JPH03214735A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03214735A
JPH03214735A JP969190A JP969190A JPH03214735A JP H03214735 A JPH03214735 A JP H03214735A JP 969190 A JP969190 A JP 969190A JP 969190 A JP969190 A JP 969190A JP H03214735 A JPH03214735 A JP H03214735A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicide
forming
wire
silicon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP969190A
Other languages
Japanese (ja)
Inventor
Yasushi Yamazaki
靖 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP969190A priority Critical patent/JPH03214735A/en
Publication of JPH03214735A publication Critical patent/JPH03214735A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent oxidation of the surface of a silicide and eliminate contact failure between a silicide surface wire and a polycrystalline silicon layer by directly depositing a polycrystalline silicon film onto a wiring layer consisting of a high melt-point metal silicide using the sputtering method within an inactive gas environment. CONSTITUTION:After forming an element such as a transistor onto a semiconductor substrate 1, a first interlayer insulation film 2 is allowed to grow and a tungsten silicide (WSi2) is deposited on the entire surface. Then, a patterning is made for forming a wire 3 and then a second-layer interlayer insulation film 4 is allowed to grow. And then, a contact hole 5 is formed. Then, after performing RF etching, a polycrystalline silicon film 6 is deposited by the sputtering method within Ar gas environment. Then, a highly dense phosphor is ion-impregnated into the entire substrate surface and then etching is performed by a low-concentration hydrofluoric acid. After that, a polycrystal silicon film 7 is allowed to grow by the CVD method and then the polycrystal silicon films 6 and 7 are subjected to patterning for forming an upper-layer wire, thus preventing generation of an oxide at the interface between a tungsten silicide wire and the polycrystalline silicon film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に高融点金属
シリサイトからなる配線と多結晶シリコン層との接続方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of connecting a wiring made of high melting point metal silicide and a polycrystalline silicon layer.

〔従来の技術〕[Conventional technology]

高融点金属シリサイドからなる配線と多結晶シリコン層
との接続工程を有する従来の半導体装置の製造方法を、
第2図を用いて説明する。まず第2図(a)に示すよう
に、半導体基板1上に酸化シリコン膜等の第1層間絶縁
膜2を形成した後、W S i 2等の高融点金属シリ
ザイトの配線3を形成し、次いでリンガラス等からなる
第2層間絶縁膜4を形成する。その後、通常のリソグラ
フィー技術及びエッチング技術を用いてコンタクト孔5
を開孔する。
A conventional semiconductor device manufacturing method that includes a process of connecting wiring made of high-melting point metal silicide and a polycrystalline silicon layer,
This will be explained using FIG. First, as shown in FIG. 2(a), a first interlayer insulating film 2 such as a silicon oxide film is formed on a semiconductor substrate 1, and then a wiring 3 of high melting point metal silizite such as W Si 2 is formed. Next, a second interlayer insulating film 4 made of phosphorus glass or the like is formed. Thereafter, the contact hole 5 is etched using ordinary lithography and etching techniques.
Drill a hole.

次に第2図(b)に示すように、このコンタク1・孔5
を埋めるように多結晶シリコン膜7を全面にCVD法に
より成長させる。
Next, as shown in Fig. 2(b), this contact 1/hole 5
A polycrystalline silicon film 7 is grown over the entire surface by CVD so as to fill the area.

多結晶シリコン層のCVD成長は通常、低圧炉内で行わ
れるが、比較的高温であり、入炉の際にウェハーが酸素
雰囲気にさらされているので、高融点金属シリサイド配
線3の表面にシリサイド酸化物8が生ずる場合があり、
コンタクト不良の原因となっていた。
CVD growth of a polycrystalline silicon layer is usually performed in a low-pressure furnace, but the temperature is relatively high and the wafer is exposed to an oxygen atmosphere when entering the furnace. Oxide 8 may be formed,
This caused contact failure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の高融点金属シリサイド配線と多結晶シリ
コン層との接続方法では、エッチングによって高融点金
属シリサイド配線の表面がダメージを受けた状態で多結
晶シリコン層をCVD法により成長させるが、この種の
CVD炉は比較的高温であり、入炉の際にウェハーが酸
素雰囲気にさらされているので、高融点金属シリサイド
配線表面にシリサイド酸化物が発生し、コンタクト不良
になり易く、半導体装置の信顆性及び歩留りを低下させ
るという欠点がある。
In the conventional method of connecting a high-melting point metal silicide wiring and a polycrystalline silicon layer as described above, a polycrystalline silicon layer is grown by CVD while the surface of the high-melting point metal silicide wiring is damaged by etching. CVD furnaces have relatively high temperatures, and the wafers are exposed to an oxygen atmosphere when entering the furnace, so silicide oxides are generated on the surface of high-melting point metal silicide wiring, which tends to cause contact failures and reduce the reliability of semiconductor devices. It has the disadvantage of reducing condylarity and yield.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置の製造方法は、半導体基板上に高融
点金属シリサイドからなる配線を形成する工程と、前記
配線を含む全面に絶縁膜を形成する工程と、前記絶縁膜
にコンタクト孔を形成する工程と、不活性ガス雰囲気中
におけるスパッタリング法により前記コンタクト孔を含
む全面に多結晶シリコン層を堆積する工程とを含んで構
成される。
The method for manufacturing a semiconductor device of the present invention includes the steps of forming a wiring made of high melting point metal silicide on a semiconductor substrate, forming an insulating film on the entire surface including the wiring, and forming a contact hole in the insulating film. and a step of depositing a polycrystalline silicon layer over the entire surface including the contact hole by sputtering in an inert gas atmosphere.

