JPS58113874A - Optical range finder - Google Patents

Optical range finder

Info

Publication number
JPS58113874A
JPS58113874A JP21192781A JP21192781A JPS58113874A JP S58113874 A JPS58113874 A JP S58113874A JP 21192781 A JP21192781 A JP 21192781A JP 21192781 A JP21192781 A JP 21192781A JP S58113874 A JPS58113874 A JP S58113874A
Authority
JP
Japan
Prior art keywords
light
optical
analog circuit
circuit
distance meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21192781A
Other languages
Japanese (ja)
Other versions
JPH0215036B2 (en
Inventor
Hiroyuki Furumasa
古正 博幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Optical Co Ltd
Original Assignee
Tokyo Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Optical Co Ltd filed Critical Tokyo Optical Co Ltd
Priority to JP21192781A priority Critical patent/JPS58113874A/en
Publication of JPS58113874A publication Critical patent/JPS58113874A/en
Publication of JPH0215036B2 publication Critical patent/JPH0215036B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Telescopes (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To facilitate operations such as alignment of an optical axis, by a constitution wherein both analog circuits on light-emitting and light-receiving sides are incorporated on one side in a case in relation to the optical axis of a collimating telescope. CONSTITUTION:A lens-barrel case 101 is divided into a central part 150, an upper part 152 and a lower part 155, and the central part 150 is fitted with an object lens 102, an eye lens 104 and an optical system 106. In the upper part 152, an analog circuit 151 consisting of a light-emitting element unit 153, a light- receiving element unit 154, an analog circuit 112 on the light-emitting side, and an analog circuit 113 on the light-receiving side, is housed. In the lower part 155, a digital circuit 114 is incorporated.

Description

【発明の詳細な説明】 本発明は、光波h’+離計の市、装ユニットの内蔵構造
に関し、王に、規準望遠鏡の対物レンズと測距光学系の
対物レンズと全共用するタイプの光波距離計における測
距用アナログ回路の装置筐体内への内蔵構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a built-in structure of a light wave h'+ distance measuring unit, and relates to a type of light wave that can be used in common with the objective lens of a reference telescope and the objective lens of a distance measuring optical system. The present invention relates to a built-in structure of a ranging analog circuit in a distance meter in a device housing.

近年、光波距離計は、トランシフトやセオドライトに搭
載可能な程度に小型舗量化をはかるため。
In recent years, optical rangefinders have been made compact enough to be mounted on transshifts and theodolites.

規準望遠鏡の対物レンズと測距光学系の対物レンズとを
共用した光学系が採用されている。また、従来のトラン
シットやセオドライトの望遠鏡部に光波測距系會絹込X
7で測距だけでなく測角も可能にした光波測距経緯儀が
製作されている。さらに、角度を光重、式ロータリーエ
ンコーダを用いて光電的して検出して* 1llli距
データと測角データとが電気的にデジタル表示可能であ
り、かつ測距データと測角データとの曲の演算処理機能
をももついわゆるトータルステーションが実用化されて
いる。
An optical system is used in which the objective lens of the reference telescope and the objective lens of the ranging optical system are shared. In addition, a light wave distance measurement system can be added to the telescope section of conventional transits and theodolites.
7, a light wave ranging theodolite was produced that was capable of not only distance measurement but also angle measurement. Furthermore, the angle can be detected photoelectrically using a rotary encoder, and the distance data and angle measurement data can be electrically displayed digitally, and the distance data and angle measurement data can be displayed in a digital manner. A so-called total station has been put into practical use that also has arithmetic processing functions.

ところで、従来の光波距離計の鏡筒筺体部の内S構成は
、第7図に示すように鏡筒筺体slが図示づれていない
 測角部の托架支柱にその水平軸全回転軸として鉛直面
内で回転自在に支持されろ。
By the way, in the inner S configuration of the lens barrel housing of a conventional optical distance meter, as shown in Fig. 7, the lens barrel housing sl is not shown. be supported so that it can rotate freely inside.

