JPH04280456A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH04280456A
JPH04280456A JP4212791A JP4212791A JPH04280456A JP H04280456 A JPH04280456 A JP H04280456A JP 4212791 A JP4212791 A JP 4212791A JP 4212791 A JP4212791 A JP 4212791A JP H04280456 A JPH04280456 A JP H04280456A
Authority
JP
Japan
Prior art keywords
hole
conductor
via hole
oxide film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4212791A
Other languages
Japanese (ja)
Other versions
JP3108447B2 (en
Inventor
Masahiro Shirasaki
白崎 正弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP03042127A priority Critical patent/JP3108447B2/en
Publication of JPH04280456A publication Critical patent/JPH04280456A/en
Application granted granted Critical
Publication of JP3108447B2 publication Critical patent/JP3108447B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To easily form a via hole low in resistivity and small in installation area by providing an SOI element substrate with a through hole covered with an oxide film and a conductor, and electrically connecting the conductor to the wiring provided on an element formation layer and the supporting substrate. CONSTITUTION:For a Silicon on Insulator(SOI) element substrate, a silicon element formation layer 3 is provided, across a buried insulating layer 2, on the silicon supporting substrate 1. And a through hole 13 is provided, which pierces the element formation layer 3 and the buried insulating layer 2 and the inside of which is covered with an oxide film 8A, and then a selectively deposited conductor 10 is made by stopping this through hole 13. The conductor 10 is electrically connected to the wiring 11 on the element formation layer 3 and the supporting substrate 1. Moreover, the via hole 14 is made of a metal small in resistivity and contact resistance. Hereby, a via hole 14 low in wiring resistance and small in installation area can be formed easily.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置,特にSOI
素子基板において表面の配線とシリコン支持基板とを接
続するビアホールの構造とその製造方法に関する。
[Industrial Application Field] The present invention relates to semiconductor devices, particularly SOI
The present invention relates to a structure of a via hole connecting surface wiring and a silicon support substrate in an element substrate and a method for manufacturing the same.

【0002】シリコン支持基板上に絶縁膜を挟んでシリ
コンの素子形成層を設けたSOI素子基板は,絶縁分離
が完全なことから高速,高集積化に適した集積回路用基
板として期待されている。
[0002] SOI element substrates, in which a silicon element formation layer is provided on a silicon support substrate with an insulating film sandwiched between them, are expected to be suitable for high-speed, high-integration integrated circuit substrates because of their complete insulation isolation. .

【0003】しかし,完全な絶縁分離がなされるSOI
素子基板では,素子が形成される素子形成層と支持基板
との間の電位を制御するために,素子形成層上に設けら
れた配線と支持基板との間に電気的導通をとる必要があ
る。
[0003] However, SOI with complete isolation
In an element substrate, in order to control the potential between the element formation layer on which the element is formed and the support substrate, it is necessary to establish electrical continuity between the wiring provided on the element formation layer and the support substrate. .

【0004】そこで,素子形成層上の配線とSOI素子
基板とを短絡するために,電気抵抗が低く,小面積で形
成できるビアホールが必要とされている。
[0004] Therefore, in order to short-circuit the wiring on the element forming layer and the SOI element substrate, there is a need for a via hole that has low electrical resistance and can be formed in a small area.

【0005】[0005]

【従来の技術】従来のビアホールの構造とその製造方法
を図3を参照して説明する。図3は,従来の実施例断面
図であり,SOI素子基板上に形成されたトランジスタ
とビアホール及び配線を表している。
2. Description of the Related Art The structure of a conventional via hole and its manufacturing method will be explained with reference to FIG. FIG. 3 is a cross-sectional view of a conventional embodiment, showing transistors, via holes, and wiring formed on an SOI element substrate.

【0006】従来のビアホール34は,図3を参照して
,不純物をドープしたポリシリコン35を導電体材料と
していた。かかるポリシリコン35を用いることにより
,従来のビアホール34は必然的に以下のような構造が
採られる。
Referring to FIG. 3, a conventional via hole 34 uses impurity-doped polysilicon 35 as a conductive material. By using such polysilicon 35, the conventional via hole 34 inevitably has the following structure.

