JPH02143523A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02143523A
JPH02143523A JP29892488A JP29892488A JPH02143523A JP H02143523 A JPH02143523 A JP H02143523A JP 29892488 A JP29892488 A JP 29892488A JP 29892488 A JP29892488 A JP 29892488A JP H02143523 A JPH02143523 A JP H02143523A
Authority
JP
Japan
Prior art keywords
film
resist
wiring
pure
layer resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29892488A
Other languages
Japanese (ja)
Inventor
Seiichi Sato
誠一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29892488A priority Critical patent/JPH02143523A/en
Publication of JPH02143523A publication Critical patent/JPH02143523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enable fine wirings to be formed with high precision by a method wherein a spacer film is previously formed between a wiring film and multilayer resist and then the spacer film is removed after removing the lower layer resist. CONSTITUTION:An insulating film 2 and a wiring film 3 are formed on an Si substrate 1 while a pure Cu film 7 as a spacer film is formed on the wiring film 5 by sputtering process. Later, a lower layer resist 4, an SOG 6 and an upper layer resist 6 are formed on the pure Cu film 7 while in such a state, the upper layer resist 6 is photo-etched to etch away the SOG 5 using the resist 6 as a mask. Then, the lower layer resist 4 is patterned by O2 reactive ion etching process using the resist 6 and SOG 5 as masks. At this time, Cu-made sidewall films 7a are formed by overetching process on the sidewalls of the lower layer resist 4 masked under the SOG 5. Then, the pure Cu film 7 and the wiring film 3 are anisotropically etched away to be patterned and then the lower resist 4 is removed. Finally, when the substrate 1 is immersed in a concentrated acid, any residual pure Cu film 7 and the sidewall film 7a are removed to form wirings 3a.

Description

【発明の詳細な説明】 [概要] 半導体装置の配線形成方法に関し、 微細な配線を精度よく形成することを目的とし、基板上
に形成されたAj若しくはAJ金合金らなる配線膜上に
複数層のレジストを形成し、上層レジストにパターニン
グを施した後その上層レジストをマスクとして下層レジ
ストをパターニングし、そのパターニングされたレジス
ト膜をマスクとして配線膜をエツチングした後下層レジ
ストを除去する配線形成方法において、配線膜と複数層
のレジストとの間にスペーサ膜をあらかじめ形成し、前
記下層レジスト除去後に該スペーサ膜を除去する工程を
含むように構成する。
[Detailed Description of the Invention] [Summary] Regarding a wiring formation method for a semiconductor device, for the purpose of forming fine wiring with high precision, multiple layers are formed on a wiring film made of AJ or AJ gold alloy formed on a substrate. In a wiring forming method in which a resist is formed, an upper resist is patterned, a lower resist is patterned using the upper resist as a mask, a wiring film is etched using the patterned resist film as a mask, and the lower resist is removed. , a spacer film is formed in advance between a wiring film and a plurality of resist layers, and the method includes a step of removing the spacer film after removing the lower layer resist.

[産業上の利用分野] この発明は半導体装置の配線形成方法に関するものであ
る。
[Industrial Field of Application] The present invention relates to a method for forming wiring in a semiconductor device.

近年の半導体装置の高集積化にともない、その半導体装
置の配線の微細化が要請され、その微細配線を形成する
方法として3層レジスト法か実用化されている。
As semiconductor devices have become more highly integrated in recent years, there has been a demand for finer wiring in the semiconductor devices, and a three-layer resist method has been put into practical use as a method for forming finer wiring.

