JPS63225121A - Autocollimation type light wave range finder - Google Patents

Autocollimation type light wave range finder

Info

Publication number
JPS63225121A
JPS63225121A JP6065787A JP6065787A JPS63225121A JP S63225121 A JPS63225121 A JP S63225121A JP 6065787 A JP6065787 A JP 6065787A JP 6065787 A JP6065787 A JP 6065787A JP S63225121 A JPS63225121 A JP S63225121A
Authority
JP
Japan
Prior art keywords
light
servo
collimation
reflector
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6065787A
Other languages
Japanese (ja)
Other versions
JPH07117414B2 (en
Inventor
Yoshiisa Narutaki
能功 鳴瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Opt KK
Original Assignee
Opt KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opt KK filed Critical Opt KK
Priority to JP62060657A priority Critical patent/JPH07117414B2/en
Publication of JPS63225121A publication Critical patent/JPS63225121A/en
Publication of JPH07117414B2 publication Critical patent/JPH07117414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To enable automatic collimation to be performed by providing a mechanism for alternately oscillating the optical axis of an objective lens in horizontal and vertical directions and detecting the deviation of servo light reflected from a reflector on the optical axial. CONSTITUTION:A range finder is constituted by a light emitting element 16 for emitting collimation servo light 18 to a reflector 4 at a ranging target point, a photosensitive element 19 for receiving reflected light from the reflector 4, a servo mechanism (servo circuit 2a, X axis gear motor 11, Y axis gear motor 12) for alternately oscillating the optical axes of objective lenses (light feed lens 13, light receiving lens 14) in horizontal and vertical directions and a light wave range finder 3 directed in the collimating direction of the objective lenses. The deviations of the optical axes are detected by change in a received light level and collimation servos 11 and 12 are alternately conducted in horizontal and vertical directions so that the deviations become maximum. Then, the quantity of the fed servo light 18 is adjusted and the received light level is set to a prescribed value. When the received light level is stored, a range is measured 3. Thereafter, the collimation and range measurement are alternately performed in the same manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動視準式光波距離計に関し、特に陸上局に光
波距離計を備えて沿岸作業船台の位置を測定し、高精度
の位置決めを行う海洋作業システムに用いて好適なもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an automatic collimation type light wave distance meter, and in particular, to a land station equipped with a light wave range meter to measure the position of a coastal work platform and to perform highly accurate positioning. This is suitable for use in offshore work systems.

〔発明の概要〕[Summary of the invention]

視準サーボ光を反射器に向けて投光して、反射光のレベ
ルが最大になるように受光出力に基いて光軸を水平及び
垂直方向に交互に振ることによって視準させ、視準状態
にて光波距離計を動作させるようにした自動視準式光波
距離計である。
The collimation servo light is projected toward the reflector, and the optical axis is alternately swung horizontally and vertically based on the received light output so that the level of the reflected light is maximized. This is an automatic collimation type light wave distance meter that operates at

〔従来の技術〕[Conventional technology]

土木工事、港湾工事、沿岸工事等において、ブルドーザ
−1浚渫船、作業船台等の移動体の位置又は距離を固定
位置から計測するシステムが求められている。
In civil engineering work, port construction work, coastal construction work, etc., there is a need for a system that measures the position or distance of a movable object such as a bulldozer-1 dredger or a work slip from a fixed position.

従来、固定位置及び移動体の一方に光波距離計、他方に
反射器(コーナキューブプリズム等)を設け、これらの
光軸をお互いに一致させる自動視準式にして、船台等の
移動体が揺動しても支障無く位置計測ができるようにし
たシステムが知られている(例えば実公昭59−822
1号公報)。
Conventionally, a light wave distance meter was installed on one side of a fixed position and a moving object, and a reflector (corner cube prism, etc.) was installed on the other, and an automatic collimation system was used to align these optical axes with each other. A system is known that allows position measurement without any problem even when moving (for example, Utility Model Publication No. 59-822
Publication No. 1).

公知の自動視準式光波距離計は、距離計と平行な視準サ
ーボ用光軸を有し、測定目標点からの視準サーボ光を4
分割受光素子(受光面を水平、垂直の4象限に分割した
ホトダイオード等)で受けて、その出力を水平、垂直の
首振りモータにフィードバックして、受光素子の原点に
サーボ光を結像させるようなサーボ系を備えている。
A known automatic collimation type light wave rangefinder has a collimation servo optical axis parallel to the rangefinder, and transmits the collimation servo light from the measurement target point into four directions.
The servo light is received by a divided light-receiving element (a photodiode, etc. whose light-receiving surface is divided into four horizontal and vertical quadrants), and the output is fed back to the horizontal and vertical swing motors to form a servo light at the origin of the light-receiving element. It is equipped with a servo system.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の自動視準式光波距離計は、反射器側から発信され
る視準サーボ光を受信して対物レンズの光軸を相手局の
サーボ光軸と一致させる構成であるので、相手局に視準
サーボ用光源を設ける必要があった。
Conventional automatic collimation type optical distance meters are configured to receive collimating servo light emitted from the reflector side and align the optical axis of the objective lens with the servo optical axis of the other station, so the other station cannot see it. It was necessary to provide a quasi-servo light source.