【0007】即ち,ポリシリコン35は比抵抗が高いた
めに,配線抵抗を下げるにはビアホール34の径を大き
くしなければならない。また,ポリシリコン35と支持
基板1とのオーミック接触は接触抵抗が高いことから,
ビアホール34よりも大きな面積のオーミック接触面3
6が必要となる。このため,ビアホール34を形成する
ポリシリコン35と支持基板1とのオーミック接触面3
6は,埋込み絶縁層2をオーバエッチングして接触面積
を広げた形状にする必要がある。従って,ビアホールを
設置するために,実質的に大きな面積を要する。
That is, since polysilicon 35 has a high specific resistance, the diameter of via hole 34 must be increased in order to lower the wiring resistance. In addition, since the ohmic contact between the polysilicon 35 and the support substrate 1 has a high contact resistance,
Ohmic contact surface 3 with a larger area than the via hole 34
6 is required. Therefore, the ohmic contact surface 3 between the polysilicon 35 forming the via hole 34 and the supporting substrate 1
6, it is necessary to over-etch the buried insulating layer 2 to widen the contact area. Therefore, a substantially large area is required to install the via hole.

【0008】さらに,ポリシリコン35と素子形成層3
とは直接接触しており電気的に短絡するから,ビアホー
ル34が形成される領域38を酸化膜を充填したトレン
チ絶縁部31及びフィールド酸化部32により絶縁分離
する構造としなければならない。この絶縁分離された領
域をビアホールのために特別に設ける必要から,ビアホ
ール形成に必要とされる面積が著しく増加することにな
る。
Furthermore, polysilicon 35 and element forming layer 3
Since the area 38 where the via hole 34 is to be formed must be insulated and isolated by the trench insulation part 31 filled with an oxide film and the field oxidation part 32, the area 38 must be insulated and isolated. Since this insulated region must be specially provided for the via hole, the area required for forming the via hole increases significantly.

【0009】従来,かかる構造のビアホールの形成には
,次のような製造工程が用いられていた。先ず,トラン
ジスタ領域39,40の形成と同時に,ビアホール領域
38をトレンチ絶縁部31及びフィールド酸化部32と
を設けることにより形成する。
Conventionally, the following manufacturing process has been used to form a via hole with such a structure. First, simultaneously with the formation of the transistor regions 39 and 40, the via hole region 38 is formed by providing a trench insulating section 31 and a field oxidation section 32.

【0010】次いで,ビアホール34となるべき穴をフ
ォトエッチングにより素子形成層3に穿つ。次いで,等
方性のエッチングを用いて,埋込み絶縁層2をオーバエ
ッチングする。
Next, a hole to become a via hole 34 is formed in the element forming layer 3 by photo-etching. Next, the buried insulating layer 2 is over-etched using isotropic etching.

【0011】次いで,ボリシリコンの堆積と不純物イオ
ンの注入を交互に繰り返し,不純物ドープポリシリコン
35を上記穴に充填する。次いで,素子形成層3上に堆
積したポリシリコンを除去する。
Next, the holes are filled with impurity-doped polysilicon 35 by repeating alternately the deposition of polysilicon and the implantation of impurity ions. Next, the polysilicon deposited on the element forming layer 3 is removed.

【0012】次いで,酸化膜33を堆積し,ドープポリ
シリコン35上に酸化膜33の開口を設けた後,配線1
1を設ける。最後に,保護膜としてPSG(燐化ガラス
)層6を設ける。
Next, after depositing an oxide film 33 and providing an opening in the oxide film 33 on the doped polysilicon 35, the wiring 1
1 will be provided. Finally, a PSG (phosphide glass) layer 6 is provided as a protective film.

【0013】かかる工程においては,埋込み絶縁層2を
オーバエッチングすることから素子形成層3の破損を誘
発し易く,また埋込み絶縁層2をオーバエッチングした
部分にポリシリコンを埋め込むときに巣が発生して抵抗
が大きくなりやすい。
In such a process, the buried insulating layer 2 is over-etched, which tends to cause damage to the element forming layer 3, and when polysilicon is buried in the over-etched part of the buried insulating layer 2, cavities are generated. resistance tends to increase.

【0014】さらに,交互に繰り返すポリシリコンの堆
積とイオン注入の工程,及び素子形成層3上に堆積した
ポリシリコンの除去に多くの時間を必要とする。
Furthermore, the alternating polysilicon deposition and ion implantation steps and the removal of the polysilicon deposited on the element forming layer 3 require a lot of time.

【0015】[0015]

【発明が解決しようとする課題】従来のビアホールは,
比抵抗が高いポリシリコンを用いており,また絶縁分離
された領域を必要とすることから,ビアホールを形成す
るには大きな面積が必要となる。このため,半導体集積
回路の高集積化が図れず,またビアホールをトランジス
タ等の回路素子に接近させて設けることができず,この
ため高速化が図れないという問題があった。
[Problem to be solved by the invention] Conventional via holes are
Since polysilicon with high resistivity is used and an isolated region is required, a large area is required to form a via hole. For this reason, it is not possible to achieve high integration of semiconductor integrated circuits, and also it is not possible to provide via holes close to circuit elements such as transistors, resulting in the problem that high speed cannot be achieved.