〔実施例〕 次に本発明について図面を参照して説明する。〔Example〕 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(c)は本発明の一実施例を説明するた
めの半導体チップの断面図である。
FIGS. 1(a) to 1(c) are cross-sectional views of a semiconductor chip for explaining one embodiment of the present invention.

まず第1図(a>に示すように、半導体基板1上にトラ
ンジスタ、ダイオードなどの素子を形成した後、第1層
間絶縁膜2として酸化シリコン膜を通常のCVD法によ
り約2 0 0 0Aの厚さに成長させる。次に全面に
タンクステンシリサイド(WSi2)を通常のスバッタ
リンク法により、厚さ約]00〇八堆積さぜな後、リソ
ク゛ラフィー技術によりパターニンクしてタンクステン
シリザイドからなる配線3を形成する。その後、第2層
間絶縁膜4としてリンガラス膜(PSG膜)を厚さ約4
00OA成長させた後、リソクラフィー技術及びエッチ
ンク技術を用いてコンタク1・孔5を形成する。
First, as shown in FIG. 1 (a), elements such as transistors and diodes are formed on a semiconductor substrate 1, and then a silicon oxide film is deposited as a first interlayer insulating film 2 at approximately 2000 A by a normal CVD method. Next, tank stencil silicide (WSi2) is deposited on the entire surface by the normal sputter link method to a thickness of approximately 0008 cm, and then patterned using lithographing technology to form a tank sten silicide. A wiring 3 is formed. Then, a phosphorus glass film (PSG film) is formed as a second interlayer insulating film 4 to a thickness of about 4
After 00OA growth, contacts 1 and holes 5 are formed using lithography and etching techniques.

次に第1図(b)に示すように、真空に近い状態で高周
波により表面処理(RFエッチング)を行った後、ひき
続いてArガス雰囲気中でのスバッタリンク法により、
多結晶シリコン膜6を約]500八の厚さに堆積する。
Next, as shown in FIG. 1(b), after performing surface treatment (RF etching) using high frequency in a near-vacuum state, the sputter link method was subsequently performed in an Ar gas atmosphere.
A polycrystalline silicon film 6 is deposited to a thickness of approximately 500 mm.

次に第1図(c)に示すように、導電性を得るなめに、
基板全面に高濃度のリン( 1 0 16cm””)を
イオン注入する。その後低濃度のフッ化水素酸で数十秒
表面をエッチングした後、通常のCVD法により多結晶
シリコン膜7を約1μmの厚さに成長させる。この状態
で多結晶シリコンII!6.7をパターニングして上層
配線とする。
Next, as shown in Figure 1(c), in order to obtain conductivity,
High-concentration phosphorus (1016 cm'') is ion-implanted over the entire surface of the substrate. Thereafter, the surface is etched for several tens of seconds with low concentration hydrofluoric acid, and then a polycrystalline silicon film 7 is grown to a thickness of about 1 μm by the usual CVD method. In this state, polycrystalline silicon II! 6.7 is patterned to form upper layer wiring.

尚、等方性のドライエッチング技術によって多結晶シリ
コン膜6,7を第2層間絶縁膜4の表面が露出するまで
エッチングし、コンタクト孔5中に多結晶シリコンが埋
め込まれた状態にし、その後、アルミニウム等の金属を
スパッタリング法で堆積し、リソグラフィー技術によっ
てパターニンクしてアルミニウムからなる上層配線を形
成したちよい。
Note that the polycrystalline silicon films 6 and 7 are etched using an isotropic dry etching technique until the surface of the second interlayer insulating film 4 is exposed, so that the contact hole 5 is filled with polycrystalline silicon, and then, A metal such as aluminum is deposited by sputtering and patterned by lithography to form an upper layer wiring made of aluminum.

このように本実施例によれば、タングステンシリサイド
からなる配線と多結晶シリコン膜との界面に酸化物が発
生するのを防ぐことができるため、コンタクト不良をな
くすことができる。
As described above, according to this embodiment, it is possible to prevent the formation of oxides at the interface between the wiring made of tungsten silicide and the polycrystalline silicon film, thereby eliminating contact defects.