鉤筒筺体部lには、対物レンズ2%ダイクロイックプリ
ズム85合焦レンズ4、正立プリズム5、レチクル板6
、接0民レンズ7からなる規準望遠鏡と、ダイクロイッ
クプリズム8を上下方向から挾むノ(・1で1Mきれた
発光索子8及び受光索子0と、集光レンズ]、0.11
とが目己hjされている。また、発光索子8にVl、発
光側アナログ回路12が、受光素子9には受光側アナロ
グ回路1Bがそれぞれ接続されており、両アナログ回路
12.18idデジタル回路]、4a、14bK接続さ
ねている。
The hooked tube housing part l includes an objective lens 2% dichroic prism 85, a focusing lens 4, an erecting prism 5, and a reticle plate 6.
, a reference telescope consisting of a contact lens 7, and a dichroic prism 8 sandwiched from above and below (a light-emitting probe 8 and a light-receiving probe 0 each having a length of 1M, and a condenser lens), 0.11
It's been a long time since I've been in the middle of a long time. Further, the light emitting cable 8 is connected to the light emitting side analog circuit 12, and the light receiving element 9 is connected to the light receiving side analog circuit 1B, and both analog circuits 12, 18id digital circuit], 4a, 14bK are connected There is.

上記従来の光波距離計においてtよ、レフl/フタ−か
らの微弱な測距反射光を受光素子で光電変換【7た微弱
信号を増幅及び処理する受光側アナログ回路に、発光素
子をFHA動させるための発光側アナログ回路の強力な
信号が混入し、副足誤差を生む原因となった。これを防
止するため、従来の光波距離計においては、m1図に下
したように、支元索子9と受光佃1アナログ回路18と
を、発光素子8と発光側アナログ(ロ)路とから極力離
すため、及びψ筒鉗体部lを托架支柱で回動自在に支持
できるようにV体部を小型化する必要性から初、準望遠
跡を境とし7て望遠鏡に接近して分離配置させていた。
In the above-mentioned conventional light wave rangefinder, the light-emitting element is connected to the analog circuit on the light-receiving side that amplifies and processes the weak distance-measuring reflected light from the reflex l/lid and is photoelectrically converted by the light-receiving element. A strong signal from the analog circuit on the light emitting side was mixed in, causing a secondary error. In order to prevent this, in the conventional light wave distance meter, as shown in Fig. In order to separate it as much as possible, and because it was necessary to downsize the V body part so that the ψ barrel body part l could be rotatably supported by the support strut, we approached the telescope at 7 and separated it from the quasi-telephoto trace. I had it placed.

ところで、一般に光学製麺は、その組立時には必−丁光
軸合せの調整を必要とする。光波距離計においても、規
準望遠鏡のみならず測距光学系の−光軸合せ、特に、受
光・発光素子の位置出しは重要である。また、受光素子
9へ入射する測距光路の光量レベルと内部参照f量の光
電レベルどは同じレベルであることが測定上のぞましく
、そのため光1調繁用濃度フィルタ42をあらかじめ内
部参照光量の改定のレベルに制御しておき、旋度フィル
タ4.8にまり測距光量を内部参照光針と一致させて測
定する。しかし、参照光路の信樗楡は光波距離計に組込
んだ受光・発光索子により一定でないことと、実際に光
学系を通った受光信号を測定しながら虐整しなければな
らないことから、光波距離計毎に調整する心安がある。
By the way, optical noodle making generally requires adjustment of optical axis alignment during assembly. In optical rangefinders as well, alignment of the optical axes of not only the reference telescope but also the ranging optical system, and in particular the positioning of the light receiving and emitting elements, are important. In addition, it is preferable for measurement that the light intensity level of the distance measuring optical path incident on the light receiving element 9 and the photoelectric level of the internal reference f amount are at the same level. The amount of light is controlled to the revised level, and the amount of distance measuring light that enters the rotation filter 4.8 is matched with the internal reference light needle for measurement. However, because the reference optical path is not constant due to the light receiving and emitting cables built into the optical distance meter, and the light receiving signal that has actually passed through the optical system must be adjusted while measuring, the light wave You can feel safe adjusting each distance meter.

