JPH01272138A - Manufacture of wiring - Google Patents

Manufacture of wiring

Info

Publication number
JPH01272138A
JPH01272138A JP18934087A JP18934087A JPH01272138A JP H01272138 A JPH01272138 A JP H01272138A JP 18934087 A JP18934087 A JP 18934087A JP 18934087 A JP18934087 A JP 18934087A JP H01272138 A JPH01272138 A JP H01272138A
Authority
JP
Japan
Prior art keywords
layer
wiring
insulating film
substrate
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18934087A
Other languages
Japanese (ja)
Inventor
Shigeo Onishi
茂夫 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP18934087A priority Critical patent/JPH01272138A/en
Publication of JPH01272138A publication Critical patent/JPH01272138A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the growth of a hillock even when crystal grain size is brought to 3mum or less while also suppressing defective stress migration by forming a Ti.W layer between an Al.Si layer and an Si substrate as a barrier metal and mixing a Ti.W group alloy into the Al.Si layer through lamp annealing. CONSTITUTION:A PSG insulating film 2 is formed onto an Si substrate 1, and a contact hole 3 for a wiring is shaped. A Ti.W layer 4 in film thickness of 2000-3000Angstrom is formed onto the Si substrate through a sputtering method, an Al.Si layer 5 in film thickness of 0.7mum is shaped through evaporation or the sputtering method, and the Ti.W layer, 4 and the Al.Si layer 5 are patterned to a desired wiring pattern. The semiconductor substrate 1 to which the wiring pattern is formed is pre-annealed for several dozen sec at 400-600 deg.C by a lamp annealing device, and the alloy of a Ti.W group is mixed into the Al.Si layer 5. An inter-layer insulating film is shaped onto the semiconductor substrate 1, a through hole is formed selectively to the inter-layer insulating film, and a second layer wiring is shaped onto the inter layer insulating film.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体装置の配線の製造方法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a method of manufacturing wiring for a semiconductor device.

〈従来の技術〉 LSIのチップサイズを縮小するのに有効な手段として
、All・Siの多層配線技術がある。ところが、IM
目のAI Si配線を形成し、該Ad−5i配線上に層
間絶縁膜を形成する際、長時間の熱処理を必要とし、こ
の熱処理工程中にAlの縦方向の突起物(ヒロック)が
成長し、層間膜クラック、層間短絡といった半導体装置
の絶縁不良を引き起こすことが多い。
<Prior Art> All/Si multilayer wiring technology is an effective means for reducing the chip size of an LSI. However, I.M.
When forming a second AI Si wiring and an interlayer insulating film on the Ad-5i wiring, a long heat treatment is required, and vertical protrusions (hillocks) of Al grow during this heat treatment process. , interlayer film cracks, and interlayer short circuits, which often cause insulation defects in semiconductor devices.

一般にヒロック成長は加熱に々る圧縮圧力を緩和するた
めに生じる局所的な縦方向の結晶成長であると考えられ
ている。結晶成長は粒界拡散によって支配されてrるた
め、ヒロック成長に粒界拡散が大きく関与していると考
えられる。それ故、All−3i層形成後にランプアニ
ール法による短時間のブリアニールを行な贋、Al・S
iの結晶粒を予め成長させて粒界長を短くすることによ
り、その後の熱処理に対して安定でヒロック成長を抑制
できる配線を形成する方法がある。
Hillock growth is generally considered to be localized vertical crystal growth that occurs to relieve the compressive pressure caused by heating. Since crystal growth is controlled by grain boundary diffusion, grain boundary diffusion is considered to be largely involved in hillock growth. Therefore, after forming the All-3i layer, short-time briane annealing is performed using the lamp annealing method.
There is a method of forming a wiring that is stable against subsequent heat treatment and can suppress hillock growth by growing the crystal grains of i in advance to shorten the grain boundary length.

