JPH0215036B2 - - Google Patents

Info

Publication number
JPH0215036B2
JPH0215036B2 JP56211927A JP21192781A JPH0215036B2 JP H0215036 B2 JPH0215036 B2 JP H0215036B2 JP 56211927 A JP56211927 A JP 56211927A JP 21192781 A JP21192781 A JP 21192781A JP H0215036 B2 JPH0215036 B2 JP H0215036B2
Authority
JP
Japan
Prior art keywords
light
optical
analog circuit
built
distance meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56211927A
Other languages
Japanese (ja)
Other versions
JPS58113874A (en
Inventor
Hiroyuki Furumasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Optical Co Ltd
Original Assignee
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Optical Co Ltd filed Critical Tokyo Optical Co Ltd
Priority to JP21192781A priority Critical patent/JPS58113874A/en
Publication of JPS58113874A publication Critical patent/JPS58113874A/en
Publication of JPH0215036B2 publication Critical patent/JPH0215036B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Telescopes (AREA)

Description

【発明の詳細な説明】 本発明は、光波距離計の電装ユニツトの内蔵構
造に関し、主に、視準望遠鏡の対物レンズと測距
光学系の対物レンズとを共用するタイプの光波距
離計における測距用アナログ回路の装置筐体内へ
の内蔵構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a built-in structure of an electrical unit of a light wave distance meter, and is mainly used for measuring in a type of light wave distance meter that shares the objective lens of a collimating telescope and the objective lens of a distance measuring optical system. This invention relates to a structure in which a distance analog circuit is built into a device housing.

近年、光波距離計は、トランシフトやセオドラ
イトに搭載可能な程度に小型軽量化をはかるた
め、視準望遠鏡の対物レンズと測距光学系の対物
レンズとを共用した光学系が採用されている。ま
た、従来のトランシツトやセオドライトの望遠鏡
部に光波測距系を組込んで測距だけでなく測角も
可能にした光波測距経緯儀が製作されている。さ
らに、角度を光電式ロータリーエンコーダを用い
て光電的に検出して、測距データと測角データと
が電気的にデジタル表示可能であり、かつ測距デ
ータと測角データとの間の演算処理機能をももつ
いわゆるトータルステーシヨンが実用化されてい
る。
In recent years, optical rangefinders have adopted optical systems that share the objective lens of the collimating telescope and the objective lens of the ranging optical system in order to make them small and lightweight enough to be mounted on transshifts and theodolites. In addition, light wave ranging theodolites have been manufactured in which a light wave ranging system is incorporated into the telescope section of a conventional transit or theodolite, making it possible to measure not only distance but also angle. Furthermore, the angle can be detected photoelectrically using a photoelectric rotary encoder, and the distance measurement data and angle measurement data can be electronically displayed digitally, and the calculation processing between the distance measurement data and the angle measurement data can be performed. A so-called total station with multiple functions has been put into practical use.

ところで、従来の光波距離計の鏡筒筐体部の内
部構成は、第1図に示すように鏡筒筐体部1が図
示されていない 測角部の托架支柱にその水平軸
を回転軸として鉛直面内で回転自在に支持され
る。鏡筒筐体内部1には、対物レンズ2、ダイク
ロイツクプリズム3、合焦レンズ4、正立プリズ
ム5、レクチル板6、接眼レンズ7からなる視準
望遠鏡と、ダイクロイツクプリズム3を上下方向
から挾む型で配置された発光素子8及び受光素子
9と、集光レンズ10,11とが配置されてい
る。また、発光素子8には発光側アナログ回路1
2が、受光素子9には受光側アナログ回路13が
それぞれ接続されており、両アナログ回路12,
13はデジタル回路14a,14bに接続されて
いる。
By the way, the internal configuration of the lens barrel housing of a conventional optical distance meter is as shown in Fig. 1, where the lens barrel housing 1 is not shown. It is rotatably supported in a vertical plane. Inside the lens barrel housing 1, there is a collimating telescope consisting of an objective lens 2, a dichroic prism 3, a focusing lens 4, an erecting prism 5, a reticle plate 6, and an eyepiece 7, and the dichroic prism 3 is viewed from above and below. A light emitting element 8 and a light receiving element 9, which are arranged in a sandwiching manner, and condensing lenses 10 and 11 are arranged. The light emitting element 8 also includes a light emitting side analog circuit 1.
2, the light-receiving side analog circuit 13 is connected to the light-receiving element 9, and both analog circuits 12,
13 is connected to digital circuits 14a and 14b.