【0016】さらに,ビアホールの形成には,オーバエ
ッチングを必要とすることから破損,欠陥を生じやすく
,またポリシリコンの堆積,形成に多大の時間を要する
という問題があった。
Furthermore, the formation of via holes requires over-etching, which tends to cause breakage and defects, and there are also problems in that it takes a long time to deposit and form polysilicon.

【0017】本発明は,配線抵抗が低く且つ設置面積の
小さいビアホールを容易に形成することができる半導体
装置とその製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device and a method for manufacturing the same, in which a via hole with low wiring resistance and a small installation area can be easily formed.

【0018】[0018]

【課題を解決するための手段】図1は本発明の実施例工
程図であり,ビアホール形成工程を断面図で表している
。なお,図1(f)は完成したビアホールを表している
[Means for Solving the Problems] FIG. 1 is a process diagram of an embodiment of the present invention, and shows a via hole forming process in a sectional view. Note that FIG. 1(f) shows a completed via hole.

【0019】上記目的を達成するための本発明の構成は
,図1を参照して,第一の構成は,シリコンからなる支
持基板1上に埋込み絶縁層2を挟んでシリコンからなる
素子形成層3が設けられているSOI(Silicon
 on Insulator)素子基板において,該素
子形成層3及び該埋込み絶縁層2を貫通する内側面が酸
化膜8Aで覆われた貫通孔13と,該貫通孔13を埋め
て選択的に堆積された導電体10とを有し,該導電体1
0は該素子形成層3上に設けられた配線11と該支持基
板1とに電気的に接続されていることを特徴として構成
され,及び,第二の構成は,上記導電体10は,タング
ステン,銅,チタニュウム及びアルミニュウムの何れか
の金属からなることを特徴として構成され,及び,第三
の構成は,異方性RIE(反応性イオンエッチング)に
より上記素子形成層3及び上記埋込み絶縁層2を貫通し
て上記支持基板1に達する穴12を穿つ工程と,該穴1
2の内側面及び該支持基板1と接する該穴12の底面に
酸化膜8A,8Bを形成する工程と,異方性RIEによ
り該穴12の底面の酸化膜8Bを除去して上記貫通孔1
3を形成する工程と,CVD(化学的気相成長法)によ
り上記導電体10を該貫通孔13の底面から選択成長さ
せて該貫通孔13を埋め込む工程と,上記配線11を該
導電体10と接して該素子形成層3上に設ける工程とを
有することを特徴として構成される。
Referring to FIG. 1, the structure of the present invention to achieve the above object is as follows: A first structure includes an element forming layer made of silicon on a supporting substrate 1 made of silicon with an embedded insulating layer 2 sandwiched therebetween. SOI (Silicon
(on Insulator) In the element substrate, there is a through hole 13 that penetrates the element forming layer 3 and the buried insulating layer 2 and whose inner surface is covered with an oxide film 8A, and a conductive film selectively deposited to fill the through hole 13. conductor 10, and the conductor 1
0 is characterized in that it is electrically connected to the wiring 11 provided on the element forming layer 3 and the support substrate 1, and the second structure is characterized in that the conductor 10 is made of tungsten. , copper, titanium, and aluminum, and the third structure is characterized in that the element forming layer 3 and the buried insulating layer 2 are formed by anisotropic RIE (reactive ion etching). a step of drilling a hole 12 that reaches the support substrate 1 through the hole 1;
2 and the bottom surface of the hole 12 in contact with the supporting substrate 1, and removing the oxide film 8B on the bottom surface of the hole 12 by anisotropic RIE to form the through hole 1.
3, a step of selectively growing the conductor 10 from the bottom surface of the through hole 13 by CVD (chemical vapor deposition method) to fill the through hole 13, and a step of forming the wiring 11 on the conductor 10. and a step of providing the element forming layer 3 on the element forming layer 3 in contact with the element forming layer 3.

【0020】[0020]

【作用】本発明の構成の作用を図1を参照して説明する
。本発明の第一及び第二の構成に係るビアホールは,比
抵抗の小さい金属,例えば第二の構成ではCu,Al,
Ti,Wを導電体10材料として構成される。
[Operation] The operation of the structure of the present invention will be explained with reference to FIG. The via holes according to the first and second configurations of the present invention are made of a metal having a low resistivity, for example, in the second configuration, Cu, Al,
The conductor 10 is composed of Ti and W as materials.

