JPH02137272A - Cmos type thin film transistor - Google Patents

Cmos type thin film transistor

Info

Publication number
JPH02137272A
JPH02137272A JP63290634A JP29063488A JPH02137272A JP H02137272 A JPH02137272 A JP H02137272A JP 63290634 A JP63290634 A JP 63290634A JP 29063488 A JP29063488 A JP 29063488A JP H02137272 A JPH02137272 A JP H02137272A
Authority
JP
Japan
Prior art keywords
channel
silicon nitride
thickness
active layer
channel region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63290634A
Other languages
Japanese (ja)
Inventor
Zenichi Akiyama
善一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63290634A priority Critical patent/JPH02137272A/en
Publication of JPH02137272A publication Critical patent/JPH02137272A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1233Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with different thicknesses of the active layer in different devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To eliminate imbalance of characteristics caused by the uniform thickness of a P-channel region and an N-channel region by nonuniformizing the thicknesses of channel regions of a P-channel transistor and an N-channel transistor. CONSTITUTION:After, e.g., N<-> poly Si is deposited on a transparent quartz glass substrate 1, and an island type active layer 2 is formed, silicon nitride is deposited on the whole surface, and a silicon nitride film 10, in which a portion corresponding to a channel region on one side active layer 2 is lacked, is formed. By thermally oxidizing the substrate, an SiO2 oxide film 6' is formed on the lacked part of the silicon nitride film 10. The silicon nitride film 10 is etched and eliminated. At this time, the SiO2 oxide layer 6, is simultaneously etched, but a part of the oxide layer is left after the silicon nitride film is eliminated, because the etching speed of the silicon nitride film differs from that of the SiO2 oxide layer. The thickness of oxide film of the residual oxide layer is adjusted by, e.g., processing time and processing temperature at the time of oxidizing. Thereby, the thickness of the channel region 5 of the N- channel transistor can be made thinner than the P-channel transistor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はラインセンサー、アクティブマトリックス型液
晶表示装置等の駆動に用いられるCMOS型薄膜トラン
ジスターに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a CMOS thin film transistor used for driving line sensors, active matrix liquid crystal display devices, and the like.

〔従来技術〕[Prior art]

従来、ρoQy−Siを半導体材料としてデバイス化し
た場合1本来イントリンシック(真性)が望まれるチャ
ンネル領域がきわめて僅かではあるが、nライク(以下
n−と表わす。)又はpライク(以下p−と表わす。)
になることが知られている。チャンネル領域がn−po
(2y−poly−Siからなる場合、Nチャンネルト
ランジスターにおいては、しきい値電圧を低い値にコン
トロールし難く、このため駆動周波数が低くなったり、
しきい値電圧以下のゲート電圧領域で、リーク電流(オ
フ電流)が多く流れる結果、消費電流が多くなるという
欠点があった。同様な欠点はチャンネル領域がp−ρo
ffy−poly−SiからなるPチャンネルトランジ
スターでも起こる。なおしきい値電圧のコントロールに
は従来、チャンネル領域に不純物をドープする方法が行
なわれているが、このような方法では工程が複雑化し、
経済的ではない。
Conventionally, when ρoQy-Si is used as a semiconductor material to form a device, the channel region which is originally desired to be intrinsic (intrinsic) is very small, but it is n-like (hereinafter referred to as n-) or p-like (hereinafter referred to as p-). )
It is known that Channel area is n-po
(When made of 2y-poly-Si, it is difficult to control the threshold voltage to a low value in an N-channel transistor, so the driving frequency becomes low,
A drawback is that a large amount of leakage current (off-state current) flows in the gate voltage region below the threshold voltage, resulting in increased current consumption. A similar drawback is that the channel region is p−ρo
This also occurs in P-channel transistors made of ffy-poly-Si. Conventionally, the threshold voltage has been controlled by doping the channel region with impurities, but this method complicates the process and
It's not economical.

従って以上のような欠点を有するNチャンネルトランジ
スター及びPチャンネルトランジスターを用いた従来の
CMO8型TPTは特性バランスが悪く、また高価であ
った。
Therefore, conventional CMO8 type TPTs using N-channel transistors and P-channel transistors, which have the above-mentioned drawbacks, have poor characteristic balance and are expensive.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は従来技術における以上のような欠点を除
去し、P、N各チャンネルTFTLこおけるしきい値電
圧のコントロールを容易にし、且つ駆動周波数を大巾に
向上すると共に、しきい値電圧以下のゲート電圧領域で
のオフ電流を低下せしめ、こうして消費電流も低下せし
めると共にチャンネルドープを不要にした、特性バラン
スが良好で安価なCM OS型TPTを提供することで
ある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks in the prior art, facilitate control of the threshold voltage in each P and N channel TFTL, greatly improve the driving frequency, and improve the threshold voltage. It is an object of the present invention to provide an inexpensive CMOS type TPT with good characteristic balance, which reduces off-state current in the following gate voltage region, thereby reducing current consumption and eliminating the need for channel doping.