[従来の技術] 従来、微細な配線を形成するために実施されている3層
レジスト法を第2図に従って説明すると、第2図(a)
に示すようにSi基板1上には約1ミクロンの5i02
vあるいはPSGMからなる絶縁膜2が形成され、その
絶縁膜2上にアルミ合金(例えばAj−Cu合金)にて
なる配線v、3をスパッタリング法により約1ミクロン
の厚さで形成する。つづいて、第2図(b)示すように
配線WA3の上に下層レジスト4を約2ミクロンの厚さ
で塗布してベーキングし、同図(c)に示すようにその
上に中間層として約0.2ミクロンの5OG(スピンオ
ングラス)5を塗布してベーキングし、さらに同図(d
)に示すように上層レジスト6を約1ミクロン塗布する
。この下層レジスト4及び上層レジスト6はともにフォ
トレジストであるが、上層レジスト6の方が下層レジス
ト4より粘度が低く、5OG5は両レジスト4,6を隔
離してその溶は合いを防止している。
[Prior Art] The three-layer resist method conventionally used to form fine interconnections will be explained with reference to FIG. 2 (a).
As shown in the figure, there is a 5i02 layer of about 1 micron on the Si substrate 1.
An insulating film 2 made of V or PSGM is formed, and a wiring v, 3 made of an aluminum alloy (for example, Aj-Cu alloy) is formed on the insulating film 2 to a thickness of about 1 micron by sputtering. Subsequently, as shown in FIG. 2(b), a lower resist 4 is coated on the wiring WA3 to a thickness of approximately 2 microns and baked, and as shown in FIG. 2(c), an intermediate layer of approximately 0.2 micron 5OG (spin-on glass) 5 was applied and baked, and then the same figure (d)
), apply the upper layer resist 6 to a thickness of about 1 micron. Both the lower resist 4 and the upper resist 6 are photoresists, but the upper resist 6 has a lower viscosity than the lower resist 4, and the 5OG 5 isolates both resists 4 and 6 to prevent them from melting. .

この状態で通常のフォトエツチングにより第2図(e)
に示すように上層レジスト6に所望のパターニングを施
し、次に同図<f)に示すように上層レジスト6をマス
クとして5OG5を異方性エツチングする。そのエツチ
ングは例えば、CF4  +CHF3 の混合ガスを0.1〜0.5tOrrで使用し、400
〜500Wの電界中で行なう。
In this state, normal photoetching is performed as shown in Figure 2(e).
As shown in FIG. 3, the upper resist 6 is patterned in a desired manner, and then, as shown in FIG. For example, the etching process uses a mixed gas of CF4 + CHF3 at 0.1 to 0.5 tOrr, and
Performed in an electric field of ~500W.

5OG5のエツチングの後、第2図(g)に示すように
上層レジスト6及び5OG5をマスクとして下層レジス
ト4を異方性エツチングする。すなわち、そのエツチン
グは0.01〜0.05t。
After the etching of 5OG5, the lower resist 4 is anisotropically etched using the upper resist 6 and 5OG5 as masks, as shown in FIG. 2(g). That is, the etching is 0.01 to 0.05t.

rrの02によるリアクティブイオンエツチングを40
0〜600Wの電界中で行なう。
Reactive ion etching with 02 of rr 40
It is carried out in an electric field of 0-600W.

この後、第2図<h)に示すように5OG5及び下層レ
ジスト4をマスクとして配線膜3を異方性エツチングす
る。そのエツチングは例えば、S+ C,Q 4 +C
j 2 の混合ガスを0.01tOrrで使用し、500〜60
0Wの電界中で行なう、そして、この後に02プラズマ
アツシヤで下層レジスト4を除去すると、第2図(1)
に示すように配線PIA3がパターニングされて所望の
配線3aが形成される。
Thereafter, as shown in FIG. 2<h), the wiring film 3 is anisotropically etched using the 5OG 5 and the lower resist 4 as a mask. The etching is, for example, S+ C, Q 4 +C
j 2 mixed gas at 0.01 tOrr, 500 to 60
This is carried out in an electric field of 0 W, and then the lower resist layer 4 is removed using a 02 plasma assher, as shown in Fig. 2 (1).
As shown in FIG. 3, the wiring PIA3 is patterned to form a desired wiring 3a.

