 15437686A JP S639925 A JPS639925 A JP S639925A
Authority
JP
Japan
Prior art keywords
metal
contact hole
titanium
film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15437686A
Other languages
Japanese (ja)
Inventor
Hitoshi Abiko
安彦 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15437686A priority Critical patent/JPS639925A/en
Publication of JPS639925A publication Critical patent/JPS639925A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To fill a contact hole with a high cross-section aspect ratio with wiring metal and obtain a semiconductor device with high reliability by a method wherein, after the metal used for drawing out an electrode in applied to the contact hole, a heat treatment at a melting temperature is performed. CONSTITUTION:An insulating film 202 is formed on a single crystal silicon substrate 201 and an aperture 203 for a contact hole is drilled. Then a titanium film 204 of an about 0.1mum thickness is made to grow by CVD and, if the film 204 is subjected to a heat treatment at about 900 deg.C temperature in a nitrogen atmosphere, the titanium film 204 is converted into a titanium nitride film 205. By this heat treatment, a titanium silicide layer 206 is also formed on the substrate surface and a double-layer structure of the titanium nitride 205 and the titanium silicide 206 is provided at that part. Then aluminum is applied to fill the aperture 203 and form an aluminum layer 207 as a metal wiring. With this constitution, the contact hole with a high cross-section aspect ratio can be filled with the wiring metal and a semiconductor device with high reliability can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に電極取り出
し部における配線用金属の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming wiring metal in an electrode lead-out portion.

〔従来の技術〕[Conventional technology]

従来、この種の電極取出し部は配線用金属に主にアルミ
ニウムを用い、スパッタ法に工って、コンタクト用の開
孔が形成されている絶縁膜上に一様に被着し次後パター
ニングすることにより、半導体基板の能動素子、受動素
子とコンタクトを取っている。
Conventionally, this type of electrode lead-out part mainly uses aluminum as the wiring metal, is made by sputtering, and is uniformly deposited on an insulating film in which contact holes are formed, and then patterned. This makes contact with the active elements and passive elements of the semiconductor substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

近年、半導体集積回路の高密度集積化に伴って素子の微
細化が進み、設計ルールは今やサブミクロンオーダーに
なろうとしている。その為゛m電極取出部の開孔、即ち
コンタクト孔は、断面アスペクト比が増大の一途を辿っ
ている。なぜならば、コンタクト孔を開ける絶R膜の厚
さは、線間容量増大を避けるため薄くすることかで@な
いのに、コンタクト孔の平面的寸法が上述の理由で減少
するからである。そして、この断面アスペクト比が大き
いコンタクト孔は「日影効果」に工9従来のスパッタ法
では埋められなくなってきている。そこで金属の選択e
 v IJ−? Li’evb多結晶ケイ多結晶ケイン
タクト孔埋め込み等が提案されているが、いずれもまだ
開発段階であり、現在のところ高断面アスペクト比のコ
ンタクト孔を埋め込む技術は無いに等しいといって良い
In recent years, as semiconductor integrated circuits have become more densely integrated, elements have become smaller and smaller, and design rules are now on the order of submicrons. Therefore, the cross-sectional aspect ratio of the opening of the electrode extraction portion, that is, the contact hole, continues to increase. This is because, although the thickness of the absolute R film that forms the contact hole should be made thinner in order to avoid an increase in line capacitance, the planar dimensions of the contact hole are reduced for the above-mentioned reasons. Contact holes with a large cross-sectional aspect ratio cannot be filled by conventional sputtering methods due to the "shadow effect." Therefore, the choice of metal
v IJ-? Li'evb polycrystalline silica polycrystalline contact hole burying has been proposed, but all of them are still in the development stage, and it can be said that there is currently no technology for burying contact holes with high cross-sectional aspect ratios.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装董の製造方法は、半導体基板の一主面
に形成した能動素子、受動素子と配線体との接続点の絶
縁膜に開孔を形成する工程と、少なくとも開孔の口が完
全に塞がる姿態で金属を形成する工程と、金属形既工程
より高い気圧の雰囲気において金属が流動する温度で熱
処理する工程とを有することを特徴とする。
The method for manufacturing a semiconductor device of the present invention includes a step of forming an opening in an insulating film at a connection point between an active element, a passive element, and a wiring body formed on one main surface of a semiconductor substrate, and at least forming an opening of the opening. It is characterized by having a step of forming the metal in a completely closed state, and a step of heat-treating it at a temperature at which the metal flows in an atmosphere with a higher pressure than the metal forming process.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の製造工程断面図である
。まず、第1図(a)に示すように、例えば単結晶ケイ
素基板101上に酸化ケイ素102のような絶縁膜全厚
さ1.5μm程度形成し、直径α8μ程度の開孔103
i7オトリソグラ7お工ひ反応性スパッタエツチングに
Lシ形成する。次に第1図(b)に示すようにアルミニ
ウム104をスパッタ法で数10mTorrの圧力で厚
さ1μm8度底長すると開孔肩部にアルミが異常底長し
、口は完全に塞がれるが中に「す」ができる。次に、大
気圧状態のN2雰囲気で約500℃の熱処理を数10秒
間行うと、第1図(C)に示すようにアルミニウム10
4は開孔部の「す」に押し込まれ開孔はほぼアルミ10
4で埋め込まれる。
FIG. 1 is a sectional view of the manufacturing process of the first embodiment of the present invention. First, as shown in FIG. 1(a), an insulating film such as silicon oxide 102 with a total thickness of about 1.5 μm is formed on a single crystal silicon substrate 101, and an opening 103 with a diameter of about α8 μm is formed.
i7 Otolithography 7 is used to form an L-shape using reactive sputter etching. Next, as shown in Fig. 1(b), when aluminum 104 is sputtered to a thickness of 1 μm and lengthened by 8 degrees at a pressure of several tens of mTorr, the aluminum becomes abnormally long at the shoulder of the opening, and the opening is completely closed. ``su'' is formed inside. Next, when heat treatment is performed at about 500°C for several tens of seconds in an N2 atmosphere at atmospheric pressure, aluminum 10
4 is pushed into the "s" of the hole and the hole is almost aluminum 10
Embedded in 4.