そこで視準サーボ光を自局から発信し、反射器で反射し
て戻ってきたサーボ光を受信して対物レンズの光軸を反
射器に視準させるようにすることが考えられる。しかし
反射器としてコーナーキューブプリズムを用いる場合、
視準光軸が幾分ずれていても、発信光が平行に戻って来
るため、4分割フォトダイオードでは光軸のずれを検出
することができないので、サーボ系を構成することがで
きない。
Therefore, it is conceivable to transmit collimated servo light from the local station, receive the servo light reflected by a reflector, and collimate the optical axis of the objective lens to the reflector. However, when using a corner cube prism as a reflector,
Even if the collimated optical axis is slightly deviated, the emitted light will return in parallel, so a four-segment photodiode cannot detect the deviation of the optical axis, so a servo system cannot be constructed.

本発明は、反射器で反射して戻ってきたサーボ光により
光軸のずれを検出して自動視準を行えるようにすること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to enable automatic collimation by detecting a shift in the optical axis using servo light reflected by a reflector and returned.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の自動視準式光波距離計は、測定目標点における
反射器4に視準サーボ光18を送光する発光素子16と
、上記反射器からの反射光を受光する受光素子19と、
上記受光素子19の出力レベルが最大となるように対物
レンズ(送光レンズ13、受光レンズ14)の光軸を水
平及び垂直方向に交互に振るサーボ機構(サーボ回路2
a、X軸及びY軸ギヤモータ11.12)と、上記対物
レンズの視準方向に向けられ・た光波距離計3とを備え
る。
The automatic collimation type optical distance meter of the present invention includes: a light emitting element 16 that transmits a collimating servo light 18 to a reflector 4 at a measurement target point; a light receiving element 19 that receives reflected light from the reflector;
A servo mechanism (servo circuit 2
a, X-axis and Y-axis gear motors 11, 12), and a light wave distance meter 3 oriented in the collimation direction of the objective lens.

〔作用〕[Effect]

光軸のずれが受光レベルの変化となって表れるのを利用
して、距離計からのサーボ光の反射光に基いて光軸を測
定目標の反射器に視準させる。水平方向と垂直方向の視
準動作を交互に行うので、光軸の上下、左右方向のずれ
を検出する4象限受光素子を使用することなく、−個の
受光素子で水平、垂直のサーボ検出部を構成できる。水
平方向及び垂直方向の各視準を同時に行えないので、光
軸の変化に対し応答遅れが生じるが、視準を達成した直
後に距離計測を行えば応答遅れは問題にならない。
Taking advantage of the fact that the deviation of the optical axis appears as a change in the level of received light, the optical axis is collimated to the reflector of the measurement target based on the reflected light of the servo light from the range finder. Since horizontal and vertical collimation operations are performed alternately, horizontal and vertical servo detection units can be used with - number of photodetectors, without using four-quadrant photodetectors to detect vertical and horizontal deviations of the optical axis. can be configured. Since horizontal and vertical collimation cannot be performed at the same time, there will be a delay in response to changes in the optical axis, but if distance measurement is performed immediately after collimation is achieved, the response delay will not be a problem.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す海洋作業船台用の自動
視準測距システムの全体のブロック図で、第2図及び第
3図は光波距離計及び反射器の正面図である。陸上側の
光波距離計は基台1上に設けられた視準装置2内に配置
されている。船台側には、コーナーキューブプリズムを
備える反射器4が配置される。
FIG. 1 is an overall block diagram of an automatic sighting and ranging system for a marine work platform showing an embodiment of the present invention, and FIGS. 2 and 3 are front views of a light wave distance meter and a reflector. The light wave distance meter on the land side is arranged in a collimation device 2 provided on a base 1. A reflector 4 including a corner cube prism is arranged on the ship's platform side.

視準装置2は、水平面内で回動自在の水平架腕8及び垂
直面内で回動自在の垂直架腕9を備え、夫々X軸ギヤモ
ータ11及びY軸ギヤモータ12によって駆動される。
The collimation device 2 includes a horizontal arm 8 that is rotatable in a horizontal plane and a vertical arm 9 that is rotatable in a vertical plane, and is driven by an X-axis gear motor 11 and a Y-axis gear motor 12, respectively.