[発明が解決しようとする課題] ところが、上記のような3層レジスト法による配線形成
方法では、第2図(g>に示すように下層レジスト4を
エツチングする際、そのエツチング部分の下層レジスト
4を完全に除去するためにオーバーエツチングが施され
、このオーバーエツチングにともなって配線膜3表面が
スパッタされて飛散し、その飛散した合金が同図に示す
ように下層レジスト4の側壁に付着して側壁膜3bを形
成する。そして、このような側uv13bは第2図(i
)に示すように下層レジスト4除去後にも残存して配線
パターン上の異物となり、回路の動作不良の原因となる
という問題点があった。
[Problems to be Solved by the Invention] However, in the wiring forming method using the three-layer resist method as described above, when etching the lower resist 4 as shown in FIG. Over-etching is performed to completely remove the resist, and as a result of this over-etching, the surface of the wiring film 3 is sputtered and scattered, and the scattered alloy adheres to the side walls of the lower resist 4 as shown in the figure. A side wall film 3b is formed.Then, such a side wall film 3b is formed as shown in FIG.
), there is a problem in that even after the lower resist 4 is removed, the foreign matter remains on the wiring pattern and causes malfunction of the circuit.

また、この側壁膜3bは配線膜3をエツチング可能なh
tたはアルカリで除去可能であるか、その側壁膜3bの
除去と同時に配線3a自身もエツチングされて同配線3
aの精度を維持できないという問題点があった。
Moreover, this sidewall film 3b has a h
The wiring 3a itself is also etched at the same time as the side wall film 3b is removed.
There was a problem that the accuracy of a could not be maintained.

この発明の目的は、上記のように複数層のレジストを使
用するとともにその下層レジストを異方性エツチングし
てパターニングする配線形成方法において、微細な配線
を精度よく形成する方法を提供するにある。
An object of the present invention is to provide a method for forming fine wiring with high precision in a wiring formation method in which multiple layers of resist are used and the underlying resist is patterned by anisotropic etching as described above.

[課題を解決するための手段] 上記目的は、基板上に形成されたA、Il若しくはA1
合金からなる配線膜上にスペーサ膜を介して複数層のレ
ジストを形成し、上層レジストにパタニングを施した後
その上層レジストをマスクとして下層レジストをパター
ニングし、そのパターニングされたレジスト膜とマスク
として配線膜をエツチングした後下層レジストを除去し
、下層レジスト除去後に該スペーサ膜を除去する製造方
法により達成される。
[Means for solving the problem] The above object is to solve the problem by
Multiple layers of resist are formed on a wiring film made of an alloy via a spacer film, the upper resist is patterned, the lower resist is patterned using the upper resist as a mask, and the patterned resist film and wiring are used as a mask. This is achieved by a manufacturing method in which the lower resist layer is removed after etching the film, and the spacer film is removed after the lower resist layer is removed.

[作用] 下層レジストを異方性エツチングする際にその下層のス
ペーサ膜のオーバーエツチングにより形成されるスペー
サ膜の側壁膜は、スペーサ膜の除去時にスペーサ膜とと
もに除去される。
[Operation] When the lower resist layer is anisotropically etched, the sidewall film of the spacer film formed by over-etching the lower spacer film is removed together with the spacer film when the spacer film is removed.

[実施例] 以下、この発明を具体化した一実施例を第1図に従って
説明する。なお、本実施例における前記従来例と同一構
成部分は同一番号を付してその詳細な説明を省略する。
[Example] An example embodying the present invention will be described below with reference to FIG. Note that the same components in this embodiment as those in the conventional example are given the same numbers, and detailed explanation thereof will be omitted.

第1図(a)に示すように、まずSi基板1上に前記従
来例と同様な絶縁膜2及び配線[3を形成し、その配線
膜3上にスペーサ膜として500〜1000オングスト
ロームの純Cut摸7をスパッタリング法により形成す
る。この後、第1図(b)に示すように純Cu JIi
7上に従来例と同様な下層レジスト4.5OG5及び上
層レジスト6を形成する。
As shown in FIG. 1(a), first, an insulating film 2 and wiring [3] similar to those in the conventional example are formed on a Si substrate 1, and a pure cut film with a thickness of 500 to 1000 angstroms is formed on the wiring film 3 as a spacer film. The pattern 7 is formed by a sputtering method. After this, as shown in FIG. 1(b), pure Cu JIi
7, a lower layer resist 4.5OG5 and an upper layer resist 6 similar to the conventional example are formed.