また、電気回路の岐路fA整は実際に装置に組込んで測
定時と同じモデル環境下で調整しなけれはならないこと
は言う壕でもなく、特に、光波距離計においては、その
光学系の特性とも合せた光波距離計毎の最終調整を必要
とする。
In addition, it is not impossible to say that the electrical circuit's crossroad fA adjustment must be adjusted under the same model environment as the one used when actually incorporating it into the device and measuring it.In particular, in the case of a light wave distance meter, the characteristics of the optical system are Final adjustment is required for each combined lightwave distance meter.

しかしながら、従来の光波距離計は、前述したように受
光・発光索子回路の分離の必要性から受光側アナログ回
路と発光側アナログ回路とに2分され、それぞれ独立に
分離配置されていた。従って、組立て時やメンテナンス
時の調整では、これら分離された両アナログ回路を光波
距離計に組込まなければ、光軸調整や光量レペルリ4整
が出来ない。しかし、両アナログ回路が光学系を挾み込
むように配置されているため、調整が非常に困難であり
、調整は、いづれか一方のアナログ回j18’e取り6
すして光学系の調整全行い、丹度該アナログ回路を組込
み、その測定データをもとに、合間は他方のアナログ回
路を取りはずして光学系を調整するという行程を繰り返
して行々わなけn、けならなかった。また、アナログ回
路4目取り標すしや絹込み母にそのシールド特性が微妙
に変化するため、その都度測定データが変化し、取りは
ずし前のデータケもとに行う調整は困難であり1いきお
い調整組立て時間の長大化をまねく欠点があった。
However, as mentioned above, due to the necessity of separating the light receiving and emitting cable circuits, the conventional light wave distance meter is divided into a light receiving side analog circuit and a light emitting side analog circuit, and each circuit is separately arranged. Therefore, when making adjustments during assembly or maintenance, it is not possible to adjust the optical axis or adjust the light intensity level unless these two separate analog circuits are incorporated into the optical distance meter. However, since both analog circuits are arranged so as to sandwich the optical system, adjustment is extremely difficult.
Then, you must repeat the process of making all adjustments to the optical system, incorporating the analog circuit, and then, based on the measurement data, removing the other analog circuit and adjusting the optical system in between. I couldn't help it. In addition, because the shielding characteristics of analog circuits vary slightly, the measurement data changes each time, and it is difficult to make adjustments based on the data before removal. There was a shortcoming that led to the length of the process.

本発明は上記従来の光波距離計の欠点を解決するために
なされたもので、その構成上の特徴とするところは、規
準望遠鏡の対物レンズと、光波測距光学系の対物レンズ
を共用した光学系全1体内に内蔵、している光波距離計
において、発光11111アナログ回路と受光側アナロ
グ回路の両回路を前記規準望遠鏡の光軸に関し前記′I
′d体内の片側に内蔵させた点にある。
The present invention was made in order to solve the above-mentioned drawbacks of the conventional light wave distance meter, and its structural feature is that the objective lens of the standard telescope and the objective lens of the light wave distance measuring optical system are shared. In the optical distance meter that is built into the entire system, both the light emitting 11111 analog circuit and the light receiving side analog circuit are connected to the optical axis of the reference telescope.
'd It is built into one side of the body.

以上のように構成される本発明の光波距IAk計は調整
時に、光学系と分離しかつ筐体外に配置した状態でアナ
ログ回路と接続しても正常に作動するデジタル回路を堰
りratずし可能としたので、デジタル回路が収納され
るべき筐体側から光軸合せや光′−レベル調整がきわめ
て容易に行うことができる。また、アナログ回路は常に
光学系及び受光・発″/l、素子と接続されているため
、つねに正確な測定データか侍られ、眠気糸の調整やチ
ューツクも容易に行うことができる。
The optical wave distance IAk meter of the present invention configured as described above does not ratchet up the digital circuit, which operates normally even when connected to the analog circuit when separated from the optical system and placed outside the housing, during adjustment. This makes it possible to very easily align the optical axis and adjust the optical level from the side of the casing in which the digital circuit is to be housed. In addition, since the analog circuit is always connected to the optical system and the light receiving/emitting elements, accurate measurement data is always available, and the drowsiness line can be easily adjusted and tuned.