【0021】このため,小さな横断面のビアホールでも
,配線抵抗は十分低くできる。また,導電体10を構成
する上記金属とシリコン支持基板1との接触抵抗は,支
持基板1表面近傍での不純物の高濃度領域9の形成によ
り,従来のポリシリコンと支持基板とのオーミック接合
と比較して著しく低くすることができる。
Therefore, the wiring resistance can be made sufficiently low even with a via hole having a small cross section. Furthermore, the contact resistance between the metal constituting the conductor 10 and the silicon support substrate 1 is different from that of the conventional ohmic contact between polysilicon and the support substrate due to the formation of the high impurity concentration region 9 near the surface of the support substrate 1. can be significantly lower in comparison.

【0022】このため,接触面積が小さくても接触抵抗
は十分低くなるから,従来の如く接触面積を大きくする
ために埋込み絶縁層をオーバエッチングしてビアホール
の底面を広げる必要はないのである。
Therefore, even if the contact area is small, the contact resistance is sufficiently low, so there is no need to over-etch the buried insulating layer to widen the bottom surface of the via hole in order to increase the contact area as in the conventional method.

【0023】従って,基板1との接触部を含めてビアホ
ール14の横断面積を小さくできるのである。さらに本
発明に係るビアホール14は,貫通孔13の内側面が酸
化膜8Aで覆われシリコン素子形成層3と絶縁されてい
る。
Therefore, the cross-sectional area of the via hole 14 including the contact portion with the substrate 1 can be reduced. Further, in the via hole 14 according to the present invention, the inner surface of the through hole 13 is covered with an oxide film 8A and is insulated from the silicon element forming layer 3.

【0024】このため,ビアホール14を形成するため
に,絶縁分離された領域を特別に設ける必要がない。従
って,ビアホール14の形成に必要な面積は,絶縁分離
領域が不要な分だけ従来のビアホールよりも小さくでき
るのである。
Therefore, there is no need to provide a special insulated region to form the via hole 14. Therefore, the area required to form the via hole 14 can be made smaller than that of a conventional via hole because an insulation isolation region is not required.

【0025】次に本発明の第三の構成によれば,オーバ
エッチングの必要がないことから,ビアホール14を形
成する穴12の形成には,異方性が強いRIEを使用す
ることができる。
According to the third configuration of the present invention, since there is no need for over-etching, RIE, which has strong anisotropy, can be used to form the holes 12 for forming the via holes 14.

【0026】このため,オーバエッチングによる素子形
成層の破損を生ぜず,またビアホール14を精密に形成
することができる。また,本発明では,CVDにより導
電体10を堆積するに先立ち,貫通孔13の底面以外の
表面を酸化膜4,8Aにて覆うという構成が採られてい
る。
Therefore, the element forming layer is not damaged due to over-etching, and the via hole 14 can be formed precisely. Further, in the present invention, a configuration is adopted in which, prior to depositing the conductor 10 by CVD, the surfaces other than the bottom surface of the through hole 13 are covered with oxide films 4 and 8A.

【0027】このため,酸化膜上に成長しない導電体1
0は,貫通孔13の底面からのみ選択的に成長し,ビア
ホール14の底から順次上方へ貫通孔13を埋めて堆積
される。
Therefore, the conductor 1 that does not grow on the oxide film
0 selectively grows only from the bottom surface of the through hole 13, and is deposited sequentially upward from the bottom of the via hole 14, filling the through hole 13.

【0028】従って,巣等の欠陥は生じにくい。また,
導電体堆積時には,素子形成層3表面は酸化膜又は窒化
膜で覆われており導電体は堆積しないから,従来技術の
ポリシリコンの如くフォトエッチングにより除去する工
程は不要となり,ビアホール14の形成が容易になる。
[0028] Therefore, defects such as cavities are less likely to occur. Also,
When the conductor is deposited, the surface of the element forming layer 3 is covered with an oxide film or nitride film and no conductor is deposited, so the process of removing it by photo-etching as in the prior art polysilicon is not necessary, and the formation of the via hole 14 is eliminated. becomes easier.

【0029】[0029]

【実施例】本発明を,図1を参照して,実施例に即して
説明する。使用したSOI素子基板は,シリコンからな
る支持基板1上に,厚さ300nmの酸化膜からなる埋
込み絶縁層2を挟み,厚さ4μmのシリコンからなる素
子形成層3を設けたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained based on an embodiment with reference to FIG. The SOI element substrate used had a support substrate 1 made of silicon, a buried insulating layer 2 made of an oxide film with a thickness of 300 nm sandwiched therebetween, and an element formation layer 3 made of silicon with a thickness of 4 μm provided thereon.