5 なお、上記実施例においてはタンクステンシリサイド単
独の配線について説明したが、多結晶シリコン層と高融
点金属シリサイド層からなる多層構造(ポリサイト)の
配線であってもよいことは勿論である。
5. In the above embodiment, a wiring made of only tank stencil silicide has been described, but it goes without saying that the wiring may have a multilayer structure (polysite) consisting of a polycrystalline silicon layer and a high melting point metal silicide layer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、高融点金属シリサイドか
らなる配線層に直接多結晶シリコン膜を不活性力ス雰囲
気におけるスパッタリング法により堆積することにより
、シリサイド表面の酸化を防ぎシリサイド配線と多結晶
シリコン層間のコンタクト不良をなくすことができる。
As explained above, the present invention deposits a polycrystalline silicon film directly on a wiring layer made of high-melting point metal silicide by sputtering in an inert gas atmosphere, thereby preventing oxidation of the silicide surface and connecting the silicide wiring and polycrystalline silicon. Contact defects between layers can be eliminated.

従って半導体装置の信頼性及び歩留りを向上させること
ができる。
Therefore, reliability and yield of semiconductor devices can be improved.

【図面の簡単な説明】 第1図<a)〜(C)は本発明の一実施例を説明するた
めの半導体チップの断面図、第2図(a>,(1+)は
従来の半導体装置の一例の製造方法を説明するための半
導体チップの断面図であ=6 る。 ]・・・半導体基板、2・第1層間絶縁膜、3・
・・配線、4・・・第2層間絶縁膜、5・・・コンタク
ト孔、6,7・・多結晶シリコン膜、8・・・シリザイ
ド酸化物。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1<a> to (C) are cross-sectional views of a semiconductor chip for explaining one embodiment of the present invention, and FIGS. 2(a> and (1+) are cross-sectional views of a conventional semiconductor device. 6 is a cross-sectional view of a semiconductor chip for explaining an example of a manufacturing method.]...semiconductor substrate, 2. first interlayer insulating film, 3.
... Wiring, 4... Second interlayer insulating film, 5... Contact hole, 6, 7... Polycrystalline silicon film, 8... Silicide oxide.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に高融点金属シリサイドからなる配線を形
成する工程と、前記配線を含む全面に絶縁膜を形成する
工程と、前記絶縁膜にコンタクト孔を形成する工程と、
不活性ガス雰囲気中におけるスパッタリング法により前
記コンタクト孔を含む全面に多結晶シリコン層を堆積す
る工程とを含むことを特徴とする半導体装置の製造方法
forming a wiring made of high melting point metal silicide on a semiconductor substrate; forming an insulating film over the entire surface including the wiring; forming a contact hole in the insulating film;
A method for manufacturing a semiconductor device, comprising the step of depositing a polycrystalline silicon layer over the entire surface including the contact hole by sputtering in an inert gas atmosphere.
JP969190A 1990-01-19 1990-01-19 Manufacture of semiconductor device Pending JPH03214735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP969190A JPH03214735A (en) 1990-01-19 1990-01-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP969190A JPH03214735A (en) 1990-01-19 1990-01-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03214735A true JPH03214735A (en) 1991-09-19

Family

ID=11727247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP969190A Pending JPH03214735A (en) 1990-01-19 1990-01-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03214735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502229A (en) * 1994-03-23 1996-03-26 Dow Corning Asia, Ltd. Diphenylsiloxane oligomers functionalized at both terminal and method for the preparation thereof
KR100268805B1 (en) * 1997-12-31 2000-10-16 김영환 A forming method of contact in semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502229A (en) * 1994-03-23 1996-03-26 Dow Corning Asia, Ltd. Diphenylsiloxane oligomers functionalized at both terminal and method for the preparation thereof
KR100268805B1 (en) * 1997-12-31 2000-10-16 김영환 A forming method of contact in semiconductor device

Similar Documents

Publication Publication Date Title
JP3128811B2 (en) Method for manufacturing semiconductor device
JPH0456325A (en) Manufacture of semiconductor device
JPS639925A (en) Manufacture of semiconductor device
JP3240725B2 (en) Wiring structure and its manufacturing method
JPH04280456A (en) Semiconductor device and its manufacture
JPH03214735A (en) Manufacture of semiconductor device
KR930001896B1 (en) Metal line structure of semiconductor apparatus and building method thereof
JPH05129226A (en) Manufacture of semiconductor device
JP3189399B2 (en) Method for manufacturing semiconductor device
JP2706388B2 (en) Method for manufacturing semiconductor device
JPH04340713A (en) Manufacture of semiconductor device
JPH06140403A (en) Manufacture of semiconductor device
JPH04348548A (en) Semiconductor device and its production
JPH04286324A (en) Manufacture of low resistance contact
JPH01200651A (en) Manufacture of semiconductor device
JPS6120154B2 (en)
JPS61176114A (en) Manufacture of semiconductor device
JPH04127425A (en) Manufacture of semiconductor integrated circuit
JPH03131032A (en) Semiconductor device
JPH04303925A (en) Manufacture of semiconductor device
JPS6085513A (en) Manufacture of semiconductor device
JPH04326750A (en) Manufacture of semiconductor device
JPH03120826A (en) Formation of metal wiring of semiconductor device
JPH0324066B2 (en)
JPH06120213A (en) Manufacture of semiconductor device