JPH02131936A - Flexible copper-clad laminated board - Google Patents

Flexible copper-clad laminated board

Info

Publication number
JPH02131936A
JPH02131936A JP28571988A JP28571988A JPH02131936A JP H02131936 A JPH02131936 A JP H02131936A JP 28571988 A JP28571988 A JP 28571988A JP 28571988 A JP28571988 A JP 28571988A JP H02131936 A JPH02131936 A JP H02131936A
Authority
JP
Japan
Prior art keywords
foil
formula
primary diamine
copper
aromatic primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28571988A
Other languages
Japanese (ja)
Inventor
Moriji Morita
守次 森田
Shunji Yoshida
芳田 俊爾
Kenji Tanabe
健二 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP28571988A priority Critical patent/JPH02131936A/en
Publication of JPH02131936A publication Critical patent/JPH02131936A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a flexible copper-clad laminated board having excellent heat resistance, high bending resistance, high peeling strength and excellent body strength by forming a film of polyimide generated by reacting specific aromatic tetracarboxylic acid dianhydride with aromatic primary diamine on a copper foil. CONSTITUTION:Aromatic primary diamine represented by a formula 2a and aromatic primary diamine represented by a formula 2b are mixed at the ratio of 90-40:10-60 of equivalent ratio, a copper foil is coated with organic solvent solution of polyamide acid generated by reacting it with aromatic tetracarboxylic acid anhydride represented by a formula 1, then heated, dried, dehydrated to form a polyimide film layer on the foil. An operation for coating the foil with the solution is desirably conducted by casting. More specifically, polyamide acid solution is discharged from a film forming slit to the surface of the foil to form a coating film layer having a uniform thickness. The thickness of the layer is so adjusted as to obtain 1-1000mum of finally obtained polyimide film layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子工業分野において普及しつつあるフレキ
シブル銅張り積層板(Flexible Copper
Clad Laminate ,以下FCLと略す)に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applied to flexible copper-clad laminates that are becoming popular in the electronics industry.
Clad Laminate (hereinafter abbreviated as FCL).

[従来の技術1 FCLは、主として可撓性を有するプリント配線板用の
基材として使用されるが、その他tm波シールド用材料
、面発熱体、フラソトケーブル、包装材料等に使用され
る。
[Prior Art 1 FCL is mainly used as a base material for flexible printed wiring boards, but is also used in other materials such as TM wave shielding materials, surface heating elements, flatbed cables, and packaging materials.

近年においては、プリント配線板が収容されるケース類
がコンパクトになるなどのために、FCLのプリント配
線板用の基材としての利用が増大している. このようなFCLは従来、通常は厚さ5μ−以上の有機
重合体からなる接着剤を用いて、銅箔に耐熱性重合体フ
ィルムを張り合わせることにより製造されている.しか
し、この接着剤を使用したFCLは、その接着剤の特性
が不十分であるために耐熱性重合体フィルムの優れた特
性を十分に生かすことができず、特に耐熱性の点で問題
があった。
In recent years, the use of FCL as a base material for printed wiring boards has increased because cases in which printed wiring boards are housed have become more compact. Such FCLs have conventionally been manufactured by laminating a heat-resistant polymer film to a copper foil using an adhesive made of an organic polymer, usually with a thickness of 5 μm or more. However, FCL using this adhesive cannot take full advantage of the excellent properties of the heat-resistant polymer film because the properties of the adhesive are insufficient, and there are problems in particular in terms of heat resistance. Ta.