【0030】先ず,図1(a)を参照して,素子形成層
3表面を熱酸化して厚さ30nmの酸化膜4を形成する
。次いで,厚さ200nmの窒化膜5,厚さ1500n
mのPSG層6,レジスト7を堆積した後,レジスト7
を露光し,パターンニングする。
First, referring to FIG. 1(a), the surface of the element forming layer 3 is thermally oxidized to form an oxide film 4 having a thickness of 30 nm. Next, a nitride film 5 with a thickness of 200 nm and a thickness of 1500 nm are formed.
After depositing the PSG layer 6 and the resist 7, the resist 7
is exposed and patterned.

【0031】次いで,パターンニングされたレジスト7
をマスクとして,CF4 とH2 との混合ガスを用い
たRIEにより,図1(a)に示す様に,PSG層6,
窒化膜5をパターニングする。
Next, the patterned resist 7
As shown in FIG. 1(a), the PSG layer 6,
The nitride film 5 is patterned.

【0032】次いで,レジスト7及びPSG層6を除去
した後,図1(b)を参照して,窒化膜5をマスクとし
てHBrガスを用いたRIEにより素子形成層3に穴1
2を明けた後,CF4 とH2 との混合ガスを用いた
RIEにより穴12の底面にある埋込み絶縁層2を除去
し,穴12を完成させる。なお,PSG層6の除去は穴
12完成の後でも良い。
Next, after removing the resist 7 and the PSG layer 6, referring to FIG. 1(b), holes 1 are formed in the element forming layer 3 by RIE using HBr gas using the nitride film 5 as a mask.
2, the buried insulating layer 2 on the bottom of the hole 12 is removed by RIE using a mixed gas of CF4 and H2, thereby completing the hole 12. Note that the PSG layer 6 may be removed after the hole 12 is completed.

【0033】次いで,図1(c)を参照して,穴12の
シリコンが露出している表面に熱酸化またはCVDによ
り,例えば厚さ30nmの酸化膜8A,8Bを形成する
。CVDによるとき,窒化膜表面に酸化膜が形成されて
も差支えない。
Next, referring to FIG. 1C, oxide films 8A and 8B having a thickness of, for example, 30 nm are formed on the exposed silicon surface of the hole 12 by thermal oxidation or CVD. When using CVD, there is no problem even if an oxide film is formed on the surface of the nitride film.

【0034】次いで,穴12の底面に形成された酸化膜
8Bを通して不純物をイオン注入する。これは,接触抵
抗を低減するために不純物の高濃度領域9を形成するた
めのものであり,例えば燐イオンを加速電圧70keV
で注入量1×1016cm−2とする。
Next, impurity ions are implanted through the oxide film 8B formed at the bottom of the hole 12. This is to form a high concentration region 9 of impurities in order to reduce contact resistance. For example, phosphorus ions are accelerated at a voltage of 70 keV.
The injection amount is 1 x 1016 cm-2.

【0035】次いで,図1(d)を参照して,窒化膜5
をマスクとして穴12の底面の酸化膜8Bを,CF4 
とH2 との混合ガスを用いたRIEにより除去し,貫
通孔13を形成する。
Next, referring to FIG. 1(d), the nitride film 5
Using the oxide film 8B on the bottom of the hole 12 as a mask, CF4
The through holes 13 are formed by RIE using a mixed gas of H2 and H2.

【0036】次いで,熱燐酸により窒化膜5を除去する
。次いで,等方性のドライエッチングを用いて酸化膜8
A及び高濃度領域9の表面数nmをエッチングすること
により,貫通孔13の底面に形成された自然酸化膜を除
去する。この等方性のドライエッチングは,例えば流量
10sccmのNF3 と流量100sccmのH2 
との混合ガスを10〜50Wの高周波電力の下でプラズ
マとし,20秒間暴露することにより達成できる。
Next, the nitride film 5 is removed using hot phosphoric acid. Next, the oxide film 8 is etched using isotropic dry etching.
By etching several nanometers of the surface of A and the high concentration region 9, the natural oxide film formed on the bottom surface of the through hole 13 is removed. This isotropic dry etching is performed using, for example, NF3 at a flow rate of 10 sccm and H2 at a flow rate of 100 sccm.
This can be achieved by turning a mixed gas of 10 to 50 W into plasma under high frequency power of 10 to 50 W and exposing it for 20 seconds.

