JPH04167547A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04167547A
JPH04167547A JP29608490A JP29608490A JPH04167547A JP H04167547 A JPH04167547 A JP H04167547A JP 29608490 A JP29608490 A JP 29608490A JP 29608490 A JP29608490 A JP 29608490A JP H04167547 A JPH04167547 A JP H04167547A
Authority
JP
Japan
Prior art keywords
film
constituted
interlayer insulating
alloy
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29608490A
Other languages
Japanese (ja)
Inventor
Michio Sakurai
櫻井 道雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29608490A priority Critical patent/JPH04167547A/en
Publication of JPH04167547A publication Critical patent/JPH04167547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To contrive the improvement of the resistance of a device to an electro-migration and the like by a method wherein one of a silicon nitride film of a specified thickness or a silicon oxide film is formed on a lower layer wiring of a laminated structure constituted by forming high-melting point silicide films and a multilayer interconnection, which is constituted using a polyimide film as an interlayer insulating film, is provided. CONSTITUTION:An oxide film 2 and a BPSG film 3 are formed on a P-type silicon substrate 1. Then, an Al-1% Si alloy film 4 and WSiX film 5 are deposited in order and the films 5 and 4 are selectively etched by a photolithography technique. One of a silicon nitride film 6 of a thickness of 100Angstrom or thicker or a silicon oxide film is further formed on a lower layer wiring constituted of these films 4 and 5 and a multilayer interconnection, which is constituted using a polyimide film 7 as an interlayer insulating film, is provided. Thereby, the resistance of a device to an electro-migration and a stress migration can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にポリイミドを層間絶縁
膜とする多層配線構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor device, and particularly to a multilayer wiring structure using polyimide as an interlayer insulating film.

〔従来の技術〕[Conventional technology]

電極配線材料としてはアルミニウム(Aり薄膜あるいは
アルミニウム合金薄膜が用いられてきた。
As an electrode wiring material, an aluminum (Al) thin film or an aluminum alloy thin film has been used.

半導体素子の高集積化にともない配線幅が小さくなるに
つれて、信頼性においてエレクトロマイグレーションや
ストレスマイグレーションなどの深刻な障害が生じてい
る。
As the interconnect width becomes smaller as semiconductor devices become more highly integrated, serious reliability problems such as electromigration and stress migration are occurring.

この問題を解決するためA)薄膜あるいはA7合金薄膜
の上に萬融点シリサイド薄膜を形成した積層構造の配線
が用いられている。
In order to solve this problem, A) a layered wiring structure in which a melting point silicide thin film is formed on a thin film or an A7 alloy thin film is used.

また半導体素子の高集積化にともない配線がチップに占
める面積の増大によって多層配線が必須となり、表面の
段差が大きくなる。
Furthermore, as semiconductor devices become more highly integrated, the area occupied by wiring on a chip increases, making multilayer wiring essential and increasing the level difference on the surface.

したがって層間絶縁膜の平坦化が重要であり、量産に適
したポリイミドの開発が進められている。
Therefore, planarization of the interlayer insulating film is important, and development of polyimide suitable for mass production is underway.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術においては第3図に示すように、A!薄膜ある
いはA1合金薄膜の上に高融点シリサイド薄膜を形成し
た積層配線8において、層間絶縁膜としてポリイミドを
塗布してから熱処理すると、シリサイドにクラック9が
生じたり、AtあるいはA7合金からラテラルヒロック
10が成長するという問題があった。
In the prior art, as shown in FIG. 3, A! In a laminated wiring 8 in which a high melting point silicide thin film is formed on a thin film or an A1 alloy thin film, if polyimide is applied as an interlayer insulating film and then heat treated, cracks 9 may occur in the silicide, or lateral hillocks 10 may occur from At or A7 alloy. There was a problem with growing up.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、アルミニウム膜およびアルミニ
ウム合金膜のうち1つの上に高融点シリサイド膜を形成
した積層構造の下層配線の上に、さらに厚さ100λ以
上の窒化シリコン膜および酸化シリコン膜のうち1つが
形成され、ポリイミドを層間絶縁膜とする多層配線を備
えたものである。
The semiconductor device of the present invention is provided on a lower wiring of a laminated structure in which a high melting point silicide film is formed on one of an aluminum film and an aluminum alloy film, and one of a silicon nitride film and a silicon oxide film with a thickness of 100λ or more. One is formed and includes multilayer wiring using polyimide as an interlayer insulating film.

〔実施例〕〔Example〕

本発明の第1の実施例について、第1図(a)〜(e)
を参照して説明する。
Regarding the first embodiment of the present invention, FIGS. 1(a) to (e)
Explain with reference to.