そのために、耐熱性重合体フィルムとw4箔が接着剤を
介することなく直接的に固着させられているFCLとす
る方法が従来から検討されている.たとえば、米国特許
3,179,634 、同3,736,170 、特開
昭49429. 862号、同58−190,091号
、同59−162.044号などがある. しかしながら、これらの方法による接着剤不使用のFC
Lは耐熱性重合体フィルムと銅箔との接着力が不十分で
あること、あるいは接着力が十分であってもその強度が
安定せず、特に高温雰囲気での接着力の劣化が大きいな
どの欠点があった.特に、耐熱性重合体の中でもポリイ
ミドとポリアミドイミドの場合は、種々の原因により安
定して大きい接着力を得ることは難しい. さらに、米国特許3,736,170 、特開昭59−
 162, 044号の実施例に記述されているように
、FCL用の耐熱性重合体として好適なフェノール性溶
媒に不溶のポリイミドの場合には、耐熱性重合体フィル
ムと銅箔との間の引き剥がし強度があまり高いとは言え
ず、折り曲げ応力が大きい場合、あるいは回路幅が狭い
場合には、回路の信頼性から考えて接着力が十分である
とは言えない。
To this end, methods have been studied to create an FCL in which a heat-resistant polymer film and W4 foil are directly adhered to each other without using an adhesive. For example, U.S. Pat. No. 3,179,634, U.S. Pat. No. 862, No. 58-190,091, No. 59-162.044, etc. However, adhesive-free FC using these methods
L indicates that the adhesive strength between the heat-resistant polymer film and the copper foil is insufficient, or even if the adhesive strength is sufficient, the strength is unstable, and the adhesive strength deteriorates significantly in a high-temperature atmosphere. There was a drawback. In particular, among heat-resistant polymers, it is difficult to obtain stable and high adhesive strength with polyimide and polyamide-imide due to various reasons. Furthermore, U.S. Patent No. 3,736,170, Japanese Patent Application Laid-open No. 1983-
162,044, in the case of polyimides insoluble in phenolic solvents, which are suitable as heat-resistant polymers for FCLs, the tension between the heat-resistant polymer film and the copper foil is If the peel strength is not very high, the bending stress is large, or the circuit width is narrow, the adhesive strength cannot be said to be sufficient from the viewpoint of circuit reliability.

[発明が解決しようとするtiBl ポリイミドフィルムが厚さ5μ醜以上のエボキシ樹脂、
アクリル樹脂等の有機重合体からなる接着着層を介して
wA箔に張り合わせられたFCLはすでに提案されてい
るが、そのような有機重合体からなる接着剤を使用する
既存のFCLは、その特性が多くの点において要求水準
に達していない.また、接着剤層の存在しないFCLは
耐熱性の点では接着剤層の存在するPCLに比べて優れ
ているが、接着力や耐熱性重合体フィルムの強度、耐折
性等の点のバランスのとれたFCLはいまだ実用化には
到っていない。
[The tiBl polyimide film to be solved by the invention is an epoxy resin with a thickness of 5μ or more,
FCL laminated to wA foil via an adhesive layer made of an organic polymer such as acrylic resin has already been proposed, but existing FCLs using adhesives made of such organic polymers have limited characteristics. has not reached the required level in many respects. In addition, FCL without an adhesive layer is superior to PCL with an adhesive layer in terms of heat resistance, but the balance of adhesive strength, strength of the heat-resistant polymer film, folding durability, etc. The obtained FCL has not yet been put into practical use.

かかる状況に鑑み、本発明では耐熱性が高く、腰が強く
、耐折性に優れ、引き剥がし強度が高く適切な熱膨張率
をもった優れた特性のFCLを提供するものであり、こ
のようなFCLは産業上、特に電子工業上極めて脊用な
ものである。
In view of this situation, the present invention provides FCL with excellent properties such as high heat resistance, strong elasticity, excellent bending durability, high peel strength, and appropriate coefficient of thermal expansion. FCL is extremely useful in industry, especially in the electronics industry.