上記従来の光波距離計においては、レフレタク
ーからの微弱な測距反射光を受光素子で光電変換
した微弱信号を増幅及び処理する受光側アナログ
回路に、発光素子を駆動させるための発光側アナ
ログ回路の強力な信号が混入し、測定誤差を生む
原因となつた。これを防止するため、従来の光波
距離計においては、第1図に示したように、受光
素子9と受光側アナログ回路13とを、発光素子
8と発光側アナログ回路とから極力離すため、及
び鏡筒筐体部1を托架支柱で回動自在に支持でき
るように筐体部を小型化する必要性から視準望遠
鏡を境として望遠鏡に接近して分離配置させてい
た。
In the above-mentioned conventional light wave distance meter, a light-receiving side analog circuit that amplifies and processes a weak signal obtained by photoelectrically converting the weak distance measuring reflected light from the reflex reflector by a light-receiving element, and a light-emitting side analog circuit that drives a light-emitting element. Strong signals were mixed in, causing measurement errors. In order to prevent this, in the conventional light wave distance meter, as shown in FIG. Due to the need to downsize the lens barrel housing 1 so that it can be rotatably supported by a support column, the lens barrel housing 1 has been separated from the telescope near the collimating telescope.

ところで、一般に光学装置は、その組立時には
必ず光軸合せの調整を必要とする。光波距離計に
おいても、視準望遠鏡のならず測距光学系の光軸
合せ、特に、受光・発光素子の位置出しは重要で
ある。また、受光素子9へ入射する測距光路の光
量レベルと内部参照光量の光量レベルとは同じレ
ベルであることが測定上のぞましく、そのため光
量調整用濃度フイルタ42をあらかじめ内部参照
光量の所定のレベルに制御しておき、濃度フイル
タ43により測距光量を内部参照光量と一致させ
て測定する。しかし、参照光路の信号量は光波距
離計に組込んだ受光・発光素子により一定でない
ことと、実際に光学系を通つた受光信号を測定し
ながら調整しなければならないことから、光波距
離計毎に調整する必要がある。また、電気回路の
最終調整は実際に装置に組込んで測定時と同じモ
デル環境下で調整しなければならないことは言う
までもなく、特に、光波距離計においては、その
光学系の特性とも合せた光波距離計毎の最終調整
を必要とする。
Incidentally, optical devices generally require adjustment of optical axis alignment when assembling the device. In optical rangefinders as well, it is important to align the optical axes of not only the collimating telescope but also the ranging optical system, especially the positioning of the light receiving and emitting elements. In addition, it is preferable for measurement that the light intensity level of the ranging optical path incident on the light receiving element 9 and the light intensity level of the internal reference light intensity are the same level, so that the density filter 42 for adjusting the light intensity is set in advance to a predetermined value of the internal reference light intensity. The distance measuring light amount is controlled to a level of 1, and the distance measuring light amount is made to match the internal reference light amount using the density filter 43 for measurement. However, the amount of signal in the reference optical path is not constant depending on the light receiving and emitting elements built into the optical distance meter, and it must be adjusted while actually measuring the received light signal that has passed through the optical system. need to be adjusted. In addition, it goes without saying that the final adjustment of the electric circuit must be made under the same model environment as when it is actually assembled into the device and used for measurement. Final adjustment is required for each rangefinder.

しかしながら、従来の光波距離計は、前述した
ように受光・発光素子回路の分離の必要性から受
光側アナログ回路と発光側アナログ回路とに2分
され、それぞれ独立に分離配置されていた。従つ
て、組立て時やメンテナンス時の調整では、これ
ら分離された両アナログ回路を光波距離計に組込
まなければ、光軸調整や光量レベル調整が出来な
い。しかし、両アナログ回路が光学系を挾み込む
ように配置されているため、調整が非常に困難で
あり、調整は、いづれか一方のアナログ回路を取
りはずして光学系の調整を行い、再度該アナログ
回路を組込み、その測定データをもとに、今度は
他方のアナログ回路を取りはずして光学系を調整
するという行程を繰り返して行なわなければなら
なかつた。また、アナログ回路等は取りはずしや
組込み毎にそのシールド特性が微妙に変化するた
め、その都度測定データが変化し、取りはずし前
のデータをもとに行う調整は困難であり、いきお
い調整組立て時間の長大化をまねく欠点があつ
た。
However, as mentioned above, due to the necessity of separating the light-receiving and light-emitting element circuits, the conventional light wave distance meter is divided into a light-receiving-side analog circuit and a light-emitting-side analog circuit, each of which is independently arranged. Therefore, when making adjustments during assembly or maintenance, optical axis adjustment and light intensity level adjustment cannot be performed unless both of these separate analog circuits are incorporated into the optical distance meter. However, since both analog circuits are arranged so as to sandwich the optical system, adjustment is extremely difficult.To make adjustments, remove one of the analog circuits, adjust the optical system, and then re-adjust the analog circuit. The process of installing the analog circuit, then removing the other analog circuit and adjusting the optical system based on the measured data had to be repeated. In addition, the shielding characteristics of analog circuits change slightly each time they are removed or installed, so the measurement data changes each time, making it difficult to make adjustments based on the data before removal, and it takes a long time to make adjustments and assemble them. There were flaws that led to