メらに、前記アナログ回路が内蔵される側と反対側の参
照元路内に先掘しベル調整十段を配向すれば、光重レベ
ル静1整もデジタル回路を収納する筐体側から行うこと
がでキ都合よい。
Furthermore, if the 10-stage pre-drilled bell adjustment is oriented in the reference source path on the opposite side to the side where the analog circuit is built-in, the light weight level adjustment can also be performed from the side of the casing that houses the digital circuit. It's very convenient.

15C)、上方部152、下方部155に分割されてい
る。中央部150には対物レンズ102、接眼レンズ1
04及び光学系106が橡付けられあ部152には受光
素子ユニット15d、発光素子ユニット154、発光側
アナログ回路112と受光側アナログ回路118とから
なるアナログ回路151が収納される。下方部155 
i=r:はデジタル回路114→が内腔、さ几ている。
15C), is divided into an upper part 152 and a lower part 155. The central part 150 includes an objective lens 102 and an eyepiece lens 1.
A light receiving element unit 15d, a light emitting element unit 154, and an analog circuit 151 consisting of a light emitting side analog circuit 112 and a light receiving side analog circuit 118 are housed in the hole 152 to which the optical system 106 and the optical system 106 are mounted. Lower part 155
i=r: The digital circuit 114→ is inside the cavity.

受光業子ユニット158は、第3図に示すように、受光
ユニット鏡筒156.受光ユニット鏡筒156に1d絨
さ71.た受光素子157と集光レンズ158.=労光
オプティカルファイバ159、受光オグテイ力ルファイ
バー用の邑/コネクタ160及び第3コネクタ169か
ら構成される。第3コネクタ169け中央部106の土
壁の開口に嵌挿さnる。発光素子ユニツ)154も受光
素子ユニット158と類似の構成であり、発光ユニット
鏡筒165、発光ユニット鏡筒165に内蔵さr+、た
発光素子166と集光レンズ167、発光オシティカル
ファイバー1fi8.’A光オグテイ力ルファイバー用
の第3コネクタ169及び第3コネクタ169から#4
′成される。また、中央部150の下部には内部参照光
路用の光量レベル鉤整濃度フィルタ171が配置される
。回転軸172によって支持さ扛た鎖板フィルタ171
は円板状であって周方向に連続的に透過率が変化するも
のである。回転軸172は中央部150の下面壁を貝通
して軸支され、下方部155vこ配IWさfしたっまみ
178により回転軸172及び濃度フィルタ171が1
c!1転させられる。
As shown in FIG. 3, the light receiving unit 158 includes a light receiving unit lens barrel 156. The light-receiving unit lens barrel 156 has a 1d width 71. A light receiving element 157 and a condensing lens 158. = Consists of a labor light optical fiber 159, a light-receiving optical fiber connector 160, and a third connector 169. The third connector 169 is inserted into the opening in the clay wall of the central portion 106. The light-emitting element unit 154 has a similar configuration to the light-receiving element unit 158, and includes a light-emitting unit barrel 165, a light-emitting element 166 built into the light-emitting unit barrel 165, a condensing lens 167, and a light-emitting optical fiber 1fi8. 'A third connector 169 for optical fiber optic fiber and third connector 169 to #4
'It will be done.' Further, a light intensity level adjusting concentration filter 171 for the internal reference optical path is arranged at the lower part of the central part 150. Chain plate filter 171 supported by rotating shaft 172
is disk-shaped and has a transmittance that changes continuously in the circumferential direction. The rotating shaft 172 is pivotally supported through the lower wall of the central part 150, and the rotating shaft 172 and the density filter 171 are rotated by the lower part 155, the height IW, and the width 178.
c! I was forced to roll over once.