第1の5j!施例ではアルミニウムを直接基板に接続さ
せ友が、この500℃の熱処理の際アルミニウムは基板
のシリコンに溶は込み、コンタクト部に接合が形成され
ている場合、この接合を破壊する。
First 5j! In this embodiment, aluminum is directly connected to the substrate, but during this heat treatment at 500° C., the aluminum melts into the silicon of the substrate, and if a bond is formed at the contact portion, this bond is destroyed.

そこでこの接合破壊を避けるには、耐熱性に優れ次バリ
アメタルを用いれば良い。
Therefore, in order to avoid this joint breakdown, a barrier metal with excellent heat resistance may be used.

第2図ゆ本発明の第2の実施例の製造工程断面図である
FIG. 2 is a sectional view of the manufacturing process of a second embodiment of the present invention.

第2の実施例では窒化チタンをバリアメタルに使用しt
場合につき説明する。まず、第2図(alに示す工うに
、第1の実施例同様単結晶ケイ素基板201上に絶縁膜
202を形成し、コンタクトの開孔203を形成する。
In the second embodiment, titanium nitride is used as the barrier metal.
I will explain each case. First, as shown in FIG. 2 (al), an insulating film 202 is formed on a single-crystal silicon substrate 201 as in the first embodiment, and a contact opening 203 is formed.

続いてチタン204を厚さ0.1μm程度eVD法によ
り成長し、窒素雰囲気中で900上程度の熱処理を行う
と、チタン204は第2図(b)に示すLうに窒化チタ
ン205になる。
Subsequently, titanium 204 is grown to a thickness of about 0.1 μm by the eVD method and heat-treated at about 900 nm or more in a nitrogen atmosphere, so that titanium 204 becomes titanium nitride 205 as shown in FIG. 2(b).

但し、基板表面ではチタンシリサイド206も同時に形
成され、この部分では窒化チタン205゜チタンシリサ
イド206の2層構造となる。以下筒1の実施例と同様
にアルミニウムt−埋め込んで第2図(C)に示す工う
に配線用金属であるアルミニウム207を形成する。
However, titanium silicide 206 is also formed on the substrate surface at the same time, resulting in a two-layer structure of titanium nitride 205° and titanium silicide 206 in this portion. Thereafter, in the same manner as in the embodiment of cylinder 1, aluminum t-embedding is performed to form aluminum 207, which is a metal for wiring, in the structure shown in FIG. 2(C).