一方、LSIの高集積化に伴い、コンタクト径がより@
剣になるが、Al−5iのようにAl中にSiを含有さ
せた材料を用いる配線はコンタクし、最悪の場合にはコ
ンタクト不良になる。この問題を解決するためにT i
r W +或いはTiWをバリアメタルとしてSi基板
とAjl’−Si配線の間に形成し、Al−5i配線か
らSiが流出するのを遮ぎる方法がある。
On the other hand, as LSIs become more highly integrated, the contact diameter becomes more
However, wiring using a material containing Si in Al, such as Al-5i, will contact, and in the worst case, it will result in a contact failure. To solve this problem, T i
There is a method of forming r W + or TiW as a barrier metal between the Si substrate and the Ajl'-Si wiring to block Si from flowing out from the Al-5i wiring.

〈発明が解決しようとする問題点〉 上述のプリアニールにより、AA’−Siの結晶粒を予
め成長させる方法では結晶粒径を8μm以上に成長させ
ないとヒロック成長の抑制効果が現われない。ところが
微細なAl−5i配線においてAI Siの結晶粒径の
大きいものを用いると、熱ストレスにより断線に到るス
トレスマイグレーション不良が生じ易いという問題があ
る。
<Problems to be Solved by the Invention> In the method of pre-growing AA'-Si crystal grains by pre-annealing described above, the effect of suppressing hillock growth does not appear unless the crystal grain size is grown to 8 μm or more. However, if AI Si with a large crystal grain size is used in fine Al-5i wiring, there is a problem in that stress migration failures that lead to disconnection due to thermal stress are likely to occur.

また上述のバリアメタルを形成する方法では、長時間の
熱処理工程において、コンタクト部へのSiの析出を抑
えることができ、更にA4・Si配線からのヒロックの
発生をある程度抑制できるが、ヒロックの抑制はバリア
メタル本来の目的ではないため充分と言えず、デパイヌ
の信頼性に悪影口を及ぼすという問題がある。
In addition, in the method of forming barrier metal described above, it is possible to suppress the precipitation of Si on the contact part during the long-time heat treatment process, and furthermore, it is possible to suppress the generation of hillocks from A4/Si wiring to some extent, but the suppression of hillocks is Since this is not the original purpose of barrier metal, it cannot be said to be sufficient, and there is a problem that it has a negative effect on the reliability of Depaine.

〈問題点を解決するための手段〉 本発明は上述する問題点を解決するためになされたもの
で、複数個の素子を形成した半導体基板の主面上にTi
−W層とAl−9i層とを順次形成し、前記素子間を電
気的に相互接続する配線とハ′ して前記Ti−W層とAl1−8上層とをゼターニング
する工程と、前記半導体基板をプリアニールして前記A
l−8上層をTi−W層と合金化する工程とを有し、k
l−5i −T i  −Wの結晶粒径は3μm以下で
ある配線の製法を提供するものである。
<Means for Solving the Problems> The present invention has been made to solve the above-mentioned problems.
- a step of sequentially forming a W layer and an Al-9i layer, and zeturning the Ti-W layer and the Al1-8 upper layer with wiring for electrically interconnecting the elements; Pre-anneal the substrate and perform the above A
alloying the l-8 upper layer with the Ti-W layer, and k
The present invention provides a method for manufacturing wiring in which the crystal grain size of l-5i-T i -W is 3 μm or less.

また、本発明は上記プリアニールとしてランプアニーl
t行なう配線の製法を提供するものである。
Further, the present invention also provides lamp annealing as the above-mentioned pre-annealing.
This invention provides a method for manufacturing wiring.

〈作 用〉 上述の如ぐAJ−5i層とSi基板との間にバリアメタ
ルとしてTi−W層を形成し、更にヲンプアニーIvを
行なりてAl−54層中にTi、W系の合金を混入させ
ることにより、Siの析出が抑制できる上、配線材料の
結晶粒が3μm以下であってもA4の粒界拡散が抑制さ
れてヒロック成長を抑制できる。また、結晶粒径が従来
に比べて小さいため、結晶粒径が大きいことによるスト
レスマイグレーション不良を抑制することが可能となる
<Function> A Ti-W layer is formed as a barrier metal between the AJ-5i layer and the Si substrate as described above, and a wet annealing Iv is further performed to inject Ti and W-based alloys into the Al-54 layer. By mixing Si, precipitation of Si can be suppressed, and even if the crystal grains of the wiring material are 3 μm or less, grain boundary diffusion of A4 can be suppressed and hillock growth can be suppressed. Furthermore, since the crystal grain size is smaller than that of the conventional one, it is possible to suppress stress migration defects caused by the large crystal grain size.