本発明は上記従来の光波距離計の欠点を解決す
るためになされたもので、その構成上の特徴とす
るところは、視準望遠鏡の対物レンズと、光波測
距光学系の対物レンズを共用した光学系を望遠鏡
筐体内に内蔵している光波距離計において、発光
側アナログ回路と受光側アナログ回路の両回路を
前記視準望遠鏡の光軸に関し前記望遠鏡筐体内の
片側に内蔵させ、デジタル回路を前記望遠鏡体内
の他方側に内蔵させた点にある。
The present invention was made to solve the above-mentioned drawbacks of the conventional light wave distance meter, and its structural feature is that the objective lens of the collimating telescope and the objective lens of the light wave distance measuring optical system are shared. In an optical distance meter in which an optical system is built in a telescope housing, both a light-emitting side analog circuit and a light-receiving side analog circuit are built in one side of the telescope housing with respect to the optical axis of the collimating telescope, and a digital circuit is built in. It is built into the other side of the telescope body.

以上のように構成される本発明の光波距離計は
調整時に、光学系と分離しかつ筐体外に配置した
状態でアナログ回路と接続しても正常に作動する
デジタル回路を取りはずし可能としたので、デジ
タル回路が収納されるべき筐体側から光軸合せや
光量レベル調整がきわめて容易に行うことができ
る。また、アナログ回路は常に光学系及び受光・
発光素子と接続されているため、つねに正確な測
定データが得られ、電気系の調整やチエツクも容
易に行うことができる。
The light wave rangefinder of the present invention configured as described above allows for the removal of the digital circuit, which operates normally even when connected to the analog circuit when separated from the optical system and placed outside the housing, during adjustment. Optical axis alignment and light intensity level adjustment can be performed extremely easily from the housing side where the digital circuit is housed. In addition, analog circuits always include optical systems, light receiving,
Since it is connected to the light emitting element, accurate measurement data can always be obtained, and electrical system adjustments and checks can be easily performed.

さらに、前記アナログ回路が内蔵される側と反
対側の参照光路内に光量レベル調整手段を配置す
れば、光量レベル調整もデジタル回路を収納する
筐体側から行うことができ都合よい。
Furthermore, if the light amount level adjusting means is arranged in the reference optical path on the side opposite to the side where the analog circuit is built-in, the light amount level adjustment can also be conveniently performed from the side of the casing housing the digital circuit.