〔発明の構成・動作〕[Structure and operation of the invention]

本発明のCMO8型TPTは、絶縁基板上にPチャンネ
ルドープ及びNチャンネルドープを有するCMO8型T
 P T ニおイテ、P、N両チャンネルトランジスタ
ーの各チャンネルを形成する活性層がn−po+2y−
3i又はP−poly−poly−Siからなり、且つ
n−po12y−8i活性層の場合はNチャンネルトラ
ンジスター活性層のチャンネル領域の厚さをPチャンネ
ルトランジスターのチャンネル領域よりも薄くし、また
p−poly−poly−Si活性層の場合はNチャン
ネルトランジスター活性層のチャンネル領域の厚さをP
チャンネルトランジスターのチャンネル領域よりも厚く
したことを特徴とするものである。
The CMO8 type TPT of the present invention is a CMO8 type TPT having P channel doping and N channel doping on an insulating substrate.
P T niote, the active layer forming each channel of both P and N channel transistors is n-po+2y-
3i or P-poly-poly-Si, and in the case of an n-po12y-8i active layer, the thickness of the channel region of the N-channel transistor active layer is made thinner than that of the P-channel transistor; - In the case of a poly-Si active layer, the thickness of the channel region of the N-channel transistor active layer is P
It is characterized by being thicker than the channel region of the channel transistor.

このように本発明のCMO8型TPTはP。In this way, the CMO8 type TPT of the present invention is P.

N両チャンネルトランジスターのチャンネル領域の厚さ
を不均一化することにより、特に従来の前記両チャンネ
ル領域の均一な厚さによる特性上のアンバランスを解消
したものである。
By making the thickness of the channel region of the N double channel transistor non-uniform, the unbalance in characteristics caused by the conventional uniform thickness of both channel regions can be solved.

以下、本発明を図面に従って説明する。The present invention will be explained below with reference to the drawings.

第1図にCMO8型TPTのレイアウト、第2図に従来
の一般的なCMO8型TPTの断面構造、及び第3図に
pofly−poly−Si活性層がn−po+2y−
3Lの場合の本発明の一例のCMO5型TPTの断面構
造を示す、第2図及び第3図の構造を比較すれば判るよ
うに従来品では、P、N両チャンネルトランジスターに
おけるpo(2y−poly−Si活性層の厚さは均一
(同一)であるのに対し、本発明ではこれら両poly
−poly−Si活性層の厚さはチャンネル領域5で異
なっている。即ち第3図の例(活性層はn−pofly
−poly−Siからなる)の場合はP、N両チャンネ
ルトランジスターにおいて、ソース領域及びドレイン領
域3,4の厚さはいずれも均一であるが、チャンネル領
域5の厚さはNチャンネルトランジスターの方がPチャ
ンネルトランジスターよりも薄くなっている。なお活性
層がp−poly−poly−Siからなる場合はその
逆にチャンネル領域の厚さはNチャンネルトランジスタ
ーの方をPチャンネルトランジスターよりも厚くする。
Figure 1 shows the layout of a CMO8 type TPT, Figure 2 shows the cross-sectional structure of a conventional general CMO8 type TPT, and Figure 3 shows a pofly-poly-Si active layer with n-po+2y-
As can be seen by comparing the structures of FIG. 2 and FIG. -While the thickness of the Si active layer is uniform (same), in the present invention both of these poly
- The thickness of the poly-Si active layer is different in the channel region 5. In other words, the example of FIG. 3 (the active layer is n-pofly
- In the case of P- and N-channel transistors (consisting of -poly-Si), the thickness of the source and drain regions 3 and 4 is uniform in both the P and N channel transistors, but the thickness of the channel region 5 is greater in the N channel transistor. It is thinner than a P-channel transistor. When the active layer is made of p-poly-poly-Si, conversely, the thickness of the channel region of the N-channel transistor is made thicker than that of the P-channel transistor.

次に以上のような本発明のCMO8型TPTの製造実施
例を第4図に従って説明する。
Next, a manufacturing example of the CMO8 type TPT of the present invention as described above will be described with reference to FIG.