〈実施例〉 以下、図面を用いて本発明の一実施例を詳述するが、本
発明はこれに限定されるものではない。
<Example> Hereinafter, an example of the present invention will be described in detail using the drawings, but the present invention is not limited thereto.

第1図は本発明の一実施例を説明するための断面図であ
る。Si基板1上にPSG等の絶縁膜2を形成し、配線
用のコンタクトホール3を形成する。次いで前記Si基
板1上にスパッタ法により2000〜3000λの膜厚
のTi−W層4を形成し、更に蒸着或いはスパッタ法に
より0.7μmの膜厚のAl・Si層5を形成した後、
前記Ti・W層4とAI!・Si層5とを所望する配線
パターンにパタ一二ソグする。このように配線パターン
を形成した半導体基板1金ランプアニール装置にて40
0〜600℃下で数十秒間プリアニールしてT ir 
W系の合金をAI Si層5中に混入させる。次にこの
半導体基板1上に層間絶縁膜を従来公知の技術で形成し
、前記層間絶縁膜に選択的にスル−ホールを設けた後層
聞納縁膜上Vc2層めの配線を形成する。
FIG. 1 is a sectional view for explaining one embodiment of the present invention. An insulating film 2 such as PSG is formed on a Si substrate 1, and contact holes 3 for wiring are formed. Next, a Ti-W layer 4 with a thickness of 2000 to 3000 λ was formed on the Si substrate 1 by sputtering, and an Al/Si layer 5 with a thickness of 0.7 μm was further formed by evaporation or sputtering.
The Ti/W layer 4 and AI! - Pattern the Si layer 5 into a desired wiring pattern. The semiconductor substrate with the wiring pattern formed in this way was heated for 40 minutes using a gold lamp annealing device.
Pre-anneal for several tens of seconds at 0 to 600°C.
A W-based alloy is mixed into the AI Si layer 5. Next, an interlayer insulating film is formed on this semiconductor substrate 1 by a conventionally known technique, and a second layer of Vc wiring is formed on the rear-layer inner edge film in which through-holes are selectively provided in the interlayer insulating film.

第2図は本発明の一実施例と従来例を比較した図でおり
、横軸は配線材料の結晶粒径(μrrL)、縦軸はヒロ
ック数(’7B)を示す。同図中Aは本発明の実施例に
よるものであシ、形成した配線をランプアニール装置を
用いて10秒間400〜600℃下でプリアニールして
合金化した後、層間絶縁膜形成時の熱処理に代わるもの
として1時間、440℃の電気炉アニールを行なったも
のである。
FIG. 2 is a diagram comparing an embodiment of the present invention with a conventional example, in which the horizontal axis shows the crystal grain size (μrrL) of the wiring material, and the vertical axis shows the number of hillocks ('7B). In the figure, A is according to an embodiment of the present invention. After the formed wiring is pre-annealed at 400 to 600°C for 10 seconds using a lamp annealing device to form an alloy, it is subjected to heat treatment when forming an interlayer insulating film. As an alternative, electric furnace annealing was performed at 440° C. for 1 hour.

同図中Bは配線としてA4・Si層の単層膜を用い、プ
リアニーlv′f:行なわず1時間、400〜600℃
の電気炉アニールを行なったものである。
B in the same figure uses a single layer film of A4/Si layer as wiring, pre-annealing lv'f: 1 hour, 400-600°C
It was annealed in an electric furnace.

同図中Cは配線としてAI Si層の単層膜を用い、ラ
ンプアニール装置で400〜600℃下、10秒間のデ
リア二一μを行なった後、1時間、440℃の電気炉ア
ニールを行なったものである。
C in the same figure uses a single layer of AI Si layer as the wiring, and after performing Delia 21 μ for 10 seconds at 400 to 600°C in a lamp annealing device, electric furnace annealing at 440°C for 1 hour. It is something that

同図中りは配線としてTi−W層上にAl−8i層を形
成したものを用い、プリアニールを行なわず1時間40
0〜600℃の電気炉アニールを行なったものである。
In the middle of the figure, a wire with an Al-8i layer formed on a Ti-W layer was used, and no pre-annealing was performed for 1 hour.
Electric furnace annealing was performed at 0 to 600°C.