以下本発明の実施例を図にもとづいて説明す
る。鏡筒筐体101は、第2図及び第3図に示す
ように、中央部150、上方部152、下方部1
55に分割されている。中央部150には対物レ
ンズ102、接眼レンズ104及び光学系106
が取付けられあるいは収納される。光学系106
は第1図に示すような視準望遠鏡系と測距光学系
とで構成されている。上方部152には受光素子
ユニツト153、発光素子ユニツト154、発光
側アナログ回路112と受光側アナログ回路11
3とからなるアナログ回路151が収納される。
下方部155にはデジタル回路114が内蔵され
ている。受光素子ユニツト153は、第3図に示
すように、受光ユニツト鏡筒156、受光ユニツ
ト鏡筒156に内蔵された受光素子157と集光
レンズ158、受光オプテイカルフアイバ15
9、受光オプテイカルフアイバー用の第1コネク
タ160及び第2コネクタ162から構成され
る。第2コネクタ162は中央部106の上壁の
開口に嵌挿される。発光素子ユニツト154も受
光素子ユニツト153と類似の構成であり、発光
ユニツト鏡筒165、発光ユニツト鏡筒165に
内蔵された発光素子166と集光レンズ167、
発光オプテイカルフアイバー168、発光オプテ
イカルフアイバー用の第3コネクタ169及び第
4コネクタ170から構成される。また、中央部
150の下部には内部参照光路用の光量レベル調
整濃度フイルタ171が配置される。回転軸17
2によつて支持された濃度フイルタ171は円板
状であつて周方向に連続的に透過率が変化するも
のである。回転軸172は中央部150の下面壁
を貫通して軸支され、下方部155に配置された
つまみ173により回転軸172及び濃度フイル
タ171が回転させられる。
Embodiments of the present invention will be described below based on the drawings. As shown in FIGS. 2 and 3, the lens barrel housing 101 includes a central portion 150, an upper portion 152, and a lower portion 1.
It is divided into 55 parts. The central portion 150 includes an objective lens 102, an eyepiece lens 104, and an optical system 106.
is installed or stored. Optical system 106
The telescope consists of a collimating telescope system and a ranging optical system as shown in FIG. The upper part 152 includes a light receiving element unit 153, a light emitting element unit 154, a light emitting side analog circuit 112, and a light receiving side analog circuit 11.
An analog circuit 151 consisting of 3 is housed.
A digital circuit 114 is built into the lower part 155. As shown in FIG. 3, the light receiving element unit 153 includes a light receiving unit barrel 156, a light receiving element 157 built into the light receiving unit barrel 156, a condensing lens 158, and a light receiving optical fiber 15.
9. Consists of a first connector 160 and a second connector 162 for light-receiving optical fiber. The second connector 162 is fitted into an opening in the upper wall of the central portion 106 . The light emitting element unit 154 has a similar configuration to the light receiving element unit 153, and includes a light emitting unit barrel 165, a light emitting element 166 built in the light emitting unit barrel 165, a condensing lens 167,
It is composed of a light emitting optical fiber 168, a third connector 169 for the light emitting optical fiber, and a fourth connector 170. Further, a light amount level adjustment density filter 171 for the internal reference optical path is arranged at the lower part of the central portion 150. Rotating shaft 17
The density filter 171 supported by 2 is disk-shaped and has a transmittance that changes continuously in the circumferential direction. A rotating shaft 172 is pivotally supported through the lower wall of the central portion 150, and a knob 173 disposed in the lower portion 155 rotates the rotating shaft 172 and the density filter 171.

上記構成において、受光側アナログ部113と
発光側アナログ部112とは独立してシールドさ
れることが望ましい。
In the above configuration, it is desirable that the light-receiving side analog section 113 and the light-emitting side analog section 112 be independently shielded.

次に、光波測距系の電気回路を第4図にもとづ
いて説明する。光波測距系は、発光側アナログ回
路112、受光側アナログ回路113及びデジタ
ル回路114から構成される。発光側アナログ回
路112は、基準発振器220、基準発振器22
0から入力し発光素子154に出力する第1分周
器221、第1分周器221を入力する第2分周
器223及び第1分周器221と第2分周器22
3とを入力する第1混合器224から構成され
る。受光側アナログ回路113は、受光素子15
7から入力するプリアンプ222、プリアンプ2
22と第1混合器224とを入力する第2混合器
225及び第2混合器225を入力しデジタル回
路114に出力する波形整形器226から構成さ
れる。デジタル回路114は、基準発振器220
と第2分周器223と波形整形器226とが入力
するデジタル位相差計227、デジタル位相差計
が入力するメモリー230、デジタル位相差計2
27及びメモリー230を入力し表示器231に
出力する演算器229から構成される。デジタル
回路114はさらに制御回路232を有する。以
上の構成において、受光側アナログ回路113と
発光側アナログ回路112とはそれぞれ独立して
シールドされることが望ましい。さらに精度を上
げることが要求されるときは、第4図に示すすべ
てのブロツクをシールドすることが望ましい。
Next, the electric circuit of the light wave ranging system will be explained based on FIG. The light wave ranging system includes a light emitting side analog circuit 112, a light receiving side analog circuit 113, and a digital circuit 114. The light emitting side analog circuit 112 includes a reference oscillator 220 and a reference oscillator 22.
A first frequency divider 221 that inputs from 0 and outputs to the light emitting element 154, a second frequency divider 223 that inputs the first frequency divider 221, and the first frequency divider 221 and the second frequency divider 22.
3 and a first mixer 224 that inputs 3 and 3. The light receiving side analog circuit 113 includes the light receiving element 15
Preamplifier 222 input from 7, Preamplifier 2
22 and a first mixer 224 , and a waveform shaper 226 that inputs the second mixer 225 and outputs it to the digital circuit 114 . The digital circuit 114 includes a reference oscillator 220
A digital phase difference meter 227 to which the second frequency divider 223 and waveform shaper 226 input, a memory 230 to which the digital phase difference meter inputs, and a digital phase difference meter 2
27 and a memory 230 and outputs to a display 231. Digital circuit 114 further includes control circuit 232 . In the above configuration, it is desirable that the light-receiving side analog circuit 113 and the light-emitting side analog circuit 112 are each independently shielded. If further accuracy is required, it is desirable to shield all blocks shown in FIG.