はじめに第1図(a)に示すように、P型シリコン基板
1に、熱酸化により酸化膜2を形成し、CVD法により
BPSG膜3を形成する。
First, as shown in FIG. 1(a), an oxide film 2 is formed on a P-type silicon substrate 1 by thermal oxidation, and a BPSG film 3 is formed by CVD.

つぎに第1図(b)に示すように、スパッタ法により圧
力15mTorr1温度200℃、RFパワー5kWの
条件で厚さ1.OltmのA1−1%Si合金4および
厚さ0.1μmのWSix5を順次堆積する。
Next, as shown in FIG. 1(b), a thickness of 1.5 mm was formed by sputtering under the conditions of a pressure of 15 mTorr, a temperature of 200° C., and an RF power of 5 kW. Oltm Al-1% Si alloy 4 and WSix 5 with a thickness of 0.1 μm are sequentially deposited.

つぎに第1図(C)に示すように、フォトリソグラフィ
によりWSix5およびへ1−1%Si合金4を選択エ
ツチングする。
Next, as shown in FIG. 1C, WSix 5 and the 1-1% Si alloy 4 are selectively etched by photolithography.

つぎに第1図(d)に示すように、プラズマCVD法に
よりSiH4およびNH3の混合ガスの圧力01ITo
 r rv温度300℃、RFパワー1kWの条件で厚
さ1500人の窒化膜6を形成する。
Next, as shown in FIG. 1(d), the pressure of the mixed gas of SiH4 and NH3 is 01ITo by plasma CVD method.
A nitride film 6 with a thickness of 1500 mm is formed under the conditions of r rv temperature of 300° C. and RF power of 1 kW.

つぎに第1図(e)に示すように、層間絶縁膜としてポ
リイミド7を塗布してから400℃、60分の熱処理を
行なう。
Next, as shown in FIG. 1(e), polyimide 7 is applied as an interlayer insulating film, and then heat treatment is performed at 400° C. for 60 minutes.

つぎに本発明の第2の実施例について、第2図(a)〜
(e)を参照して説明する。
Next, regarding the second embodiment of the present invention, FIGS.
This will be explained with reference to (e).

はじめに第2図(a)に示すように、P型シリコン基板
1に、熱酸化により酸化膜2を形成し、CVD法により
BPSG膜3を形成する。
First, as shown in FIG. 2(a), an oxide film 2 is formed on a P-type silicon substrate 1 by thermal oxidation, and a BPSG film 3 is formed by CVD.

つぎに第2図(b)に示すように、スパッタ法によりA
ノー1%Si合金4およびWSix5を順次堆積する。
Next, as shown in FIG. 2(b), A
No. 1% Si alloy 4 and WSix 5 are sequentially deposited.

つぎに第2図(C)に示すように、プラズマCVD法に
より窒化膜6を形成する。
Next, as shown in FIG. 2(C), a nitride film 6 is formed by plasma CVD.

つぎに第2図(d)に示すように、フォトリングラフィ
により窒化膜6、WSix5、AI−1%Si合金4を
選択エツチングする。
Next, as shown in FIG. 2(d), the nitride film 6, WSix 5, and AI-1%Si alloy 4 are selectively etched by photolithography.

つぎに第2図(e)に示すように、層間絶縁膜としてポ
リイミド7を塗布してから400’C160分の熱処理
を行なう。
Next, as shown in FIG. 2(e), polyimide 7 is applied as an interlayer insulating film, and then heat treatment is performed for 160 minutes at 400'C.

本実施例においては、WSix5のクラック発生を抑制
する効果はあるが、パフ−1%Si合金4のラテラルヒ
ロックを防止する効果はやや小さくなる。
In this example, although there is an effect of suppressing the occurrence of cracks in WSix 5, the effect of preventing lateral hillocks in Puff-1% Si alloy 4 is slightly reduced.

〔発明の効果〕〔Effect of the invention〕

ポリイミドを眉間絶縁膜とした多層配線においてAIま
たはA7合金の上にシリサイドを積層した配線の上に、
さらに厚さ100Å以上のSiNまたはSiO□保護膜
を備えている。
In a multilayer wiring with polyimide as an insulating film between the eyebrows, on the wiring where silicide is laminated on AI or A7 alloy,
Furthermore, a SiN or SiO□ protective film with a thickness of 100 Å or more is provided.