配線の結晶粒径は、同図A。The crystal grain size of the wiring is shown in Figure A.

Cの如くプリアニールを行なった場合、そのプリアニー
ル温度に依存し、同図中B、Dの如く電気炉アニールの
みを行なった場合、そのアニール温度に依存する。
When pre-annealing is performed as shown in C, it depends on the pre-annealing temperature, and when only electric furnace annealing is performed as shown in B and D in the figure, it depends on the annealing temperature.

同図から明らかなように、同図中Bの如く配線としてA
j?−5i層の単層膜を用い、電気炉アニー〜のみを行
なったものに対して、同図中Cに示される従来例のよう
に配線としてAA’−5i層の単層膜を用い、プリアニ
ールを行なった後電気炉アニー11/f行なうことによ
り、ヒロック数が減少し、また同図中りに示される他の
従来例のように配線としてTi −W層上にAl・Si
層を形成したものを用い、電気炉アニールのみを行なう
ことにより、結晶粒径が小さくなり、更にヒロック数も
減少していることがわかる。しかし、同図中A。
As is clear from the figure, as shown in B in the figure, the wiring A
j? In contrast to the one in which a single-layer film of -5i layer was used and only annealing was performed in an electric furnace, a single-layer film of AA'-5i layer was used as wiring as in the conventional example shown in C in the same figure, and pre-annealing was performed. By performing electric furnace annealing 11/f after performing the above, the number of hillocks is reduced, and as in the other conventional example shown in the same figure, Al/Si is formed on the Ti--W layer as wiring.
It can be seen that by using a layered material and performing only electric furnace annealing, the crystal grain size is reduced and the number of hillocks is also reduced. However, A in the same figure.

に示される本発明の実施例では、同図中Cに比べて大幅
に結晶粒径が小さくなり、更には同図中C1Dに比べて
大幅にヒロック数か減少しており、3μm以下の結晶粒
径においても十分なヒロック抑制効果が現われていると
いえる。
In the example of the present invention shown in FIG. It can be said that a sufficient hillock suppression effect is exhibited also in the diameter.

このように配線としてTi−W層層上にAl・Si層を
形成し、これにプリアニー/l/を行なってAJSi層
中にT i +’ W系の合金を混入させることにより
、AJの粒界拡散が抑制され、結晶成長が抑制される。
In this way, an Al/Si layer is formed on the Ti-W layer as a wiring, and by pre-annealing /l/ to mix the Ti +' W alloy into the AJSi layer, the AJ grains Field diffusion is suppressed and crystal growth is suppressed.

〈発明の効果〉 本発明により、結晶粒径が3μm以下であってもヒロッ
ク成長半抑制効果が現れ、同時にストレヌマイグレーシ
コン不良も抑制できるため、短絡、クラック、或いは断
線等による半導体装置不良が発生し雌しくなる。したが
って本発明は、信頼性及び歩留りの高い半導体装置の製
造に寄与するものである。
<Effects of the Invention> According to the present invention, even when the crystal grain size is 3 μm or less, a hillock growth semi-suppressing effect appears, and at the same time, it is possible to suppress strain migration silicon failures, so semiconductor device failures due to short circuits, cracks, or disconnections can be prevented. It develops and becomes feminine. Therefore, the present invention contributes to manufacturing semiconductor devices with high reliability and high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための断面図、第
2図は本発明の一実施例と従来例とを比較するためのグ
レインサイズ−ヒロック数ヲ表ス図である。 代理人 弁理士  杉 山 毅 至(他1名)菓 ly
!J 第2図   自少田も≠隠矛(μm)
FIG. 1 is a sectional view for explaining an embodiment of the present invention, and FIG. 2 is a grain size-hillock number table for comparing the embodiment of the present invention and a conventional example. Agent: Patent Attorney Takeshi Sugiyama (and 1 other person)
! J Figure 2 Self-shoda mo ≠ Hidden spear (μm)

Claims (1)