以上の電気回路において、基準発振器220か
らの基準周波数f0=30MHzは、第1分周器221で
1/20に分周され、f1=1.5MHzの信号を作る。こ
の信号は発光素子154に送られ、発光素子15
4は1.5MHzの赤外変調光を発光する。発光素子
154からの変調光は対物レンズ102等を介し
て目標点に配置されたレフレクタ(図示せず)に
送られ、ここで反射されて再び対物レンズ102
等を介して受光素子157に到達する。受光素子
157に入射した光束は1.5MHzの成分と、被測
距離に応じた位相差の成分とを含んでいる。一
方、第1分周器221からの周波数f1の信号は第
2分周器223にも供給され、ここで1/500に分
周されてf2=3KHzの信号が作られる。この信号
は第1混合器224に供給され、第1分周器22
1からのf1信号との差の周波数f3÷f1−f2
1497MHzの信号が作られる。この周波数f3の信号
は更に受光側アナログ回路213の第2混合器2
25に供給される。この第2混合器225は、プ
リアンプ222から供給される出力信号との間で
f1−f3=f2からのビートダウン信号を作る。受光
素子157からの信号は被測距離に応じた位相差
成分を有しているから、第2混合器225の出力
信号はf2=3KHzの信号と距離に応じた位相差と
を含むものとなる。この信号は波形整形器226
で波形整形したのち、デジタル回路214のデジ
タル位相差計227に供給される。第2分周器2
23からの周波数f2の信号は、デジタル位相差計
227に参照信号として供給され、被測距離に応
じた位相差を検出し、この検出した位相差の大き
さを基準発振器220からの周波数f0の信号によ
つてデジタル的に測定し、その値を測距データと
して演算器229に供給する。
In the above electric circuit, the reference frequency f 0 =30 MHz from the reference oscillator 220 is divided by 1/20 by the first frequency divider 221 to create a signal of f 1 =1.5 MHz. This signal is sent to the light emitting element 154, and the light emitting element 15
4 emits 1.5MHz infrared modulated light. The modulated light from the light emitting element 154 is sent to a reflector (not shown) placed at the target point via the objective lens 102 etc., where it is reflected and returned to the objective lens 102.
The light reaches the light receiving element 157 via etc. The light beam incident on the light receiving element 157 includes a 1.5 MHz component and a phase difference component depending on the distance to be measured. On the other hand, the signal of frequency f 1 from the first frequency divider 221 is also supplied to the second frequency divider 223, where the frequency is divided by 1/500 to create a signal of f 2 =3KHz. This signal is supplied to a first mixer 224 and a first frequency divider 22
1 to f 1 signal difference frequency f 3 ÷ f 1 − f 2 =
A 1497MHz signal is created. This signal of frequency f 3 is further transmitted to the second mixer 2 of the analog circuit 213 on the light receiving side.
25. This second mixer 225 is connected to the output signal supplied from the preamplifier 222.
Create a beatdown signal from f 1 − f 3 = f 2 . Since the signal from the light receiving element 157 has a phase difference component corresponding to the measured distance, the output signal of the second mixer 225 includes a signal of f 2 =3KHz and a phase difference corresponding to the distance. Become. This signal is passed to the waveform shaper 226
After waveform shaping, the signal is supplied to the digital phase difference meter 227 of the digital circuit 214. 2nd frequency divider 2
The signal of frequency f 2 from the reference oscillator 23 is supplied as a reference signal to the digital phase difference meter 227, which detects a phase difference according to the distance to be measured. It is measured digitally using a signal of 0 , and the value is supplied to the computing unit 229 as ranging data.