そのためポリイミドを塗布したのち、熱処理を行なって
もシリサイドにクラックが生じたり、AIまたはA1合
金からラテラルヒロックが成長することはなくなった。
Therefore, even if heat treatment was performed after applying polyimide, cracks did not occur in the silicide, and lateral hillocks did not grow from the AI or A1 alloy.

エレクトロマイグレーションやストレスマイグレーショ
ンの対する耐性が向上した。
Improved resistance to electromigration and stress migration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明の第1の実施例を工程順
に示す断面図、第2図(a)〜(e)は本発明の第2の
実施例を工程順に示す断面図、第3図は従来技術の問題
点を示す平面図である。 ■・・・P型シリコン基板、2・・・酸化膜、3・・・
BPSGM、4・・・Aノー1%Si合金、5・・・W
Six16・・・窒化膜、7・・・ポリイミド、8・・
・シリサイドとA1合金の積層配線、θ・・・シリサイ
ドに生したクラ、り、10・・・A1合金から成長した
ラテラルヒロック。
FIGS. 1(a) to (e) are cross-sectional views showing the first embodiment of the present invention in the order of steps, and FIGS. 2(a) to (e) are cross-sectional views showing the second embodiment of the present invention in the order of steps. 3 are plan views showing problems of the prior art. ■...P-type silicon substrate, 2...oxide film, 3...
BPSGM, 4...A no 1% Si alloy, 5...W
Six16...Nitride film, 7...Polyimide, 8...
・Laminated wiring of silicide and A1 alloy, θ...cracks and ri formed in silicide, 10...lateral hillocks grown from A1 alloy.

Claims (1)

【特許請求の範囲】[Claims] アルミニウム膜およびアルミニウム合金膜のうち1つの
上に高融点シリサイド膜を形成した積層構造の下層配線
の上に、さらに厚さ100Å以上の窒化シリコン膜およ
び酸化シリコン膜のうち1つが形成され、ポリイミドを
層間絶縁膜とする多層配線を備えた半導体装置。
One of a silicon nitride film and a silicon oxide film with a thickness of 100 Å or more is further formed on the lower wiring of the stacked structure in which a high melting point silicide film is formed on one of the aluminum film and the aluminum alloy film. A semiconductor device equipped with multilayer wiring as an interlayer insulating film.
JP29608490A 1990-10-31 1990-10-31 Semiconductor device Pending JPH04167547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29608490A JPH04167547A (en) 1990-10-31 1990-10-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29608490A JPH04167547A (en) 1990-10-31 1990-10-31 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04167547A true JPH04167547A (en) 1992-06-15

Family

ID=17828912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29608490A Pending JPH04167547A (en) 1990-10-31 1990-10-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04167547A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408767B1 (en) * 2001-04-16 2003-12-11 미쓰비시덴키 가부시키가이샤 Pressure sensitive device and method of manufacturing semiconductor substrate used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408767B1 (en) * 2001-04-16 2003-12-11 미쓰비시덴키 가부시키가이샤 Pressure sensitive device and method of manufacturing semiconductor substrate used therefor

Similar Documents

Publication Publication Date Title
JP3244058B2 (en) Method for manufacturing semiconductor device
US5436410A (en) Method and structure for suppressing stress-induced defects in integrated circuit conductive lines
JPH10335657A (en) Manufacture of semiconductor device
JPH04167547A (en) Semiconductor device
JPH02122653A (en) Layer film for semiconductor element
US6566263B1 (en) Method of forming an HDP CVD oxide layer over a metal line structure for high aspect ratio design rule
JPH05175196A (en) Wiring structure of semiconductor device
JPH0740587B2 (en) Method for manufacturing semiconductor device
JPH05102148A (en) Semiconductor device
JP3303400B2 (en) Method for manufacturing semiconductor device
JPH10125676A (en) Production of aluminum wiring
JPH09306912A (en) Formation of wiring for semiconductor elements
JPH0435035A (en) Semiconductor device
JPH04349629A (en) Semiconductor device and its manufacture
JPH0778789A (en) Manufature of semiconductor device
JPH07263553A (en) Production process of semiconductor device
JPS61207032A (en) Semiconductor device
KR20020057340A (en) Multi-interconnection structure of semiconductor device and method for fabricating the same
JP2004288763A (en) Semiconductor device and its manufacturing method
JP2000232100A (en) Semiconductor device and its manufacture
JPH04162531A (en) Manufacture of semiconductor device
JPH04342138A (en) Method of making multilayer wiring member
JPH0235753A (en) Manufacture of semiconductor device
JPH09167769A (en) Wiring material of semiconductor device
JPH05160128A (en) Manufacture of al-si alloy wiring