垂直梁腕9上には、送光レンズ13及び受光レンズ14
を備える送受光ユニット15が取付けられている。送光
レンズ13の焦点にはLED等の発光素子16が配置さ
れ、受光レンズ14の焦点にはフォトダイオード等の受
光素子19が配置されている。
A light transmitting lens 13 and a light receiving lens 14 are mounted on the vertical beam arm 9.
A light transmitting/receiving unit 15 is attached. A light emitting element 16 such as an LED is arranged at the focal point of the light transmitting lens 13, and a light receiving element 19 such as a photodiode is arranged at the focal point of the light receiving lens 14.

測定時には、測定局側に設けられている視準望遠鏡41
で反射器に設けられているターゲット42を見ながら垂
直微調ツマミ43及び水平微調ツマミ44を調整して対
物レンズ13.14の光軸をコーナーキューブプリズム
7に視準させる。
At the time of measurement, the collimating telescope 41 installed on the measuring station side
While looking at the target 42 provided on the reflector, the vertical fine adjustment knob 43 and the horizontal fine adjustment knob 44 are adjusted to collimate the optical axes of the objective lenses 13 and 14 onto the corner cube prism 7.

上記のようにして対物レンズ13.14の光軸をコーナ
ーキューブプリズム7に視準させた後に図示しない電源
スィッチを投入すると、視準装置2及び光波距離計3は
動作状態となる。
After collimating the optical axes of the objective lenses 13 and 14 onto the corner cube prism 7 as described above, when a power switch (not shown) is turned on, the collimating device 2 and the optical range finder 3 become operational.

視準サーボ回路2aの発光素子16には、発振変調回路
17から5KHzのAM変調された正弦波のサーボ信号
が供給される。これにより発光素子16から視準サーボ
光18が送光レンズ13を通して船台側に投光される。
A 5 KHz AM-modulated sine wave servo signal is supplied from an oscillation modulation circuit 17 to the light emitting element 16 of the collimation servo circuit 2a. As a result, the collimated servo light 18 is projected from the light emitting element 16 through the light transmitting lens 13 toward the boat platform.

サーボ光18はほぼ平行光線であるが、発光素子の面積
等により幾分発敗し、その中心部の光量が大で周辺に行
くに従って減衰する。
Although the servo light 18 is a substantially parallel light beam, it is somewhat distorted due to the area of the light emitting element, etc., and the amount of light is large at the center and attenuates toward the periphery.

反射器4のコーナキューブプリズム7で反射されて戻っ
て来たサーボ光18は受光レンズ14を通ってその焦点
に収束し、受光素子19で受光される。受光出力は、プ
リアンプ21、フィルターアンプ22によって規定の電
圧レベルに増幅される。
The servo light 18 reflected by the corner cube prism 7 of the reflector 4 and returned passes through the light receiving lens 14 and converges at its focal point, and is received by the light receiving element 19. The received light output is amplified to a specified voltage level by a preamplifier 21 and a filter amplifier 22.

増幅された受光電圧はコンパレータ23の入力端子に導
入され、コンパレータ23の比較端子に導入されている
基準電圧Eと比較される。比較の結果、受光電圧レベル
が基準電圧Eよりも低い場合には、発振変調回路17の
変調度を上げて、発光素子16から送光する視準サーボ
光18の強度を増し、受光電圧レベルを規定値迄上昇さ
せる。
The amplified light-receiving voltage is introduced into the input terminal of the comparator 23 and compared with the reference voltage E introduced into the comparison terminal of the comparator 23. As a result of the comparison, if the received light voltage level is lower than the reference voltage E, the degree of modulation of the oscillation modulation circuit 17 is increased, the intensity of the collimated servo light 18 transmitted from the light emitting element 16 is increased, and the received light voltage level is increased. Increase to the specified value.

反対に受光電圧レベルが基準電圧よりも高い場合には変
調度を減少させる。
On the other hand, when the received light voltage level is higher than the reference voltage, the modulation degree is decreased.

なお受光電圧レベルを規定のレベルに合わせるために変
調度を大幅に加減しなければならない場合には、AGC
回路を設け、例えばコンパレータ23の出力でプリアン
プ21、フィルターアンプ22の利得を自動制御するよ
うにしてもよい。このようにして一定のレベルに調整さ
れた受光電圧レベルはピークホールド回路25に保持さ
れる(この保持電圧を例えば4〔v〕とする)。
Note that if the modulation degree must be significantly adjusted to match the received light voltage level to the specified level, the AGC
A circuit may be provided to automatically control the gains of the preamplifier 21 and filter amplifier 22 using the output of the comparator 23, for example. The light reception voltage level adjusted to a constant level in this way is held in the peak hold circuit 25 (this holding voltage is set to, for example, 4 [V]).