上記構成において、受光側アナログ部11Bと発光側ア
ナログ部112とは独立してシールドされることか望捷
しい。
In the above configuration, it is desirable that the light-receiving side analog section 11B and the light-emitting side analog section 112 are independently shielded.

次に、光波測距系の電気回路を第4図にもとづいて説明
する。光波測距系は1発光11411アナログ回路]1
2、受光側アナログ回路118及びデジタ#Iam 1
14から構成される。発光側アナログ回路112は、基
準発振器22 (1、基準発振器220から入力し発光
素子154に出力する第7分周傍221.第1分周器2
.21を入力する第a分周器228及び弔/分絢器22
1と第−分埼益228とを入力するm/混合器22.4
から構成される。受光側アナログ回路118は、受光素
子157から入力するシリアン7”222.プリアンプ
222と第/混合器224とを入力する第λ混合器22
5及び第2混合器225全入力しrノタル回路114に
出力する波形優形器226から構成される。デシタル回
路114は%基準発振器22()と第λ分周器228と
波形整形器226とが入力するデジタル位相差計227
.デジタル位相差計回路入力するメモリー2 d OH
y″ノタル位相差計227及びメモIJ −214(+
を・入力し表示器281に出力する演獅器229から構
成さJする。
Next, the electric circuit of the light wave ranging system will be explained based on FIG. The light wave ranging system has 1 light emission 11411 analog circuits] 1
2. Light receiving side analog circuit 118 and digital #Iam 1
It consists of 14 parts. The light-emitting side analog circuit 112 includes a reference oscillator 22 (1, a seventh frequency divider 221 which receives input from the reference oscillator 220 and outputs it to the light-emitting element 154; a first frequency divider 2).
.. 21 and the a-th frequency divider 228 and the divider/divider 22
m/mixer 22.4 which inputs 1 and 228
It consists of The light-receiving side analog circuit 118 includes a serial 7" 222 which receives input from the light-receiving element 157.
5 and a second mixer 225 and output to the r notal circuit 114. The digital circuit 114 includes a digital phase difference meter 227 to which the % reference oscillator 22 ( ), the λ-th frequency divider 228 , and the waveform shaper 226 are input.
.. Memory 2 d OH for digital phase difference meter circuit input
y'' Notal phase difference meter 227 and memo IJ-214 (+
It is composed of an operator 229 that inputs and outputs to a display 281.

デジタル(ロ)路114はさらに制御回路282を有す
る。以上の構成において、受光側アナログ回路118と
発光側アナログ回路112.とけそjそれ独立してシー
ルドされることが望ましい。へらに鞘度會上げることが
要求されるときは、第ダ+g+に示すすべてのブロック
をシールドすることが望ましい。
Digital path 114 further includes control circuit 282 . In the above configuration, the light receiving side analog circuit 118 and the light emitting side analog circuit 112. It is desirable that it be independently shielded. When Hera is required to increase its sheath power, it is desirable to shield all the blocks shown in d+g+.

以上の電気1す1路において、基準発振器220からの
基準周波数f。1−3θMH2は、第1分周器221で
//20に分周され、f、 ==  / 、 5MH2
の信号を作る。このイキ号は発光素子154に送られ、
発光素子154は/ 、 S MH2の赤外変調光奮発
光する。発光素子154カ・らの変調光は対物レンズ1
02等を介して目標点に1首されたレフレクタ(図示せ
ず)に送られ、ここで反射されて再び対物レンズ102
等を介して受光索子157に到達する。受光索子15?
に入、射した光束は/ 、 5 MH1の成分と、被測
距離に工らじた位相差の成分と會言んでいる。一方、第
1分周器221からの周波数f、の信号は第ユ分周器2
213 vcも供給され、ここで//!;00に分周さ
fl、テf2:3KH2の1g号か作られる。この信招
は第7混合益224に供給づれ、第1分周器221から
のf。
In the above electrical circuit, the reference frequency f from the reference oscillator 220. 1-3θMH2 is divided by //20 by the first frequency divider 221, f, == / , 5MH2
make a signal. This Iki number is sent to the light emitting element 154,
The light emitting element 154 emits light by infrared modulation of SMH2. The modulated light from the light emitting elements 154 is sent to the objective lens 1.
02, etc., to a reflector (not shown) that is connected to the target point, and is reflected there and returned to the objective lens 102.
The light reaches the light receiving cable 157 via etc. Light-receiving Sakuko 15?
The incident light flux is composed of a component of /5 MH1 and a component of a phase difference created by adjusting the distance to be measured. On the other hand, the signal of frequency f from the first frequency divider 221 is transmitted to the first frequency divider 2
213 VC is also supplied here //! ;The frequency is divided into 00 and 1g of TE f2:3KH2 is created. This signal is supplied to the seventh mixed gain 224, and the f from the first frequency divider 221.