[課題を解決するための手段コ すなわち、本発明は、 芳香族テトラカルボン酸二無水物と芳香族第一級ジアミ
ンを反応させて生成したポリイミドのフィルムが銅箔上
に形成されているフレキシブル銅張り積層板において、
咳芳香族テトラカルボン酸無水物が以下の(1)式、咳
芳香族第一級ジアミンが以下の(2a)式と(2b)式
の混合物であることを特徴とするフレキシブル銅張りf
IN板、であり、また}{2ht−@−NHz (2a》 82N−o−0−@−G−0−@−NH2《2b》 (2a)弐で表された芳香族第一級ジアミンと(2b)
式で表された芳香族第一級ジアミンとの当量比が90〜
40 : 10〜60であるフレキンブル銅張り積層板
であり、また、 上記規定のフレキシブル銅張り積層板の製法にして、(
2a)弐で表された芳香族第一級ジアミンと(2b)式
で表された芳香族第一級ジアミンを当盪比で90〜40
 : 10〜60の割合で混合し、芳香族テトラカルボ
ン酸無水物と反応させて生成したボリアミド酸の有機溶
媒溶液を、銅箔上にコーティングした後、加熱、乾燥、
脱水してポリイミドフィルム層を銅箔上に形成させるこ
とを特徴とするフレキシブル銅張り積層板の製法、であ
る. すなわち、本発明の要旨は、 通常、ポリイミドはテトラカルボン酸二無水物と、ジア
ミンを原料として合成されるところ、本発明においては
、テトラカルボン酸二無水物として(1)で示される3
,3゜,4,4゜−ビフエニルテトラカルボン酸二無水
物を用い、ジアミンとして(2a)で示されるバラフェ
ニレンジアミンおよび(2b)で示される4,4″−ビ
ス(3−アミノフエノキシ)ビフエニルを、好ましくは
当量比90〜40 : 10〜60で混合して使用する
ものである. 上記のテトラカルボン酸二無水物とジアミンは、有機溶
媒中で反応してボリアミド酸となり、銅箔上にコーティ
ングされた後、加熱、乾燥、脱水されてフレキシブル銅
張り積層板とされる.本発明で生成するポリアミド酸は
、特に限定はないが、望まし《は、パラフエニレンジア
ミンと4.4゜−ビス(3−アミノフエノキシ)ビフェ
ニルを、当量比90〜40 : 10〜60、好ましく
は80〜60 : 20〜40で、温度は一般には−2
0℃〜100゜C1好ましくは0゜C〜40゛Cで混合
した後、3,3゜,4.4’−ビフエニルテトラカルボ
ン酸無水物と、−20″C以上で使用する溶媒の沸点未
満の温度範囲で、好ましくはθ℃〜40″Cで、10分
以上、好ましくは1〜48時間反応させる(方法1)か
、あるいは、バラフエニレンジアミンと3.3”.4,
4゜−ビフエニルテトラカルボン61無水物とを−20
゜C以上で使用する溶媒の沸点未満の温度範囲で、好ま
しくは0゛C〜40゜Cで、10分以上、好ましくは1
〜48時間反応させて生成したボリアミド酸(A)  
と、ボリアミド酸(A)  と同様の条件と方法で4,
4゜−ビス(3−アミノフエノキシ)ビフエニルと3.
3゜.4,4゜−ビフェニルテトラカルボン酸無水物と
を反応させて生成したポリアミド酸(B) とをジアミ
ン換算の当量比で90〜40 : 10〜60、好まし
くは80〜60 : 20〜40で混合する(方法2)
ことにより得られる.以上のようにして得られるボリア
ミド酸溶液中のボリアミド酸の濃度は、5〜50%であ
ることが好ましい.これらの方法のうち機械的物性等の
点から、方法1で製造した場合に特に好ましい結果が得
られる.ジアミンの中で、4.4′−ビス(3−アミノ
フェノキシ)ビフェニルが当量比で60%を越える場合
には、生成したポリイミドは熱可塑性が強いために、ポ
リイミドフィルムに半田ごて(300〜350℃)が直
接触れた場合に、容易にフィルムが損傷を受けたり、高
温半田浴(280゜C以上)にフロートされた場合にフ
ィルムが変形を起こすことがあり、また腰が弱いために
、回路形成してコ不クター等に接続する際等に操作性が
悪く、プリント配線板としての取り扱いが難し《なる.
また、4,4゜−ビス(3−アミノフヱノキシ)ビフエ
ニルが当量比でlO%未満の場合には、生成したポリイ
ミドフィルムの銅箔との接着力が低く、フレキシブルプ
リント回路の回路が容易にフィルムから剥がれ易く、実
用に耐えることができないという欠点が生じる.重合、
およびコーティングの際に用いられる有機溶媒としては
、たとえばN−メチル−2−ビロリドン、N,N−ジメ
チルアセトアミド、N,N−ジメチルホルムアミド、1
.3−ジメチル−2=イミダゾリジノン、N,N−ジエ
チルアセトアミド、N,N−ジメチルメトキシアセトア
ミド、ジメチルスルホキシド、ピリジン、ジメチルスル
ホン、ヘキサメチルホスホルアミド、テトラメチル尿素
、N−メチル力プロラクタム、テトラヒド口フラン、一
ジオキサン、p−ジオキサン、■,2−ジメトキシエタ
ン、ビス(2−メトキシエチル)エーテル、1.2−ビ
ス(2−メトキシエトキシ)エタン、ビス−[2− (
2−メトキシエトキシ)エチル}エーテル等がある。
[Means for Solving the Problems] In other words, the present invention provides a flexible copper film in which a polyimide film produced by reacting an aromatic tetracarboxylic dianhydride and an aromatic primary diamine is formed on a copper foil. In stretched laminates,
A flexible copper-clad f characterized in that the aromatic tetracarboxylic acid anhydride is a mixture of the following formula (1) and the aromatic primary diamine is a mixture of the following formulas (2a) and (2b).
IN plate, and {2ht-@-NHz (2a)} 82N-o-0-@-G-0-@-NH2《2b》 (2a) An aromatic primary diamine represented by 2 and (2b)
The equivalent ratio with the aromatic primary diamine represented by the formula is 90~
40: It is a flexible copper-clad laminate with a rating of 10 to 60, and the manufacturing method for the flexible copper-clad laminate specified above is (
2a) The aromatic primary diamine represented by 2 and the aromatic primary diamine represented by the formula (2b) are mixed at a mixing ratio of 90 to 40.
: After coating a copper foil with an organic solvent solution of polyamic acid produced by mixing at a ratio of 10 to 60 and reacting with an aromatic tetracarboxylic acid anhydride, heating, drying,