以上により、視準サーボ系の予備設定が終了する。この
状態で発振変調回路17における変調度を固定する。ま
た上述のようにプリアンプ21又はフィルターアンプ2
2にAGC回路を設けた場合には、その利得も固定する
。なお、この予備設定は、マニュアルスイッチ45をオ
ンにして行う。
With the above steps, the preliminary setting of the collimation servo system is completed. In this state, the modulation degree in the oscillation modulation circuit 17 is fixed. In addition, as mentioned above, the preamplifier 21 or the filter amplifier 2
When an AGC circuit is provided in 2, its gain is also fixed. Note that this preliminary setting is performed by turning on the manual switch 45.

次にマニュアルスイッチ45をオフにすると、自動視準
モードになる。このモードでは上記プリアンプ21、フ
ィルターアンプ22で増幅された受光電圧が、コンパレ
ータ26に供給される。コンパレータ26の他の入力端
子にはピークホールド回路25の出力が供給されている
。受光電圧レベルがピークホールド回路25にホールド
されている電圧に対して、予かしめ定めた一定の許容範
囲(健えば0.IV)を越えて低下した時には、コンパ
レータ26の出力を監視している位置制御用CPU27
がこの受光電圧レベルの低下を検出し、上記ピークホー
ルド回路25をリセットすると共に、その時の受光電圧
をピークホールド回路25にホールドする。このときサ
ーボ光学系の光軸は第4図のa点のように整準点Cから
ずれていて、ピークホールド回路25のホールド電圧は
約3vに低下している。
Next, when the manual switch 45 is turned off, automatic aiming mode is entered. In this mode, the light receiving voltage amplified by the preamplifier 21 and filter amplifier 22 is supplied to the comparator 26. The output of the peak hold circuit 25 is supplied to the other input terminal of the comparator 26. When the received light voltage level drops beyond a predetermined tolerance range (0.IV if healthy) with respect to the voltage held in the peak hold circuit 25, the output of the comparator 26 is monitored. Control CPU27
detects this drop in the light reception voltage level, resets the peak hold circuit 25, and holds the light reception voltage at that time in the peak hold circuit 25. At this time, the optical axis of the servo optical system is shifted from the leveling point C as shown at point a in FIG. 4, and the hold voltage of the peak hold circuit 25 has decreased to about 3V.

次いでCPU27からモータ駆動回路28に駆動スター
ト信号を発信してX軸ギヤモータ11を回転させる。X
軸ギヤモータ11により光軸が第4図のa点で示した位
置からb点で示した方向、即ち時計方向に移動した時に
、受光電圧レベルが更に低下すると、コンパレータ26
の出力に基いてCPU27がこれを弁別して、モータ駆
動回路28に反転信号を発信してX軸ギヤモータ11を
反時計方向に回転させる。これによって光軸が第4図の
b点から反時計方向に回転し、その結果受光電圧レベル
は第4図に示したように上昇する。
Next, the CPU 27 sends a drive start signal to the motor drive circuit 28 to rotate the X-axis gear motor 11. X
When the optical axis is moved by the shaft gear motor 11 from the position shown at point a to the direction shown at point b in FIG.
The CPU 27 discriminates this based on the output, and sends a reversal signal to the motor drive circuit 28 to rotate the X-axis gear motor 11 counterclockwise. As a result, the optical axis rotates counterclockwise from point b in FIG. 4, and as a result, the received light voltage level rises as shown in FIG.

そして第4図中C点迄回転すると、受光電圧レベル31
はピーク電圧P (V)に戻り、更に0点を過ぎると低
下して行く、受光電圧がピーク電圧から下がり始めると
、上記コンパレータ26の出力に基いてCPU27がこ
れを判定し、第4図のd点からX軸ギヤモータ11を時
計方向へ逆転させる。そして受光電圧レベルがピークホ
ールド回路25のピーク値4■と略−敗した所でモータ
11を停止させる。これにより水平方向の視準が達成さ
れる。
When the rotation reaches point C in FIG. 4, the received light voltage level is 31.
returns to the peak voltage P (V), and further decreases after passing the 0 point. When the received light voltage begins to decrease from the peak voltage, the CPU 27 determines this based on the output of the comparator 26, and the voltage shown in FIG. The X-axis gear motor 11 is reversed clockwise from point d. Then, the motor 11 is stopped when the received light voltage level reaches approximately the peak value 4■ of the peak hold circuit 25. This achieves horizontal collimation.

次にモータ駆動回路29に信号を発信してY軸ギヤモー
タ12を上記と同じように駆動制御して、垂直方向の受
信レベルの最大位置に光軸を設定する。
Next, a signal is sent to the motor drive circuit 29 to drive and control the Y-axis gear motor 12 in the same manner as described above, and the optical axis is set at the position of the maximum reception level in the vertical direction.