まず透明石英ガラス基板1上に例えばn−poly−p
oly−Siを基板温度630℃で減圧CVD法により
1300人厚に堆積せしめ、引続きフォトリソグラフィ
ー・エツチングにより島状のpo12y−3i活性層2
を形成した後、全体に窒化シリコンをプラズマCVD法
により1000人厚に堆積せしめ、引続きフォトリソグ
ラフィー・エツチングにより、−方の活性層2上のチャ
ンネル領域相当部分が欠けた窒化シリコン膜10を形成
する(第4図(a))。
First, on a transparent quartz glass substrate 1, for example, an n-poly-p
oly-Si was deposited to a thickness of 1300 nm by low-pressure CVD at a substrate temperature of 630°C, followed by photolithography and etching to form island-shaped po12y-3i active layers 2.
After forming silicon nitride, silicon nitride is deposited on the entire surface by plasma CVD to a thickness of 1000 nm, and then photolithography and etching are performed to form a silicon nitride film 10 in which a portion corresponding to the channel region on the - side active layer 2 is missing. (Figure 4(a)).

次にこの基板を1050℃の乾燥酸素中で熱酸化処理し
、窒化シリコン膜10の前記欠落部に1400人厚のS
in2酸化層6′を形成する(第4図(b))。
Next, this substrate was subjected to thermal oxidation treatment in dry oxygen at 1050°C, and a 1400-layer thick S
An in2 oxide layer 6' is formed (FIG. 4(b)).

次に窒化シリコン膜lOをBHF(fi衝弗酸水溶液)
でエツチング除去する。この時、SiO□酸化層6′も
同時にエツチングされるが、窒化シリコン膜のエツチン
グ速度は40人/5ee(20°C)またpoly−S
in2酸化層のエツチング速度は10人/5ee(20
℃)なので、窒化シリコン膜除去後も酸化層は一部残る
。この残存酸化層は以下に述べるチャンネル領域の厚さ
調整のために残してもよいが、引続き前記エツチング液
で完全に除去してもよい(第4図(C))。ここでチャ
ンネル領域の厚さ調整法として下記方法が挙げられる。
Next, the silicon nitride film lO
Remove by etching. At this time, the SiO□ oxide layer 6' is also etched at the same time, but the etching rate of the silicon nitride film is 40 people/5ee (20°C) and the poly-S
The etching rate of the in2 oxide layer is 10 people/5ee (20
℃), so a portion of the oxide layer remains even after the silicon nitride film is removed. This residual oxide layer may be left for the purpose of adjusting the thickness of the channel region as described below, but it may also be completely removed using the etching solution (FIG. 4(C)). Here, the following method can be mentioned as a method for adjusting the thickness of the channel region.

(1)酸化膜の厚さを酸化時の処理時間及び処理温度に
より調整する。
(1) The thickness of the oxide film is adjusted by the treatment time and temperature during oxidation.

(2)前記残存酸化層の厚さをエツチング時間で調整す
る。
(2) Adjusting the thickness of the remaining oxide layer by adjusting the etching time.

次にこの基板を前記と同じ方法で熱酸化処理して800
人厚S3in2酸化膜を形成し、その上にpoly−5
Lを減圧CvD法テ3000人厚堆積積せしめた後、セ
ルファライン技術でゲート絶縁層6及びゲート電極7を
形成する。引続き硼素をPチャンネルトランジスター領
域に、また燐又は砒素をNチャンネルトランジスター領
域にイオン打ち込みにより拡散導入し、ソース領域3及
びドレイン領域4を形成する(第4図(d))。この不
純物拡散はPSG(燐ガラス)又はAs5G(砒素ガラ
ス)(以上はNチャンネルトランジスター作製の場合)
、BSG(硼素ガラス)(Pチャンネルトランジスター
作製の場合)等の膜による熱拡散で行ってもよい。
Next, this substrate was thermally oxidized in the same manner as above to
Form a S3in2 oxide film with a thickness of 3.5 cm, and poly-5
After depositing L to a thickness of 3,000 layers using the low pressure CvD method, a gate insulating layer 6 and a gate electrode 7 are formed using the self-line technique. Subsequently, boron is diffused into the P-channel transistor region and phosphorus or arsenic is diffused into the N-channel transistor region by ion implantation to form a source region 3 and a drain region 4 (FIG. 4(d)). This impurity diffusion is performed in PSG (phosphorus glass) or As5G (arsenic glass) (the above is for N-channel transistor fabrication).
, BSG (boron glass) (in the case of manufacturing a P-channel transistor), or the like may be used for thermal diffusion using a film.