【0037】上記工程に引続き,図1(e)を参照して
,導電体10をCVDにより貫通孔13の底面に選択成
長させ,貫通孔13を導電体10で埋め込む。導電体1
0を選択成長させる条件は,例えばW金属では流量7s
ccmのWF6 ,流量4.9sccmのSiH4 及
び流量1000sccmのH2 の混合ガスを流し,圧
力0.2torr,基板温度280℃〜290℃とする
。 なお,選択成長をすることができる良導体であれば,本
発明が適用されることはいうまでもない。
Following the above steps, referring to FIG. 1(e), a conductor 10 is selectively grown on the bottom surface of the through hole 13 by CVD, and the through hole 13 is filled with the conductor 10. Conductor 1
The conditions for selective growth of 0 are, for example, a flow rate of 7 s for W metal.
A mixed gas of WF6 at a flow rate of 4.9 sccm, SiH4 at a flow rate of 4.9 sccm, and H2 at a flow rate of 1000 sccm is passed, and the pressure is 0.2 torr and the substrate temperature is 280 to 290°C. It goes without saying that the present invention is applicable to any good conductor that can be selectively grown.

【0038】次いで,図1(f)を参照して,配線11
を,例えばスパッタにより堆積したAl−1%Si合金
を用いて導電体10と接続して設けることにより,ビア
ホール14を完成する。
Next, referring to FIG. 1(f), the wiring 11
The via hole 14 is completed by connecting it to the conductor 10 using, for example, an Al-1% Si alloy deposited by sputtering.

【0039】図2は本発明の実施例断面図であり,SO
I素子基板にビアホール14が形成された半導体集積回
路の一部を表している。本集積回路は,MOSトランジ
スタ領域39及びバイポーラトランジスタ領域40を,
酸化膜を埋め込んだトレンチ絶縁部31及びフィールド
酸化部32により絶縁分離して形成した後,貫通孔(図
1に13として示す。)を形成し,その後トランジスタ
の活性領域を形成し,ついでビアホール14と電極,配
線11を形成して製造される。
FIG. 2 is a sectional view of an embodiment of the present invention.
It shows a part of a semiconductor integrated circuit in which a via hole 14 is formed in an I-element substrate. This integrated circuit has a MOS transistor region 39 and a bipolar transistor region 40.
After insulating and forming a trench insulating part 31 filled with an oxide film and a field oxidizing part 32, a through hole (shown as 13 in FIG. 1) is formed, an active region of the transistor is formed, and then a via hole 14 is formed. Then, electrodes and wiring 11 are formed.

【0040】本実施例では,ビアホール14はMOSト
ランジスタ領域39に隣接して,絶縁分離の一部として
設けられている。このため,トランジスタに近接して設
けることができるから素子の性能を向上することができ
る。
In this embodiment, the via hole 14 is provided adjacent to the MOS transistor region 39 as part of the insulation isolation. Therefore, since it can be provided close to the transistor, the performance of the element can be improved.

【0041】またビアホール14の形成に必要とされる
実質的な面積を小さくすることができるという効果を奏
する。さらに本発明によれば,絶縁分離とは無関係に,
任意の位置にビアホール14を形成できるので,設計の
自由度が大きくなる。
[0041] Furthermore, there is an effect that the substantial area required for forming the via hole 14 can be reduced. Furthermore, according to the present invention, regardless of insulation isolation,
Since the via hole 14 can be formed at any position, the degree of freedom in design is increased.

【0042】[0042]

【発明の効果】以上説明した様に,本発明によれば,ビ
アホールは比抵抗及び接触抵抗の小さい金属が用いられ
,且つ酸化膜で絶縁されているため,オーバエッチング
及び絶縁分離された領域を設ける必要がないから,配線
抵抗が低く且つ設置面積の小さいビアホールを容易に形
成することができるという効果を奏し,半導体装置の性
能向上に寄与するところが大である。
[Effects of the Invention] As explained above, according to the present invention, the via holes are made of a metal with low specific resistance and contact resistance, and are insulated with an oxide film, so that over-etched and insulated regions can be avoided. Since it is not necessary to provide a via hole, it is possible to easily form a via hole with low wiring resistance and a small installation area, which greatly contributes to improving the performance of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の実施例工程図[Figure 1] Example process diagram of the present invention

【図2】  本発明の実施例断面図[Figure 2] Cross-sectional view of an embodiment of the present invention

【図3】  従来の実施例断面図[Figure 3] Cross-sectional view of conventional embodiment

【符号の説明】[Explanation of symbols]

1  支持基板 2  埋込み絶縁層 3  素子形成層 4  酸化膜 5  窒化膜 6  PGS層 7  レジスト 8A,8B  酸化膜 9  高濃度領域 10  導電体 11  配線 12  穴 13  貫通孔 14  ビアホール 31  トレンチ絶縁部 32  フィールド酸化部 33  酸化膜 34  ビアホール 35  ポリシリコン 36  オーミック接触面 37  接触面 38  ビアホール形成領域 39  MOSトランジスタ領域 40  バイポーラトランジスタ領域 1 Support board 2 Embedded insulation layer 3 Element formation layer 4 Oxide film 5 Nitride film 6 PGS layer 7 Resist 8A, 8B Oxide film 9 High concentration area 10 Conductor 11 Wiring 12 Hole 13 Through hole 14 Beer hall 31 Trench insulation part 32 Field oxidation section 33 Oxide film 34 Beer hall 35 Polysilicon 36 Ohmic contact surface 37 Contact surface 38 Via hole formation area 39 MOS transistor area 40 Bipolar transistor area