更に正確な視準を行う場合には次のようにすればよい。For more accurate collimation, do the following.

即ち、受信電圧レベルが低下した時にはピークホールド
回路25をリセットし、その時の受光電圧を第5図に示
すようにVoとしてピークホールド回路25にホールド
する。そしてX軸ギヤモータ11を、受光電圧レベルが
上昇するような方向、即ち第5図に示した例ではeの位
置から反時計方向に回転させる。受光電圧レベルはX軸
ギヤモータ11が反時計方向に回転して行くに従って上
昇し、第5図Cの位置で最大となり、更にgの位置でホ
ールド電圧Voと一致する。この間、位置eから位置g
までX軸ギヤモータ11を回転させるのに要したパルス
数をカウントしておき、その合計のパルス数の1/2の
パルスでX軸ギヤモータ11を時計方向に反転させれば
、対物レンズ13.14の光軸を反射器4に正確に視準
させることができる。
That is, when the received voltage level drops, the peak hold circuit 25 is reset, and the received light voltage at that time is held in the peak hold circuit 25 as Vo as shown in FIG. Then, the X-axis gear motor 11 is rotated in a direction in which the received light voltage level increases, that is, in the example shown in FIG. 5, counterclockwise from the position e. The received light voltage level increases as the X-axis gear motor 11 rotates counterclockwise, reaches a maximum at the position C in FIG. 5, and further coincides with the hold voltage Vo at the position g. During this time, from position e to position g
If you count the number of pulses required to rotate the X-axis gear motor 11 until the end of the rotation, and reverse the X-axis gear motor 11 clockwise with 1/2 of the total number of pulses, the objective lens 13.14 The optical axis of the reflector 4 can be accurately collimated.

上記のようにして送受光レンズ13.14の光軸を反射
器4に視準させた後、CPU27がら光波距離計3に動
作信号siを与えて、距離測定を実行する。またこれと
同時に、コンパレータ23のゲートを開いて、受光電圧
レベルが基準電圧Eと一致するように送出光の強度を再
調整する。
After collimating the optical axes of the transmitting/receiving lenses 13 and 14 onto the reflector 4 as described above, the CPU 27 applies the operation signal si to the optical distance meter 3 to perform distance measurement. At the same time, the gate of the comparator 23 is opened to readjust the intensity of the transmitted light so that the received light voltage level matches the reference voltage E.

光波距離計3は、この実施例ではサーボ系の送光レンズ
13及び受光レンズ14と光軸を共用しているが、サー
ボ光学系と測距光学系とを別々に設けてもよい。
Although the optical distance meter 3 shares an optical axis with the light sending lens 13 and the light receiving lens 14 of the servo system in this embodiment, the servo optical system and the distance measuring optical system may be provided separately.

送光レンズ13の光軸には半透鏡51が45″の角度で
挿入されている。測距光は、距離計回路33の出力(1
5MHzFM)に基いてLEDのような測距用発光素子
5から半透鏡51で反射され、送光レンズ13を通して
反射器4側に投光される。
A semi-transparent mirror 51 is inserted into the optical axis of the light transmitting lens 13 at an angle of 45''.The distance measuring light is transmitted from the output (1
5MHzFM), the light is reflected by a semi-transparent mirror 51 from a distance measuring light emitting element 5 such as an LED, and is projected onto the reflector 4 side through a light transmitting lens 13.

反射器4のコーナーキューブプリズム7がらの反射光は
、受光レンズ14を通してその先軸に45°の角度で挿
入された半透鏡52で反射され、フォトダイオードのよ
うな測距用受光素子6に集光される。距離計回路33は
、発光素子5に与える発信信号と受光素子6からの受信
信号の位相差を検出して距離を計算する。
The reflected light from the corner cube prism 7 of the reflector 4 passes through the light receiving lens 14 and is reflected by a semi-transparent mirror 52 inserted at an angle of 45 degrees to the front axis of the light receiving lens 14, and is focused on a distance measuring light receiving element 6 such as a photodiode. be illuminated. The distance meter circuit 33 calculates the distance by detecting the phase difference between the transmission signal given to the light emitting element 5 and the received signal from the light receiving element 6.

なお距離測定時には、位置制御用CPU27から測距動
作信号S1がアンドゲート35に与えられて、このゲー
ト35が開き、距離計回路33がらの制御信号S2でも
ってモータ48が駆動され、受光素子6の受光レベルが
規定値になるように光学絞り38が回転される。またマ
ニュアルスイッチ45をオンにして手動測距モードにし
たときには、高レベルのモード信号S3でもってアンド
ゲート34が開いて光学絞り38が駆動されると共に、
インバータ36の低レベル出力でアンドゲート35が閉
じられる。
Note that when measuring distance, the distance measurement operation signal S1 is applied from the position control CPU 27 to the AND gate 35, this gate 35 is opened, the motor 48 is driven by the control signal S2 from the distance meter circuit 33, and the light receiving element 6 is The optical aperture 38 is rotated so that the received light level becomes the specified value. When the manual switch 45 is turned on to set the manual distance measurement mode, the AND gate 34 is opened by the high-level mode signal S3, and the optical diaphragm 38 is driven.
AND gate 35 is closed by the low level output of inverter 36.