上述したように測距は、多数の電気素子を有す
る回路により行なわれるので、これら電気素子の
応答遅れやそのドリフト現象が位相差の検出結果
に影響を及ぼし測定誤差となる。
As described above, since distance measurement is performed by a circuit having a large number of electric elements, response delays and drift phenomena of these electric elements affect the detection result of the phase difference, resulting in a measurement error.

このため、発光素子154からの光を筐体内部
で直接受光素子157に送る内部参照光路240
を設け、測距光路を通つた光と内部参照光路を通
つた光とを比較することにより、電気回路の応答
遅れの影響を除去している。この内部参照光路と
測距光路との切換はシヤツター241によつて切
換えられる。演算器229は、すでに測距の場合
と同じ各電気回路によつて測定された内部参照光
路240のデータが記憶されているメモリー23
0からのデータと、測距データとの間で演算処理
し、電気回路の応答遅れの影響のない状態のデー
タに修正して、表示器231に出力する。なお、
以上の処理制御は制御回路232の制御のもとに
行われる。
For this reason, an internal reference optical path 240 that sends light from the light emitting element 154 directly to the light receiving element 157 inside the housing
By comparing the light passing through the ranging optical path and the light passing through the internal reference optical path, the influence of response delay of the electric circuit is removed. Switching between the internal reference optical path and the distance measuring optical path is performed by a shutter 241. The arithmetic unit 229 has a memory 23 in which data of the internal reference optical path 240 already measured by the same electric circuits as in the case of distance measurement is stored.
Arithmetic processing is performed between the data from 0 and the distance measurement data, and the data is corrected to a state free from the influence of response delay of the electric circuit, and the data is output to the display 231. In addition,
The above processing control is performed under the control of the control circuit 232.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光波距離計の構造説明図、第2
図は実施例の垂直断面図、第3図は実施例の水平
断面図、第4図は実施例の電気回路図である。 101……鏡筒筐体部、102……対物レン
ズ、104……接眼レンズ、112……発光側ア
ナログ回路、113……受光側アナログ回路、1
14……デジタル回路、150……中央部、15
2……上方部、153……受光素子ユニツト、1
54……発光素子ユニツト、159……受光オプ
テイカルフアイバ、171……光量レベル調整濃
度フイルター。
Figure 1 is an explanatory diagram of the structure of a conventional optical distance meter, Figure 2
The figure is a vertical sectional view of the embodiment, FIG. 3 is a horizontal sectional view of the embodiment, and FIG. 4 is an electric circuit diagram of the embodiment. 101... Lens barrel housing section, 102... Objective lens, 104... Eyepiece lens, 112... Light emitting side analog circuit, 113... Light receiving side analog circuit, 1
14...Digital circuit, 150...Central part, 15
2... Upper part, 153... Light receiving element unit, 1
54...Light emitting element unit, 159...Light receiving optical fiber, 171...Light level adjustment density filter.

Claims (1)