信号との箆の周波数f5==f、−12=  / 、り
97MH2の信号が作られる。この周波数f、の信号は
更に受光側アナログ回路218の第Ω混合器225に供
給される。この第Ω混合器225は、プリアン7’22
2から供給される出力信号との間でf、−f、 == 
f、、  のビートダウン信号を作る。受光素子157
からの信号は被測距離に応じた位相差成分を有している
から、第Ω混合器225の出力信号U f 2−3KH
zの信号と距離に尾、じた位相差とを含むものとなる。
A signal with a frequency of f5==f, -12=/, 97MH2 is created. This signal of frequency f is further supplied to the Ω-th mixer 225 of the analog circuit 218 on the light receiving side. This Ω-th mixer 225 is a preamplifier 7'22.
f, -f, == between the output signal supplied from 2
Create a beatdown signal for f, . Light receiving element 157
Since the signal from the Ω-th mixer 225 has a phase difference component corresponding to the measured distance, the output signal U f 2-3KH of the Ω-th mixer 225
z signal and a phase difference that is slightly different from the distance.

このイぎ号は波形整形器226で波形整形したのち、デ
ジタル回路2141のデジタル位相差計227に供給さ
れる。石コ分周器228からの周波数f2  の信号は
、デジタル位相差計227に参照1g号として供都−さ
れ、値測距離に応じた位相差を検出し、この検出した位
相差の大きさを基準発振器220からの周波数f。
After this signal is waveform-shaped by a waveform shaper 226, it is supplied to a digital phase difference meter 227 of a digital circuit 2141. The signal of frequency f2 from the stone frequency divider 228 is supplied to the digital phase difference meter 227 as a reference number 1g, which detects a phase difference according to the measured distance, and calculates the magnitude of the detected phase difference. Frequency f from reference oscillator 220.

の信号によってデジタル的に測定し、その値奮測距デー
タとして演算器22.9に供給する。
The measured distance is measured digitally using the signal , and is supplied to the computing unit 22.9 as the measured distance data.

上述したように測距は、多数の電気素子を有する回路に
より行なわれるので、とnら電気素子の応答遅れやその
ドリフト現象が位相差の検出結果に影jJMk及はし測
定誤差となる。―■■−m箇−−■■このため、発光素
子154からの光を筺体内情で直接受光素子157に送
る内WIIItip照光路240全光路、測距光路を通
った光と内部参照元路を通った光と?比較することによ
り、電気回路の応答遅れの影響を除去している。この内
部参照元路と測距光路との切換はシャッター241によ
って切換え、らtする。rLll真器229は、すてに
測距の都合と同じ谷電気回路によって測定された内部参
照元路240のデータが記憶されているメモ!J −2
80からのデータと、測距データとの間で演舞処理し、
電気回路のLr4、答4rLの影響の々い状態のデータ
に修正して1表示器281に出力する。
As described above, since distance measurement is performed by a circuit having a large number of electric elements, response delays and drift phenomena of the electric elements affect the phase difference detection results and result in measurement errors. -■■-m points--■■For this reason, the light from the light emitting element 154 is sent directly to the light receiving element 157 inside the housing. With the light that passed through it? By comparing, the influence of response delay of the electric circuit is removed. Switching between the internal reference source path and the distance measuring optical path is performed by a shutter 241. The rLll true instrument 229 is a memo in which the data of the internal reference source path 240 measured by the same valley electric circuit as the one used for distance measurement is stored! J-2
Performance processing is performed between the data from 80 and the distance measurement data,
The data is corrected to the state that has the greatest influence on the electric circuit Lr4 and answer 4rL, and is output to the 1 display 281.