受光素子6の前面にあるシャッター47が、モータ46
によって駆動されて、測定に先立って測距光路が校正光
路に切換えられる。校正光路は、光波距離計3の電気定
数や機械定数を測定時の温度等の条件にあわせて校正す
るために設けられているものであり、校正時には発光素
子5の出力光がオプティカルファイバ39を通じて受光
素子6に直接入射する。この状態で距離を示す表示が零
点を示すように測定値を校正する。
The shutter 47 in front of the light receiving element 6 is connected to the motor 46
The distance measuring optical path is switched to the calibration optical path prior to measurement. The calibration optical path is provided to calibrate the electrical constants and mechanical constants of the optical distance meter 3 according to conditions such as temperature at the time of measurement, and during calibration, the output light of the light emitting element 5 passes through the optical fiber 39 The light is directly incident on the light receiving element 6. In this state, the measured value is calibrated so that the distance display indicates the zero point.

以上の視準及び測距の動作を第6図のフローチャートに
示す。まずステップS1、S2にて受光レベルの変化に
より光軸のずれを検出し、ステップ83〜S5で受光レ
ベルが最大となるように水平、垂直交互に視準サーボを
行う。次にステップS6、S7でサーボ光の送光量を調
整して受光レベルを規定値に合わせ、そのレベルを記憶
しておく。ここで距離測定(ステップS8)を行い、以
下同様にして視準と測距とを交互に行う。
The above collimation and ranging operations are shown in the flowchart of FIG. First, in steps S1 and S2, a shift in the optical axis is detected based on a change in the received light level, and in steps 83 to S5, collimation servo is performed alternately horizontally and vertically so that the received light level is maximized. Next, in steps S6 and S7, the amount of transmitted servo light is adjusted to match the received light level to a specified value, and the level is stored. Here, distance measurement (step S8) is performed, and thereafter collimation and distance measurement are performed alternately in the same manner.

視準サーボ系と測距系とで1つの光軸を共用する場合に
は、半透鏡51.52の挿入損失を軽減するために、測
距用の発光素子5の波長を例えば810nmとし、サー
ボ用の発光素子16の波長を1l100nのように異な
らせ、半透鏡51.52としてダイクロイックミラー又
はカントフィルタを用いるとよい。ダイクロイックミラ
ーは、850 nm以上の波長の光を効率よく通過させ
、それ以下の波長の光を効率よく反射する。
When the collimation servo system and the distance measurement system share one optical axis, the wavelength of the light emitting element 5 for distance measurement is set to 810 nm, for example, in order to reduce the insertion loss of the semi-transparent mirrors 51 and 52, and the servo It is preferable to make the wavelengths of the light-emitting elements 16 different such as 1l100n, and to use dichroic mirrors or cant filters as the semi-transparent mirrors 51 and 52. A dichroic mirror efficiently passes light with a wavelength of 850 nm or more and efficiently reflects light with a wavelength of 850 nm or more.

上記の例では送光レンズ13と受光レンズ14とを夫々
個別に設けた例を示したが、1つの対物レンズで送受光
させるようにするようにしてもよい。例えば、対物レン
ズの中央部分を送光用に使用し、外周部分を受光用に使
用するようにする。
In the above example, the light transmitting lens 13 and the light receiving lens 14 are provided separately, but it is also possible to transmit and receive light using one objective lens. For example, the central portion of the objective lens is used for transmitting light, and the outer peripheral portion is used for receiving light.

或いは対物レンズの上側部分を送光用、下側部分を受光
用に使用するようにしてもよい。
Alternatively, the upper part of the objective lens may be used for transmitting light, and the lower part may be used for receiving light.