【特許請求の範囲】 1 視準望遠鏡の対物レンズと光波測距光学系の
対物レンズとを共用してなる光学系の望遠鏡筐体
内に内臓している光波距離計において、 発光側アナログ回路と受光側アナログ回路との
両回路を前記視準望遠鏡の光軸に関し前記望遠鏡
筐体内の片側に内臓させ、デジタル回路を前記望
遠鏡体内の他方側に内臓させたことを特徴とする
光波距離計。 2 受光素子または発光素子の少なくとも一方
を、前記アナログ回路内蔵側に配置したことを特
徴とする特許請求の範囲第1項記載の光波距離
計。 3 受光素子および発光素子の両方を、前記アナ
ログ回路の内蔵側に、互いに間隔を置いて配置し
たことを特徴とする特許請求の範囲第1項記載の
光波距離計。 4 受光素子および/または発光素子と前記測距
光学系との間が、オプテイカルフアイバーによつ
て連結されたことを特徴とする特許請求の範囲第
2項または第3項記載の光波距離計。 5 光波測距光学系の内部参照光路内に配置され
る光量レベル調整手段は、前記視準望遠鏡の光軸
に関し前記アナログ回路内蔵側と反対側に配置さ
れたことを特徴とする特許請求の範囲第1項ない
し第4項いずれかに記載の光波距離計。 6 前記受光側アナログ回路は、他の回路からシ
ールドされたことを特徴とする特許請求の範囲第
1項ないし第5項いずれかに記載の光波距離計。
[Scope of Claims] 1. In a light-wave distance meter built into a telescope housing of an optical system that shares the objective lens of a collimating telescope and the objective lens of a light-wave ranging optical system, the light-emitting side analog circuit and the light-receiving side An optical distance meter characterized in that both a side analog circuit and a side analog circuit are built into one side of the telescope housing with respect to the optical axis of the collimating telescope, and a digital circuit is built into the other side of the telescope body. 2. The light wave distance meter according to claim 1, wherein at least one of a light receiving element and a light emitting element is disposed on the side where the analog circuit is built-in. 3. The optical distance meter according to claim 1, wherein both the light receiving element and the light emitting element are arranged at a distance from each other on the built-in side of the analog circuit. 4. The optical distance meter according to claim 2 or 3, wherein the light receiving element and/or the light emitting element and the distance measuring optical system are connected by an optical fiber. 5. Claims characterized in that the light level adjusting means disposed in the internal reference optical path of the light wave ranging optical system is disposed on the opposite side to the analog circuit built-in side with respect to the optical axis of the collimating telescope. The optical distance meter according to any one of Items 1 to 4. 6. The optical distance meter according to any one of claims 1 to 5, wherein the light-receiving analog circuit is shielded from other circuits.
JP21192781A 1981-12-28 1981-12-28 Optical range finder Granted JPS58113874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21192781A JPS58113874A (en) 1981-12-28 1981-12-28 Optical range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21192781A JPS58113874A (en) 1981-12-28 1981-12-28 Optical range finder

Publications (2)

Publication Number Publication Date
JPS58113874A JPS58113874A (en) 1983-07-06
JPH0215036B2 true JPH0215036B2 (en) 1990-04-10

Family

ID=16613970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21192781A Granted JPS58113874A (en) 1981-12-28 1981-12-28 Optical range finder

Country Status (1)

Country Link
JP (1) JPS58113874A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358268A (en) * 1976-11-08 1978-05-26 Tokyo Optical Distance measuring theodlite
JPS55144567A (en) * 1979-04-27 1980-11-11 Tokyo Optical Co Ltd Optical fiber device for light wave range finder
JPS5677773A (en) * 1980-11-12 1981-06-26 Tokyo Optical Co Ltd Mixing/unifying device for uneven phase of light wave distance measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358268A (en) * 1976-11-08 1978-05-26 Tokyo Optical Distance measuring theodlite
JPS55144567A (en) * 1979-04-27 1980-11-11 Tokyo Optical Co Ltd Optical fiber device for light wave range finder
JPS5677773A (en) * 1980-11-12 1981-06-26 Tokyo Optical Co Ltd Mixing/unifying device for uneven phase of light wave distance measuring device

Also Published As

Publication number Publication date
JPS58113874A (en) 1983-07-06

Similar Documents

Publication Publication Date Title
US4171907A (en) Electro-optic distance measuring device
JPH0332758B2 (en)
JP3137307B2 (en) Omnidirectional distance detector
CN107037442A (en) Light wave distance measuring system
US4093383A (en) Angle measuring device with a telescope
CN108508503A (en) A kind of achievable collection of illustrative plates and the remote-sensing imaging system of the integrated detection of structural information
JP2000329517A (en) Distance-measuring apparatus
US20080062526A1 (en) Target Acquisition Device
US3489495A (en) Range finding instruments
JPH0215036B2 (en)
EP0577578B1 (en) Optical angle measuring device
CN111198363A (en) Distance measuring device with high signal dynamics and reference optical path matched with same
EP0135423B1 (en) Distance measuring system
US4071772A (en) Apparatus for measurement of mechanical aberrations affecting stereoscopic image analysis
US4097734A (en) Zero index for electro-optical measuring device
EP0100357B1 (en) Methods and means for utilizing apodized beams
JP2587237B2 (en) Measurement method of machine center height of coaxial collimation rangefinder
EP0892982A1 (en) Angular measurement apparatus
RU2155323C1 (en) Optoelectronic target search and tracking system
CN111708031A (en) Laser radar
JPS63225121A (en) Autocollimation type light wave range finder
JPH02179412A (en) Measuring apparatus
US2552893A (en) Theodolite scale reading system
US3861806A (en) Sighting goniometer
JP2000112661A (en) Method for adjusting optical axis of scanning light for optical scanning touch panel