以下、この基板上に減圧CVD法によりpoly−Si
02層間絶縁膜8を形成し、コンタクトホールを開け、
A2、Af1合金等の電極材料の蒸着及びエツチングに
より電極配線9を形成すれば第3図のようなCMO3型
TPTが得られる(第4図(e))。
Hereinafter, poly-Si was deposited on this substrate by low pressure CVD method.
02 Form an interlayer insulating film 8, open a contact hole,
If the electrode wiring 9 is formed by vapor deposition and etching of an electrode material such as A2 or Af1 alloy, a CMO3 type TPT as shown in FIG. 3 can be obtained (FIG. 4(e)).

なお最後にこのTPTに対し以下のような条件でプラズ
マ水素処理を行なう。
Finally, this TPT is subjected to plasma hydrogen treatment under the following conditions.

Rf比出力  1.IW/ad ガス圧  100 P a ガス流量   11008CC 原料ガス   H2 基板温度   300℃ 時   間    30分 以上のようにして作製したCMO8型TPTでシフトレ
ジスターを構成したところ、最高駆動周波数は5MHz
となり、−消費電流も減少した。なお第2図の従来品の
場合は最高駆動周波数は0.5MHzであった。
Rf specific output 1. IW/ad Gas pressure 100 Pa Gas flow rate 11008 CC Source gas H2 Substrate temperature 300°C Time When a shift register was constructed using the CMO8 type TPT manufactured as described above for over 30 minutes, the maximum drive frequency was 5 MHz.
Therefore, the current consumption also decreased. In the case of the conventional product shown in FIG. 2, the maximum driving frequency was 0.5 MHz.

〔発明の作用効果〕[Function and effect of the invention]

N又はPチャンネルドープにおいて、チャンネル領域の
厚さを薄くして行くと、300人厚SrPT特性が向上
する。第5図にNチャンネルTPTの場合のVI特性を
示す。図中8曲線はチャンネル領域の厚さが約1000
人の場合、5曲線は同じく約300人の場合である。即
ちチャンネル領域活性層の薄層化により、しきい値電圧
をO付近の低い値にコントロールして駆動周波数を向上
すると共に、しきい値電圧以下のゲート電圧領域でのオ
フ電流を低下させ、こうして消費電流も少ない、Nチャ
ンネルトランジスターとPチャンネルトランジスターと
のバランスが取れたCMO5型TPTをチャンネルドー
プすることなく安価に提供することができる。
In N or P channel doping, when the thickness of the channel region is made thinner, the 300-layer thickness SrPT characteristics are improved. FIG. 5 shows VI characteristics in the case of N-channel TPT. In the 8th curve in the figure, the thickness of the channel region is approximately 1000 mm.
In the case of people, the 5th curve is also for about 300 people. That is, by thinning the active layer in the channel region, the threshold voltage can be controlled to a low value near O to improve the driving frequency, and the off-state current in the gate voltage region below the threshold voltage can be reduced. A CMO5 type TPT with low current consumption and a well-balanced N-channel transistor and P-channel transistor can be provided at low cost without channel doping.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCMOS型TPTのレイアウト、第2図は従来
の一例CMO8型TPTの断面図、第3図は本発明の一
例のCMO8型TPTの断面図、第4図(a)〜(e)
は本発明の一例のCMO8型TPTの製造工程図、第5
図はNチャンネルTPTのVI特性図である。 1・・・絶縁基板  2・・・po12y−3L活性層
3・・・ソース領域   4・・・ドレイン領域5・・
・チャンネル領域 6・・・ゲート絶縁層6′・・・S
 io2酸化層  7・・・ゲート電極8・・・層間絶
縁膜   9・・・電極配線10・・・窒化シリコン膜
 11・・・不純物イオン特許出願人 株式会社 リ 
コ − 市2図 帛3図 VG(Vl 帛4回
Fig. 1 is a layout of a CMOS type TPT, Fig. 2 is a sectional view of a conventional CMO8 type TPT, Fig. 3 is a sectional view of a CMO8 type TPT as an example of the present invention, and Figs. 4 (a) to (e).
5 is a manufacturing process diagram of CMO8 type TPT as an example of the present invention.
The figure is a VI characteristic diagram of an N-channel TPT. 1... Insulating substrate 2... po12y-3L active layer 3... Source region 4... Drain region 5...
・Channel region 6...Gate insulating layer 6'...S
io2 oxide layer 7... Gate electrode 8... Interlayer insulating film 9... Electrode wiring 10... Silicon nitride film 11... Impurity ion patent applicant Li Co., Ltd.
Ko - City 2 Map 3 VG (Vl 4 times

Claims (1)