This is a method for producing a flexible copper-clad laminate, which is characterized by forming a polyimide film layer on copper foil by dehydration. That is, the gist of the present invention is that polyimide is usually synthesized using tetracarboxylic dianhydride and diamine as raw materials, but in the present invention, polyimide is synthesized using 3 as the tetracarboxylic dianhydride (1).
, 3°, 4,4°-biphenyltetracarboxylic dianhydride, and the diamines are phenylenediamine represented by (2a) and 4,4″-bis(3-aminophenoxy)biphenyl represented by (2b). are preferably mixed at an equivalent ratio of 90 to 40:10 to 60.The above tetracarboxylic dianhydride and diamine react in an organic solvent to form polyamic acid, which is then deposited on the copper foil. After being coated, it is heated, dried, and dehydrated to form a flexible copper-clad laminate.The polyamic acid produced in the present invention is not particularly limited, but preferably has a 4.4° -bis(3-aminophenoxy)biphenyl in an equivalent ratio of 90 to 40: 10 to 60, preferably 80 to 60: 20 to 40, and the temperature is generally -2
0°C to 100°C1 Preferably, after mixing at 0°C to 40°C, the boiling point of the 3,3°,4.4'-biphenyltetracarboxylic acid anhydride and the solvent used at -20°C or higher. (Method 1) or react with paraphenylenediamine at a temperature range of 3.3".
4゜-biphenyltetracarboxylic anhydride and -20
at a temperature range of 0°C or above and below the boiling point of the solvent used, preferably 0°C to 40°C, for 10 minutes or more, preferably 1
Polyamic acid (A) produced by reaction for ~48 hours
4, under the same conditions and method as polyamic acid (A).
4°-bis(3-aminophenoxy)biphenyl and 3.
3゜. Polyamic acid (B) produced by reacting with 4,4°-biphenyltetracarboxylic acid anhydride is mixed in an equivalent ratio of 90 to 40: 10 to 60, preferably 80 to 60: 20 to 40 in terms of diamine. (Method 2)
It can be obtained by The concentration of polyamic acid in the polyamic acid solution obtained as described above is preferably 5 to 50%. Among these methods, from the viewpoint of mechanical properties, etc., particularly preferable results are obtained when manufacturing using method 1. Among the diamines, when the equivalent ratio of 4,4'-bis(3-aminophenoxy)biphenyl exceeds 60%, the resulting polyimide has strong thermoplasticity. The film may be easily damaged if it comes into direct contact with temperatures (350°C) or deformed if it is floated in a high-temperature solder bath (280°C or higher). It has poor operability when forming a circuit and connecting it to a connector, etc., making it difficult to handle it as a printed wiring board.
In addition, if the equivalent ratio of 4,4゜bis(3-aminophenoxy)biphenyl is less than 10%, the adhesive strength of the produced polyimide film to the copper foil is low, and the circuit of the flexible printed circuit can be easily removed from the film. The drawback is that it peels off easily and cannot be put to practical use. polymerization,
Examples of organic solvents used during coating include N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, 1
.. 3-dimethyl-2=imidazolidinone, N,N-diethylacetamide, N,N-dimethylmethoxyacetamide, dimethylsulfoxide, pyridine, dimethylsulfone, hexamethylphosphoramide, tetramethylurea, N-methylprolactam, Tetrahydrofuran, monodioxane, p-dioxane, ■,2-dimethoxyethane, bis(2-methoxyethyl)ether, 1,2-bis(2-methoxyethoxy)ethane, bis-[2-(
2-methoxyethoxy)ethyl}ether, etc.