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  シリコンからなる支持基板(1)上に
埋込み絶縁層(2)を挟んでシリコンからなる素子形成
層(3)が設けられているSOI(Silicon o
nInsulator)素子基板において,該素子形成
層(3)及び該埋込み絶縁層(2)を貫通する内側面が
酸化膜(8A)で覆われた貫通孔(13)と,該貫通孔
(13)を埋めて選択的に堆積された導電体(10)と
を有し,該導電体(10)は該素子形成層(3)上に設
けられた配線(11)と該支持基板(1)とに電気的に
接続されていることを特徴とする半導体装置。
1. An SOI (Silicon o
nInsulator) In the element substrate, a through hole (13) whose inner surface is covered with an oxide film (8A) that penetrates the element forming layer (3) and the buried insulating layer (2); A conductor (10) is buried and selectively deposited, and the conductor (10) is connected to the wiring (11) provided on the element forming layer (3) and the supporting substrate (1). A semiconductor device characterized by being electrically connected.
【請求項2】  上記導電体(10)は,タングステン
,銅,チタニュウム及びアルミニュウムの何れかの金属
からなることを特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the conductor (10) is made of any one of tungsten, copper, titanium, and aluminum.
【請求項3】  異方性RIE(反応性イオンエッチン
グ)により上記素子形成層(3)及び上記埋込み絶縁層
(2)を貫通して上記支持基板(1)に達する穴(12
)を穿つ工程と,該穴(12)の内側面及び該支持基板
(1)と接する該穴(12)の底面に酸化膜(8A,8
B)を形成する工程と,異方性RIEにより該穴(12
)の底面の酸化膜(8B)を除去して上記貫通孔(13
)を形成する工程と,CVD(化学的気相成長法)によ
り上記導電体(10)を該貫通孔(13)の底面から選
択成長させて該貫通孔(13)を埋め込む工程と,上記
配線(11)を該導電体(10)と接して該素子形成層
(3)上に設ける工程とを有することを特徴とする請求
項1又は請求項2記載の半導体装置の製造方法。
3. A hole (12) is formed by anisotropic RIE (reactive ion etching) to penetrate the element forming layer (3) and the buried insulating layer (2) and reach the support substrate (1).
) and forming an oxide film (8A, 8
B) and the hole (12
) by removing the oxide film (8B) on the bottom surface of the through hole (13).
), a step of filling the through hole (13) by selectively growing the conductor (10) from the bottom surface of the through hole (13) by CVD (chemical vapor deposition); 3. The method of manufacturing a semiconductor device according to claim 1, further comprising the step of providing a conductor (11) on the element formation layer (3) in contact with the conductor (10).
JP03042127A 1991-03-08 1991-03-08 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3108447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03042127A JP3108447B2 (en) 1991-03-08 1991-03-08 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03042127A JP3108447B2 (en) 1991-03-08 1991-03-08 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04280456A true JPH04280456A (en) 1992-10-06
JP3108447B2 JP3108447B2 (en) 2000-11-13

Family

ID=12627277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03042127A Expired - Fee Related JP3108447B2 (en) 1991-03-08 1991-03-08 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3108447B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017553A1 (en) * 1993-01-21 1994-08-04 Hughes Aircraft Company Three dimensional integrated circuit and method of fabricating same
JPH0715016A (en) * 1993-04-30 1995-01-17 Internatl Business Mach Corp <Ibm> Static discharge preventive diode structure of silicon on insulator (soi) and formation thereof
EP0622842A3 (en) * 1993-04-30 1995-02-08 Ibm A method of forming a frontside contact to the silicon substrate of a SOI wafer.
WO1995012215A1 (en) * 1993-10-29 1995-05-04 Vlsi Technology, Inc. Semiconductor on insulator static random access memory cell utilizing polysilicon resistors formed in trenches
US6352923B1 (en) * 1999-03-01 2002-03-05 United Microelectronics Corp. Method of fabricating direct contact through hole type
US6429486B1 (en) 1998-11-20 2002-08-06 Nec Corporation Semiconductor support substrate potential fixing structure for SOI semiconductor device
WO2003007366A1 (en) * 2001-07-09 2003-01-23 Tokyo Electron Limited Method of forming via metal layer and via metal layer- formed substrate
US6815771B2 (en) 2001-10-29 2004-11-09 Kawasaki Microelectronics, Inc. Silicon on insulator device and layout method of the same
JP2008536332A (en) * 2005-04-11 2008-09-04 クリー インコーポレイテッド Thick semi-insulating or insulating epitaxial gallium nitride layer and devices incorporating it
JP2009054828A (en) * 2007-08-28 2009-03-12 Renesas Technology Corp Semiconductor device and manufacturing method therefor
US10571237B2 (en) 2015-05-29 2020-02-25 Hexagon Metrology, Inc. CMM with object location logic