なお、以上の処理制御は制御1Ll1M282の制御の
もとに行われる。
Note that the above processing control is performed under the control of the control 1Ll1M282.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光波距離計の構造説明図、第2図は実施
例の垂直断面図、第3図は実施例の水平断面図、第9図
は実施例の電気回路図である。 101・・・鏡筒筺体部、102・・・対物レンズ。 104・・・接眼レンズ、112・・・発光側アナログ
回路、118・・・受光側アナログ回路、114・・・
デジタル回路、150・・・中央部、152・・・上天
部、15B・・・受光素子ユニット、154・・・発光
素子ユニット、159・・・受光オグテイ力ルファイバ
。 171・・・光量レベル調整@度フィルター〜特許出願
人  東京光学惨械株式会社 第1図 第2図 +52113,151 112 153    °  、  /101 54 1温 猥  ゛ ・・恒 シ′・・・1,2.。4 第3図 第4図 381
FIG. 1 is a structural explanatory diagram of a conventional optical distance meter, FIG. 2 is a vertical sectional view of an embodiment, FIG. 3 is a horizontal sectional view of the embodiment, and FIG. 9 is an electric circuit diagram of the embodiment. 101... Lens barrel housing part, 102... Objective lens. 104... Eyepiece lens, 112... Light emitting side analog circuit, 118... Light receiving side analog circuit, 114...
Digital circuit, 150... Central part, 152... Upper part, 15B... Light receiving element unit, 154... Light emitting element unit, 159... Light receiving optical fiber. 171...Light level adjustment @degree filter~Patent applicant Tokyo Kogaku Jisai Co., Ltd. Figure 1 Figure 2 +52113, 151 112 153 °, /101 54 1 Temperature ゛...Constancy'...1, 2. . 4 Figure 3 Figure 4 381

Claims (1)

【特許請求の範囲】 ill  規準望遠鏡の対物レンズと光波測距光学系の
対物レンズとを共用してなる光学系を筐体内に内蔵して
いる光波距離針において、発光側アナログ回路と受光側
アナログ回路との両回路を、前記規準望遠鏡の光軸に関
し前記筐体内の片側に内蔵させたことを特徴とする光波
距離計。 12ノ  受光素子または発光素子の少なくとも一方を
。 前記アナログ回路内蔵側に配置したことを特徴とする特
許請求の範囲第(11項記載の光波距離計。 131  受光素子および発光素子の両万全、前記アナ
ログ回路の内蔵側に、互いに間隔を置いて配置したこと
を特徴とする特許請求の範囲第(11項記載の光波距離
計。 (4;  受光索子セよび/または発光素子と前記測距
光学系との間が、オプティカルファイバーによって連結
されたことを特徴とする特許請求の範囲第(21項”ま
たは第(31項記載の光波距離計。 (5)光波側路光学系の内部参照光路内に配置される光
量レベル調整手段は、前記規準望遠鏡の光軸に関し前記
アナログ回路内蔵側と反対仰)に配置経さVたことを特
徴とする特許請求の範囲第(11項ないし第(41項い
ずれかに記載の光波距離計。 (61前記受光側アナログ回路は、他の(1路からシー
ルドされたことを特徴とする特許請求の範囲第(11狽
々いし第(5)項いずれかに記載の光波距離計。
[Scope of Claims] ill In a light-wave distance needle that incorporates an optical system in a housing that shares the objective lens of a reference telescope and the objective lens of a light-wave distance measuring optical system, a light-emitting-side analog circuit and a light-receiving-side analog circuit are used. A light wave distance meter characterized in that both the circuit and the circuit are built into one side of the housing with respect to the optical axis of the reference telescope. 12. At least one of a light receiving element or a light emitting element. The optical distance meter according to claim 11, characterized in that the light receiving element and the light emitting element are arranged on the side where the analog circuit is built-in, and are spaced apart from each other. Claim No. 11 (Light wave distance meter according to claim 11) characterized in that the distance measuring optical system is connected by an optical fiber. A light wave distance meter according to claim 21 or 31. (5) The light amount level adjusting means arranged in the internal reference optical path of the light wave side path optical system is The optical distance meter according to any one of claims 11 to 41, characterized in that the optical distance meter is arranged on the opposite side of the analog circuit built-in side with respect to the optical axis of the telescope. The light-wave distance meter according to any one of claims 11 to 5, wherein the light-receiving analog circuit is shielded from another path.
JP21192781A 1981-12-28 1981-12-28 Optical range finder Granted JPS58113874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21192781A JPS58113874A (en) 1981-12-28 1981-12-28 Optical range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21192781A JPS58113874A (en) 1981-12-28 1981-12-28 Optical range finder