また第7図の変形例で示すように、発光素子16及び受
光素子19を夫々サーボ系と距離計とで共用してもよい
。この場合にもサーボ期間と測距期間とを分け、サーボ
時には、切換スイッチ61.62を点線側にして発光素
子16を発振変調回路17の出力で駆動し、受光素子1
9の出力をサーボ回路2aに供給する。また視準が達成
された後には、切換スイッチ61.62を切換えて、発
光、受光素子16.19と距離計回路33とを結合する
Further, as shown in the modification shown in FIG. 7, the light emitting element 16 and the light receiving element 19 may be shared by the servo system and the distance meter, respectively. In this case as well, the servo period and the distance measurement period are separated, and during servo, the changeover switches 61 and 62 are set to the dotted line side to drive the light emitting element 16 with the output of the oscillation modulation circuit 17, and the light receiving element 1
9 is supplied to the servo circuit 2a. After collimation is achieved, the changeover switches 61 and 62 are switched to connect the light emitting and light receiving elements 16 and 19 to the distance meter circuit 33.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の如く、測定基点から投射したサーボ光の
反射光のレベルにより光軸のずれを検出するようにした
から、反射器側にサーボ光源を置く必要が無くなり、測
距システムの樽成が簡略になる。視準光軸を水平方向及
び垂直方向に交互に振って視準させるので、一つの受光
素子でも、上下左右の4象限の光軸のずれを検出してこ
れを修正することができる。従って反射器にコーナーキ
ューブプリズムを使用することが可能となる。この場合
、投射光と反射光とが平行になって、4分割フォトダイ
オードのような4象限の結像位置検出素子では光軸のず
れを検出することが困難であるが、反射光のレベルに基
くことにより、光軸のずれを検出することが可能となる
As described above, the present invention detects the deviation of the optical axis based on the level of the reflected light of the servo light projected from the measurement reference point, so there is no need to place a servo light source on the reflector side, and the barrel structure of the ranging system is eliminated. is simplified. Since the collimation optical axis is alternately swung horizontally and vertically for collimation, even with a single light receiving element, it is possible to detect and correct deviations of the optical axes in the four quadrants (up, down, left and right). Therefore, it becomes possible to use a corner cube prism for the reflector. In this case, the projected light and the reflected light become parallel, making it difficult to detect the deviation of the optical axis using a four-quadrant imaging position detection element such as a four-segment photodiode. By doing so, it becomes possible to detect the deviation of the optical axis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す自動視準測距システム
の全体ブロック図、第2図及び第3図は光波距離計及び
反射器の正面図、第4図及び第5図は光軸のずれと受光
レベルとの関係を示すグラフ、第6図は視準サーボの動
作手順を示すフローチャート、第7図は光学系の変形例
を示す路線図である。 なお図面に用いた付号において、 2・−−−−−−−−−−−・・視準装置2 a −−
−−−・・−サーボ回路 3−−−−−・−−一−−・・−光波距離計4・・・−
・−−−−−−一−−反射器5−・−・−・・〜・・・
・・発光素子6・・・・・−・・・−・・受光素子 7−・−・−・−・・−・・コーナーキューブプリズム
8−・・・−−一−−−−・−・水平架腕9−・・−・
−・・−・垂直架腕 11−・・−・・・−・−・・・X軸ギヤモータ12・
−・−−−−一−−・X軸ギヤモータ13・・・・・・
・・・・・−・・送光レンズ14・−・−・・−・−・
−受光レンズ15−・−・−・−・送受光ユニット 16・−・・−−−−−−・発光素子 17・−・・・−・・−・・・−・発振変調回路18−
・・・−・−・−・視準サーボ光19−・−一−−−−
−・−・−・受光素子である。
Fig. 1 is an overall block diagram of an automatic sighting and ranging system showing an embodiment of the present invention, Figs. 2 and 3 are front views of a light wave distance meter and a reflector, and Figs. 4 and 5 are optical FIG. 6 is a graph showing the relationship between axis deviation and light reception level, FIG. 6 is a flowchart showing the operating procedure of the collimation servo, and FIG. 7 is a route map showing a modification of the optical system. In addition, in the numbers used in the drawings, 2.---------------Collimation device 2 a --
---...-Servo circuit 3---------1---Light wave distance meter 4...-
・−−−−−−1−−Reflector 5−・−・−・・〜・・・
・・Light emitting element 6・・・−・・・・Light receiving element 7−・−・−・−・・・・Corner cube prism 8−・・・・Horizontal arm 9-...
--- Vertical arm 11 --- X-axis gear motor 12
-・-----1--・X-axis gear motor 13...
・・・・・−・・Light transmitting lens 14・−・−・・−・−・
-Light-receiving lens 15-・--・--・Light-transmitting/receiving unit 16--・--・Light-emitting element 17--・--・-- Oscillation modulation circuit 18-
...−・−・−・Collimation servo light 19−・−1−−−
−・−・−・It is a light receiving element.