【特許請求の範囲】[Claims] 1、絶縁基板上にPチャンネル薄膜トランジスター及び
Nチャンネル薄膜トランジスターを有するCMOS型薄
膜トランジスターにおいて、P、N両チャンネル薄膜ト
ランジスターの各チャンネルを形成する活性層がn^−
poly−Si活性層の場合はNチャンネルトランジス
ター活性層のチャンネル領域の厚さをPチャンネルトラ
ンジスターのチャンネル領域よりも薄くし、またp−p
oly−Si活性層の場合はNチャンネルトランジスタ
ー活性層のチャンネル領域の厚さをPチャンネルトラン
ジスターのチャンネル領域よりも厚くしたことを特徴と
するCMOS型薄膜トランジスター。
1. In a CMOS type thin film transistor having a P channel thin film transistor and an N channel thin film transistor on an insulating substrate, the active layer forming each channel of both P and N channel thin film transistors is n^-
In the case of a poly-Si active layer, the thickness of the channel region of the N-channel transistor active layer is made thinner than that of the P-channel transistor, and the thickness of the channel region of the N-channel transistor active layer is made thinner than that of the P-channel transistor.
A CMOS type thin film transistor characterized in that, in the case of an oly-Si active layer, a channel region of an N-channel transistor active layer is thicker than a channel region of a P-channel transistor.
JP63290634A 1988-11-17 1988-11-17 Cmos type thin film transistor Pending JPH02137272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63290634A JPH02137272A (en) 1988-11-17 1988-11-17 Cmos type thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63290634A JPH02137272A (en) 1988-11-17 1988-11-17 Cmos type thin film transistor

Publications (1)

Publication Number Publication Date
JPH02137272A true JPH02137272A (en) 1990-05-25

Family

ID=17758515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63290634A Pending JPH02137272A (en) 1988-11-17 1988-11-17 Cmos type thin film transistor

Country Status (1)

Country Link
JP (1) JPH02137272A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281840A (en) * 1991-03-28 1994-01-25 Honeywell Inc. High mobility integrated drivers for active matrix displays
US5308779A (en) * 1991-03-28 1994-05-03 Honeywell Inc. Method of making high mobility integrated drivers for active matrix displays
US5528056A (en) * 1990-11-30 1996-06-18 Sharp Kabushiki Kaisha CMOS thin-film transistor having split gate structure
JP2009278073A (en) * 2008-04-18 2009-11-26 Semiconductor Energy Lab Co Ltd Semiconductor device, and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528056A (en) * 1990-11-30 1996-06-18 Sharp Kabushiki Kaisha CMOS thin-film transistor having split gate structure
US5281840A (en) * 1991-03-28 1994-01-25 Honeywell Inc. High mobility integrated drivers for active matrix displays
US5308779A (en) * 1991-03-28 1994-05-03 Honeywell Inc. Method of making high mobility integrated drivers for active matrix displays
JP2009278073A (en) * 2008-04-18 2009-11-26 Semiconductor Energy Lab Co Ltd Semiconductor device, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2666103B2 (en) Thin film semiconductor device
KR100191091B1 (en) Thin film transistor and its fabrication method
KR100691293B1 (en) Thin film semiconductor device and method for manufacturing same
JPH05102483A (en) Film transistor and its manufacturing method
JP3548237B2 (en) Thin film transistor
JPH0936380A (en) Polycrystal silicon thin film transistor and its manufacture
JPH07162003A (en) Manufacture of thin-film transistor
JP3401036B2 (en) Semiconductor device structure
JP2666293B2 (en) Method for manufacturing MOS transistor
JPH02137272A (en) Cmos type thin film transistor
JP2572379B2 (en) Method for manufacturing thin film transistor
JPH0239541A (en) Semiconductor device
JPH05206464A (en) Thin film semiconductor device and its manufacture
JPS6066854A (en) Semiconductor device and manufacture thereof
JPH03265143A (en) Manufacture of thin film transistor
JPH09186337A (en) Method of manufacturing thin film transistor and electro-optic display unit formed by this method
JP2925007B2 (en) Method for manufacturing thin film transistor
JP2629601B2 (en) Semiconductor device
JPH02137271A (en) Cmos type thin film transistor
JPH0265274A (en) Thin film transistor
JP2001196467A (en) Semiconductor integrated circuit device and its manufacturing method
JPH02130962A (en) Thin-film transistor
JPH03177073A (en) Thin-film transistor
JPH11145425A (en) Manufacture of semiconductor element and semiconductor device
JP3644977B2 (en) Method for manufacturing polycrystalline silicon thin film transistor