以上筒1お工び第2の実施例では配線用金属としてアル
ミニウム、バリアメタルとして窒化チタンを挙げたが、
本発明はこれらの材料に限定するものではなく他の金属
やバリアメタルを用いても同様に有効であることはいう
までもない。
In the above second example of manufacturing the tube 1, aluminum was used as the wiring metal and titanium nitride was used as the barrier metal.
It goes without saying that the present invention is not limited to these materials, and is equally effective using other metals or barrier metals.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り本発明は、電極取り出しに用いる金属
を接続孔に被着後溶融温度で熱処理することに工夛高断
面アスペクト比の接続孔を配線金属で埋め込み、信頼性
の高い半導体装置を得ることができる効果がある。
As explained above, the present invention provides a highly reliable semiconductor device by heat-treating the metal used for electrode extraction at a melting temperature after depositing on the contact hole, and filling the contact hole with a high cross-sectional aspect ratio with wiring metal. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例の製造工程断面図、第2
図は本発明の第2の実施例の製造工程断面図である。 101.201・・・単結晶ケイ素基板、102・・・
酸化ケイ素、202・・・絶縁膜、103,203・・
・開孔、104.207・・・アルミ、204・・・チ
タン、205・・・窒化チタン、206・・・チタンシ
リサイド。 代理人 弁理士  内 原   2  町。 錦 1 図 (α) (し) <C) 端2図
FIG. 1 is a sectional view of the manufacturing process of the first embodiment of the present invention, and the second
The figure is a sectional view of the manufacturing process of the second embodiment of the present invention. 101.201... Single crystal silicon substrate, 102...
Silicon oxide, 202... Insulating film, 103, 203...
- Open hole, 104.207...aluminum, 204...titanium, 205...titanium nitride, 206...titanium silicide. Agent Patent Attorney Uchihara 2 Town. Nishiki 1 figure (α) (shi) <C) Edge 2 figure

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の一主面に形成した能動素子、受動素子と配
線体との接続点の絶縁膜に開孔を形成する工程と、少な
くとも該開孔の口を完全に塞ぐ姿態で金属を形成する工
程と、前記金属形成工程より高い気圧の雰囲気において
該金属が流動する温度で熱処理する工程とを有すること
を特徴とする半導体装置の製造方法。
A process of forming an opening in an insulating film at a connection point between an active element, a passive element, and a wiring body formed on one main surface of a semiconductor substrate, and a process of forming a metal in such a manner as to completely close at least the opening of the opening. and a step of heat-treating at a temperature at which the metal flows in an atmosphere with a higher pressure than the metal forming step.
JP15437686A 1986-06-30 1986-06-30 Manufacture of semiconductor device Pending JPS639925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15437686A JPS639925A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15437686A JPS639925A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS639925A true JPS639925A (en) 1988-01-16