【特許請求の範囲】 1、複数個の素子を形成した半導体基板の主面上にTi
・W層とAl・Si層とを順次形成し、前記素子間を電
気的に相互接続する配線として前記Ti・W層とAl・
Si層とをパターニングする工程と、 前記半導体基板をプリアニールしてAl・Si層をTi
・W層と合金化する工程とを有し、Al・Si−Ti・
Wの結晶粒径は3μm以下にしてなることを特徴とする
配線の製法。 2、上記プリアニールはランプアニールを用いることを
特徴とする特許請求の範囲第1項記載の配線の製法。
[Claims] 1. Ti is deposited on the main surface of a semiconductor substrate on which a plurality of elements are formed.
・A W layer and an Al/Si layer are sequentially formed, and the Ti/W layer and the Al/Si layer are used as wiring for electrically interconnecting the elements.
A step of patterning the Al/Si layer and a step of pre-annealing the semiconductor substrate to change the Al/Si layer to Ti.
・It has a step of alloying with the W layer, and has a process of alloying with the W layer, and has a process of alloying with the W layer,
A method for manufacturing wiring characterized in that the crystal grain size of W is 3 μm or less. 2. The wiring manufacturing method according to claim 1, wherein the pre-annealing uses lamp annealing.
JP18934087A 1987-07-29 1987-07-29 Manufacture of wiring Pending JPH01272138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18934087A JPH01272138A (en) 1987-07-29 1987-07-29 Manufacture of wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18934087A JPH01272138A (en) 1987-07-29 1987-07-29 Manufacture of wiring

Publications (1)

Publication Number Publication Date
JPH01272138A true JPH01272138A (en) 1989-10-31

Family

ID=16239698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18934087A Pending JPH01272138A (en) 1987-07-29 1987-07-29 Manufacture of wiring

Country Status (1)

Country Link
JP (1) JPH01272138A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162727A (en) * 1988-12-15 1990-06-22 Matsushita Electron Corp Manufacture of semiconductor device
JPH02307218A (en) * 1989-05-22 1990-12-20 Matsushita Electron Corp Manufacture of semiconductor device
US5421974A (en) * 1993-04-01 1995-06-06 Advanced Micro Devices, Inc. Integrated circuit having silicide-nitride based multi-layer metallization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162727A (en) * 1988-12-15 1990-06-22 Matsushita Electron Corp Manufacture of semiconductor device
JPH02307218A (en) * 1989-05-22 1990-12-20 Matsushita Electron Corp Manufacture of semiconductor device
US5421974A (en) * 1993-04-01 1995-06-06 Advanced Micro Devices, Inc. Integrated circuit having silicide-nitride based multi-layer metallization

Similar Documents

Publication Publication Date Title
US4937652A (en) Semiconductor device and method of manufacturing the same
US5581125A (en) Interconnect for semiconductor devices and method for fabricating same
JPH0370137A (en) Element linking metal wiring layer in semiconductor integrated circuit and manufacture thereof
JPH01272138A (en) Manufacture of wiring
JPS61225837A (en) Layer connection of semiconductor device
JP3371504B2 (en) Semiconductor device wire-bonded to alloy electrode and method of manufacturing alloy electrode
JPS60119755A (en) Semiconductor integrated circuit device with multilayered wiring
JPH027525A (en) Manufacture of semiconductor device
JPS5917853B2 (en) semiconductor equipment
JPH04731A (en) Semiconductor device and manufacture thereof
JPH0242748A (en) Semiconductor device
JPH02178930A (en) Formation of wiring
JPH04354337A (en) Manufacture of semiconductor device
JPH0492425A (en) Manufacture of semiconductor device
JPS586172A (en) Semiconductor device
JPS60206045A (en) Wiring
JPS583252A (en) Semiconductor integrated circuit device
JPS62235775A (en) Semiconductor device and manufacture theeof
JPH0513368A (en) Manufacture of semiconductor device
JPS60213059A (en) Manufacture of semiconductor device
KR890004875B1 (en) Manufacture of electrode on semiconductor body
JPH04315427A (en) Manufacture of semiconductor device
JPS63169044A (en) Manufacture of semiconductor device
JPH04167547A (en) Semiconductor device
JPH04250627A (en) Semiconductor device and manufacture thereof