この状態で、第2図(c)に示すように上層レジスト6
をフォトエツチングし、同図(d)に示すように上層レ
ジスト6をマスクとして5OG5をエツチングする。そ
して、上層レジスト6及び5OG5をマスクとして下層
レジスト4を02によるリアクティブイオンエツチング
でパターニングする。このとき、そのエツチング部分の
下層レジスト4を完全に除去するためにオーバーエツチ
ングすると、第1図(e)に示すように純Cu膜7から
Cuがスパッタされ、5OG5でマスクされた下層レジ
スト4の側壁にCuの側壁膜7aが形成される。
In this state, as shown in FIG. 2(c), the upper layer resist 6
5OG5 is etched using the upper layer resist 6 as a mask, as shown in FIG. 2(d). Then, using the upper resists 6 and 5OG5 as masks, the lower resist 4 is patterned by reactive ion etching using 02. At this time, when over-etching is performed to completely remove the lower resist 4 in the etched portion, Cu is sputtered from the pure Cu film 7 as shown in FIG. 1(e), and the lower resist 4 masked with 5OG5 is sputtered. A Cu sidewall film 7a is formed on the sidewall.

次に、純CU膜7及び配線11W3を前記従来例の配線
WA3のエツチングと同様な条件で異方性エツチングし
て、第1図(f)に示すように純CU膜7及び配線WA
3をパターニングする。このとき、マスクとなる5OG
5が同時にエツチングされて除去される。そして、この
状態で下層レジスト4を02プラズマアツシヤで除去す
ると、第1図(g)に示すように配線3aと純CLI 
Jli7及びCUの側壁膜7aが残る。
Next, the pure CU film 7 and the wiring 11W3 are anisotropically etched under the same conditions as the etching of the wiring WA3 in the conventional example, so that the pure CU film 7 and the wiring WA3 are etched as shown in FIG. 1(f).
Pattern 3. At this time, 5OG which becomes a mask
5 are etched and removed at the same time. In this state, when the lower resist 4 is removed using 02 plasma asher, the wiring 3a and pure CLI are removed as shown in FIG. 1(g).
The sidewall film 7a of Jli7 and CU remains.

そこで、このSi基板1を濃硝酸に20〜30秒間浸す
と、配線膜3には何ら影響を及ぼずことなく純Cu膜7
及びその側壁rr!A7aが除去され、第1図(h)に
示すように配線3aが形成される。
Therefore, if this Si substrate 1 is immersed in concentrated nitric acid for 20 to 30 seconds, the pure Cu film 7 will not have any effect on the wiring film 3.
and its side wall rr! A7a is removed, and a wiring 3a is formed as shown in FIG. 1(h).

従って、この配線形成方法では、従来方法と近似する3
層レジスト法により側壁膜がなく、かつ精度のよい配4
!3aを形成することができる。
Therefore, in this wiring formation method, 3
Layered resist method eliminates sidewall film and provides highly accurate alignment.
! 3a can be formed.

なお、この発明は上記のような3層しジスト法以外に2
層以上の複数のレジストを使用する配線形成方法に応用
することができるとともに、基板上に多数層の配線を形
成する場合にはその各層において実方飢することもでき
る。
In addition to the above-mentioned three-layer cast method, this invention also applies to two methods.
It can be applied to a wiring forming method using a plurality of resist layers or more, and when forming multiple layers of wiring on a substrate, it is also possible to conduct wiring in each layer.