Family

ID=15582800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15437686A Pending JPS639925A (en) 1986-06-30 1986-06-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS639925A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174319A (en) * 1987-01-14 1988-07-18 Hitachi Ltd Manufacture of semiconductor device
JPH0226052A (en) * 1988-07-14 1990-01-29 Seiko Epson Corp Semiconductor device
JPH04128101U (en) * 1991-05-14 1992-11-24 ナシヨナル住宅産業株式会社 cutting equipment
US5221853A (en) * 1989-01-06 1993-06-22 International Business Machines Corporation MOSFET with a refractory metal film, a silicide film and a nitride film formed on and in contact with a source, drain and gate region
US5250467A (en) * 1991-03-29 1993-10-05 Applied Materials, Inc. Method for forming low resistance and low defect density tungsten contacts to silicon semiconductor wafer
US5877087A (en) * 1995-11-21 1999-03-02 Applied Materials, Inc. Low temperature integrated metallization process and apparatus
US5877086A (en) * 1996-07-12 1999-03-02 Applied Materials, Inc. Metal planarization using a CVD wetting film
US5989623A (en) * 1997-08-19 1999-11-23 Applied Materials, Inc. Dual damascene metallization
US6001420A (en) * 1996-09-23 1999-12-14 Applied Materials, Inc. Semi-selective chemical vapor deposition
US6066358A (en) * 1995-11-21 2000-05-23 Applied Materials, Inc. Blanket-selective chemical vapor deposition using an ultra-thin nucleation layer
US6139905A (en) * 1997-04-11 2000-10-31 Applied Materials, Inc. Integrated CVD/PVD Al planarization using ultra-thin nucleation layers
US6139697A (en) * 1997-01-31 2000-10-31 Applied Materials, Inc. Low temperature integrated via and trench fill process and apparatus
US6207558B1 (en) 1999-10-21 2001-03-27 Applied Materials, Inc. Barrier applications for aluminum planarization
US6458684B1 (en) 1995-11-21 2002-10-01 Applied Materials, Inc. Single step process for blanket-selective CVD aluminum deposition
US6537905B1 (en) 1996-12-30 2003-03-25 Applied Materials, Inc. Fully planarized dual damascene metallization using copper line interconnect and selective CVD aluminum plug
US6656831B1 (en) 2000-01-26 2003-12-02 Applied Materials, Inc. Plasma-enhanced chemical vapor deposition of a metal nitride layer
US6726776B1 (en) 1995-11-21 2004-04-27 Applied Materials, Inc. Low temperature integrated metallization process and apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104165A (en) * 1985-10-31 1987-05-14 Toshiba Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104165A (en) * 1985-10-31 1987-05-14 Toshiba Corp Semiconductor device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174319A (en) * 1987-01-14 1988-07-18 Hitachi Ltd Manufacture of semiconductor device
JPH0226052A (en) * 1988-07-14 1990-01-29 Seiko Epson Corp Semiconductor device
US5221853A (en) * 1989-01-06 1993-06-22 International Business Machines Corporation MOSFET with a refractory metal film, a silicide film and a nitride film formed on and in contact with a source, drain and gate region
US5250467A (en) * 1991-03-29 1993-10-05 Applied Materials, Inc. Method for forming low resistance and low defect density tungsten contacts to silicon semiconductor wafer
US5356835A (en) * 1991-03-29 1994-10-18 Applied Materials, Inc. Method for forming low resistance and low defect density tungsten contacts to silicon semiconductor wafer
JPH04128101U (en) * 1991-05-14 1992-11-24 ナシヨナル住宅産業株式会社 cutting equipment
US6066358A (en) * 1995-11-21 2000-05-23 Applied Materials, Inc. Blanket-selective chemical vapor deposition using an ultra-thin nucleation layer
US6355560B1 (en) 1995-11-21 2002-03-12 Applied Materials, Inc. Low temperature integrated metallization process and apparatus
US6726776B1 (en) 1995-11-21 2004-04-27 Applied Materials, Inc. Low temperature integrated metallization process and apparatus
US5877087A (en) * 1995-11-21 1999-03-02 Applied Materials, Inc. Low temperature integrated metallization process and apparatus
US6458684B1 (en) 1995-11-21 2002-10-01 Applied Materials, Inc. Single step process for blanket-selective CVD aluminum deposition
US5877086A (en) * 1996-07-12 1999-03-02 Applied Materials, Inc. Metal planarization using a CVD wetting film
US6001420A (en) * 1996-09-23 1999-12-14 Applied Materials, Inc. Semi-selective chemical vapor deposition
US6430458B1 (en) 1996-09-23 2002-08-06 Applied Materials, Inc. Semi-selective chemical vapor deposition
US6537905B1 (en) 1996-12-30 2003-03-25 Applied Materials, Inc. Fully planarized dual damascene metallization using copper line interconnect and selective CVD aluminum plug
US7112528B2 (en) 1996-12-30 2006-09-26 Applied Materials, Inc. Fully planarized dual damascene metallization using copper line interconnect and selective CVD aluminum plug
US6139697A (en) * 1997-01-31 2000-10-31 Applied Materials, Inc. Low temperature integrated via and trench fill process and apparatus
US6139905A (en) * 1997-04-11 2000-10-31 Applied Materials, Inc. Integrated CVD/PVD Al planarization using ultra-thin nucleation layers
US6207222B1 (en) 1997-08-19 2001-03-27 Applied Materials, Inc. Dual damascene metallization
US5989623A (en) * 1997-08-19 1999-11-23 Applied Materials, Inc. Dual damascene metallization
US6368880B2 (en) * 1999-10-21 2002-04-09 Applied Materials, Inc. Barrier applications for aluminum planarization
US6207558B1 (en) 1999-10-21 2001-03-27 Applied Materials, Inc. Barrier applications for aluminum planarization
US6656831B1 (en) 2000-01-26 2003-12-02 Applied Materials, Inc. Plasma-enhanced chemical vapor deposition of a metal nitride layer

Similar Documents

Publication Publication Date Title
JPS639925A (en) Manufacture of semiconductor device
JPH01255264A (en) Manufacture of semiconductor device
JPH0817925A (en) Semiconductor device and its manufacture
US5210054A (en) Method for forming a contact plug
US5498571A (en) Method of manufacturing a semiconductor device having reliable multi-layered wiring
JPH02116124A (en) Manufacture of semiconductor integrated circuit
JPH04199628A (en) Manufacture of semiconductor device
JPH04196122A (en) Manufacture of semiconductor device
JPH03292765A (en) Manufacture of semiconductor device
JPS63302537A (en) Manufacture of integrated circuit
JPH05121727A (en) Semiconductor device and manufacturing method thereof
JPH05129226A (en) Manufacture of semiconductor device
JPS6230494B2 (en)
JP2543192B2 (en) Semiconductor device and manufacturing method thereof
KR930001896B1 (en) Metal line structure of semiconductor apparatus and building method thereof
KR19990057898A (en) Method of forming barrier metal film of semiconductor device
JPH05121564A (en) Semiconductor device and manufacture thereof
JPH01200651A (en) Manufacture of semiconductor device
JPH10189606A (en) Bump of semiconductor device and manufacture thereof
JPH0342834A (en) Semiconductor device
KR0144021B1 (en) Method of forming contact hole
JPH03214735A (en) Manufacture of semiconductor device
JPS62291146A (en) Manufacture of semiconductor device
JPH03280545A (en) Wiring forming method of semiconductor device
JPS62222654A (en) Manufacture of semiconductor device