Publications (2)

Publication Number Publication Date
JPS58113874A true JPS58113874A (en) 1983-07-06
JPH0215036B2 JPH0215036B2 (en) 1990-04-10

Family

ID=16613970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21192781A Granted JPS58113874A (en) 1981-12-28 1981-12-28 Optical range finder

Country Status (1)

Country Link
JP (1) JPS58113874A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358268A (en) * 1976-11-08 1978-05-26 Tokyo Optical Distance measuring theodlite
JPS55144567A (en) * 1979-04-27 1980-11-11 Tokyo Optical Co Ltd Optical fiber device for light wave range finder
JPS5677773A (en) * 1980-11-12 1981-06-26 Tokyo Optical Co Ltd Mixing/unifying device for uneven phase of light wave distance measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358268A (en) * 1976-11-08 1978-05-26 Tokyo Optical Distance measuring theodlite
JPS55144567A (en) * 1979-04-27 1980-11-11 Tokyo Optical Co Ltd Optical fiber device for light wave range finder
JPS5677773A (en) * 1980-11-12 1981-06-26 Tokyo Optical Co Ltd Mixing/unifying device for uneven phase of light wave distance measuring device

Also Published As

Publication number Publication date
JPH0215036B2 (en) 1990-04-10

Similar Documents

Publication Publication Date Title
US6504602B1 (en) Tacheometer telescope
US3728025A (en) Optical distance measuring equipment
US4171907A (en) Electro-optic distance measuring device
JPH0332758B2 (en)
GB2024558A (en) Laser Range Finder
JP3445491B2 (en) Surveying instrument
US6269580B1 (en) Motor-driven focusing apparatus of a sighting telescope
US3019690A (en) Instrument for measuring distances and the like
JPS58113874A (en) Optical range finder
US4071772A (en) Apparatus for measurement of mechanical aberrations affecting stereoscopic image analysis
EP0135423B1 (en) Distance measuring system
JP2587237B2 (en) Measurement method of machine center height of coaxial collimation rangefinder
JPS63225121A (en) Autocollimation type light wave range finder
JP3574505B2 (en) Surveying instrument
US4702008A (en) Zero setting device in surveying instrument
GB1241549A (en) An improved photometric instrument
JPH08278124A (en) Surveying equipment
JPH087261B2 (en) Lightwave distance measuring method and lightwave distance meter
SU630527A1 (en) Arrangement for measuring object torque angle
JP3843028B2 (en) Light wave distance meter
SU1425446A1 (en) Light range finder
SU1012017A1 (en) Electronic optical range finder
JPH08146136A (en) Light wave distance measuring device
US3459478A (en) Stadiametric rangefinder including a transversely movable lens
SU1753273A1 (en) Device for determining coordinates of object