[発明の効果] 以上詳述したように、この発明は複数層のレジストを使
用するとともにその下層レジストを異方性エツチングし
てパターニングする配線形成方法において、微細な配線
を精度よく形成することができる優れた効果を発揮する
[Effects of the Invention] As described in detail above, the present invention is capable of forming fine wiring with high accuracy in a wiring formation method that uses multiple layers of resist and anisotropically etches the underlying resist for patterning. Demonstrate the best possible effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(h)はこの発明を具体化した配線形成
方法を示す工程図、第2図(a)〜(i)は従来の形成
方法を示す工程図である。
FIGS. 1(a) to (h) are process diagrams showing a wiring forming method embodying the present invention, and FIGS. 2(a) to (i) are process diagrams showing a conventional forming method.

Claims (1)

【特許請求の範囲】 1、基板上に形成されたAl若しくはAl合金からなる
配線膜上に複数層のレジストを形成し、上層レジストに
パターニングを施した後その上層レジストをマスクとし
て下層レジストをパターニングし、そのパターニングさ
れたレジスト膜をマスクとして配線膜をエッチングした
後下層レジストを除去する配線形成方法において、 配線膜と複数層のレジストとの間にスペーサ膜をあらか
じめ形成し、前記下層レジスト除去後に該スペーサ膜を
除去する工程を含むことを特徴とする半導体装置の製造
方法。
[Claims] 1. Forming multiple layers of resist on a wiring film made of Al or Al alloy formed on a substrate, patterning the upper resist, and then patterning the lower resist using the upper resist as a mask. However, in a wiring forming method in which a wiring film is etched using the patterned resist film as a mask and then the lower resist layer is removed, a spacer film is formed in advance between the wiring film and the plurality of resist layers, and after the lower layer resist is removed. A method for manufacturing a semiconductor device, comprising the step of removing the spacer film.
JP29892488A 1988-11-25 1988-11-25 Manufacture of semiconductor device Pending JPH02143523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29892488A JPH02143523A (en) 1988-11-25 1988-11-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29892488A JPH02143523A (en) 1988-11-25 1988-11-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02143523A true JPH02143523A (en) 1990-06-01

Family

ID=17865948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29892488A Pending JPH02143523A (en) 1988-11-25 1988-11-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02143523A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480383A (en) * 1990-07-24 1992-03-13 Sony Corp Method for patterning coppery material
JPH04302142A (en) * 1991-03-29 1992-10-26 Sharp Corp Manufactuer of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480383A (en) * 1990-07-24 1992-03-13 Sony Corp Method for patterning coppery material
JPH04302142A (en) * 1991-03-29 1992-10-26 Sharp Corp Manufactuer of semiconductor device

Similar Documents

Publication Publication Date Title
US4352724A (en) Method of manufacturing a semiconductor device
EP0188735B1 (en) Tailoring of via-hole sidewall slope in an insulating layer
KR100374955B1 (en) Method of manufacturing semiconductor device
JPH02143523A (en) Manufacture of semiconductor device
JPH0313744B2 (en)
JP2650313B2 (en) Dry etching method
US6833232B2 (en) Micro-pattern forming method for semiconductor device
JPH0458167B2 (en)
JP2599491B2 (en) Etching method for integrated circuit semiconductor devices
JP3032089B2 (en) Photomask forming method
JPH06244286A (en) Manufacture of semiconductor device
JPS6254427A (en) Manufacture of semiconductor device
JPH05283378A (en) Manufacture of semiconductor device
JPH01274430A (en) Patterning method for film
JPH02134818A (en) Formation of wiring structure body
JPS6218034A (en) Manufacture of semiconductor device
JPH05267246A (en) Manufacture of semiconductor device
JPH0373526A (en) Formation of pattern
JPS646542B2 (en)
JPS63133647A (en) Manufacture of semiconductor device
JPH0613353A (en) Method of forming fine pattern
JPS6028248A (en) Manufacture of semiconductor device
JPH0567611A (en) Semiconductor device and manufacture thereof
JPS6358836A (en) Manufacture of semiconductor device
JPH02224331A (en) Manufacture of semiconductor device