Claims (1)

【特許請求の範囲】[Claims] 測定目標点における反射器に視準サーボ光を送光する発
光素子と、上記反射器からの反射光を受光する受光素子
と、上記受光素子の出力レベルが最大となるように対物
レンズの光軸を水平及び垂直方向に交互に振るサーボ機
構と、上記対物レンズの視準方向に向けられた光波距離
計とを備える自動視準式光波距離計。
A light emitting element that transmits collimated servo light to a reflector at the measurement target point, a light receiving element that receives the reflected light from the reflector, and an optical axis of the objective lens so that the output level of the light receiving element is maximized. An automatic collimation type light wave range finder comprising: a servo mechanism that swings the light wave alternately in horizontal and vertical directions; and a light wave range finder oriented in the collimation direction of the objective lens.
JP62060657A 1987-03-16 1987-03-16 Automatic collimating lightwave rangefinder Expired - Lifetime JPH07117414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62060657A JPH07117414B2 (en) 1987-03-16 1987-03-16 Automatic collimating lightwave rangefinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62060657A JPH07117414B2 (en) 1987-03-16 1987-03-16 Automatic collimating lightwave rangefinder

Publications (2)

Publication Number Publication Date
JPS63225121A true JPS63225121A (en) 1988-09-20
JPH07117414B2 JPH07117414B2 (en) 1995-12-18

Family

ID=13148626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62060657A Expired - Lifetime JPH07117414B2 (en) 1987-03-16 1987-03-16 Automatic collimating lightwave rangefinder

Country Status (1)

Country Link
JP (1) JPH07117414B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160317A (en) * 1989-11-17 1991-07-10 Topcon Corp Laser light controlling device of measuring apparatus
JPH03160316A (en) * 1989-11-17 1991-07-10 Topcon Corp Laser light controlling device of measuring apparatus
JPH03128879U (en) * 1990-04-06 1991-12-25
JPH08166453A (en) * 1994-12-12 1996-06-25 Opt:Kk Automatic collimation electro-optical distance measuring equipment
JP2006308441A (en) * 2005-04-28 2006-11-09 Sokkia Co Ltd Light-wave distance meter
JP2014224765A (en) * 2013-05-16 2014-12-04 三菱電機株式会社 Laser length measuring device and laser length measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123788A (en) * 1983-12-07 1985-07-02 Nissan Riyokuka Kk Automatic surveying method and apparatus therefor
JPS60203808A (en) * 1984-03-28 1985-10-15 Hazama Gumi Ltd Automatic measuring instrument
JPS6118812A (en) * 1984-07-06 1986-01-27 Hazama Gumi Ltd Automatic displacement measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123788A (en) * 1983-12-07 1985-07-02 Nissan Riyokuka Kk Automatic surveying method and apparatus therefor
JPS60203808A (en) * 1984-03-28 1985-10-15 Hazama Gumi Ltd Automatic measuring instrument
JPS6118812A (en) * 1984-07-06 1986-01-27 Hazama Gumi Ltd Automatic displacement measuring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160317A (en) * 1989-11-17 1991-07-10 Topcon Corp Laser light controlling device of measuring apparatus
JPH03160316A (en) * 1989-11-17 1991-07-10 Topcon Corp Laser light controlling device of measuring apparatus
JPH03128879U (en) * 1990-04-06 1991-12-25
JPH08166453A (en) * 1994-12-12 1996-06-25 Opt:Kk Automatic collimation electro-optical distance measuring equipment
JP2006308441A (en) * 2005-04-28 2006-11-09 Sokkia Co Ltd Light-wave distance meter
JP2014224765A (en) * 2013-05-16 2014-12-04 三菱電機株式会社 Laser length measuring device and laser length measuring method

Also Published As

Publication number Publication date
JPH07117414B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US6504602B1 (en) Tacheometer telescope
JP4166083B2 (en) Ranging device
US6462810B1 (en) Surveying system
EP1061335B1 (en) Position detecting apparatus
RU2292566C1 (en) Multifunctional optical-radar system
CN107037442A (en) Light wave distance measuring system
JP4236326B2 (en) Automatic surveying machine
JP4023572B2 (en) Automatic surveying machine
US6333783B1 (en) Distance measuring system
US20220026207A1 (en) Surveying Instrument
JPS63225121A (en) Autocollimation type light wave range finder
JP3825701B2 (en) Optical axis automatic adjustment device for surveying instrument
US20210190493A1 (en) Surveying Instrument
US20040233415A1 (en) Surveying instrument, target for surveying and surveying system
US6822732B2 (en) Surveying instrument having an auto-collimating function and a distance measuring function
JP2000275043A (en) Tracking device for automatic survey machine
JPH08166453A (en) Automatic collimation electro-optical distance measuring equipment
US3552866A (en) Automatic leveling telescope including a reversible two-sided pendulum mirror
US20210285765A1 (en) Surveying Instrument
US20230280161A1 (en) Surveying instrument
US20230280160A1 (en) Surveying instrument
EP3957951B1 (en) Surveying instrument
CN221406028U (en) Optical fiber optical path system of laser three-dimensional scanning measurement equipment
JPH10104501A (en) Focusing method and focusing device for surveying instrument
JPS63309814A (en) Automatic collimating device