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994017553A1 (en) * 1993-01-21 1994-08-04 Hughes Aircraft Company Three dimensional integrated circuit and method of fabricating same
US5426072A (en) * 1993-01-21 1995-06-20 Hughes Aircraft Company Process of manufacturing a three dimensional integrated circuit from stacked SOI wafers using a temporary silicon substrate
JPH0715016A (en) * 1993-04-30 1995-01-17 Internatl Business Mach Corp <Ibm> Static discharge preventive diode structure of silicon on insulator (soi) and formation thereof
EP0622842A3 (en) * 1993-04-30 1995-02-08 Ibm A method of forming a frontside contact to the silicon substrate of a SOI wafer.
WO1995012215A1 (en) * 1993-10-29 1995-05-04 Vlsi Technology, Inc. Semiconductor on insulator static random access memory cell utilizing polysilicon resistors formed in trenches
US6429486B1 (en) 1998-11-20 2002-08-06 Nec Corporation Semiconductor support substrate potential fixing structure for SOI semiconductor device
US6352923B1 (en) * 1999-03-01 2002-03-05 United Microelectronics Corp. Method of fabricating direct contact through hole type
WO2003007366A1 (en) * 2001-07-09 2003-01-23 Tokyo Electron Limited Method of forming via metal layer and via metal layer- formed substrate
US6815771B2 (en) 2001-10-29 2004-11-09 Kawasaki Microelectronics, Inc. Silicon on insulator device and layout method of the same
US7160786B2 (en) 2001-10-29 2007-01-09 Kawaski Microelectronics, Inc. Silicon on insulator device and layout method of the same
JP2008536332A (en) * 2005-04-11 2008-09-04 クリー インコーポレイテッド Thick semi-insulating or insulating epitaxial gallium nitride layer and devices incorporating it
US8575651B2 (en) 2005-04-11 2013-11-05 Cree, Inc. Devices having thick semi-insulating epitaxial gallium nitride layer
JP2009054828A (en) * 2007-08-28 2009-03-12 Renesas Technology Corp Semiconductor device and manufacturing method therefor
US10571237B2 (en) 2015-05-29 2020-02-25 Hexagon Metrology, Inc. CMM with object location logic

Also Published As

Publication number Publication date
JP3108447B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
US4392150A (en) MOS Integrated circuit having refractory metal or metal silicide interconnect layer
EP0380327B1 (en) Structure of semiconductor device with funnel-shaped inter-level connection and method of manufacturing it
US5073516A (en) Selective epitaxial growth process flow for semiconductor technologies
US4590666A (en) Method for producing a bipolar transistor having a reduced base region
US6271541B2 (en) Semiconductor device with high gettering capability to impurity present in semiconductor layer of SOI substrate
JPH0456325A (en) Manufacture of semiconductor device
US5897359A (en) Method of manufacturing a silicon/silicon germanium heterojunction bipolar transistor
US4737831A (en) Semiconductor device with self-aligned gate structure and manufacturing process thereof
JPH04277623A (en) Manufacture of semiconductor device
JP3108447B2 (en) Semiconductor device and manufacturing method thereof
JPH027471A (en) Polycrystalline silicon schottky diode
KR940004450B1 (en) Method of making semiconductor device
JP3515615B2 (en) Method for manufacturing contact structure of semiconductor device
JPH10106973A (en) Semiconductor device and its manufacture
JPH0756866B2 (en) Method for manufacturing semiconductor integrated circuit device
KR100268794B1 (en) Method of forming conducting wire in semiconductor device
JPH06224310A (en) Manufacture of semiconductor device
JPS6150385B2 (en)
JPH079993B2 (en) Semiconductor device and manufacturing method thereof
JPH04127425A (en) Manufacture of semiconductor integrated circuit
JPS6120154B2 (en)
JPS63170922A (en) Wiring method
JPH0536625A (en) Manufacture of semiconductor device
JPH02260554A (en) Manufacture of semiconductor device
JPS61274323A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990622

LAPS Cancellation because of no payment of annual fees