ポリアミド酸7容液をw4箔上にコーティングする場合
は、生成したボリアミド酸溶液をそのまま、あるいは前
述の有機溶媒で希釈して、または溶媒の沸点以下の温度
で10分以上加熱することによってボリアミド酸を5〜
40重盪%、特に好ましくはlO〜30重世%含有し、
かつ、対数粘度が0.5〜6a/g (35゜c,′a
度0.5g/100d、N,N−シ/{−ル7−t=ト
アミドで測定した値)、特に1.0〜4dl/gである
溶液を用いることが、製造したポリイミドの物性および
ボリアミド酸の塗布適性、乾燥工程での経済性から好ま
しい。なお簡便な方法としては、塗布時に回転粘度計で
粘度の目安をつけることができ、そのイ直としては10
0〜l00000cpsである.ボリアミド酸溶液を銅
箔上にコーティングする操作は、流延塗布により行なわ
れることが好ましく、具体的には、1i1箔表面にポリ
アミド酸溶液を製膜用スリットから吐出させて均一な厚
さの塗膜層を形成させる.なお、塗Wj4Jiの厚さは
最終的に得られるポリイミドフィルム層の厚さがlus
〜1000μm程度の厚さになるように調整される.他
のコーティング手段として、ドクターブレート、ロール
コーター、ナイフコーター、コンマコーター、フローコ
ーター等の公知の手段を利用することができる. w4箔は圧延銅箔、電解w4箔ともに使用することがで
きるが、その厚さは通常1μII〜100μ鰯程度であ
る.また、銅箔とポリイミドとの接着力を高めるために
、w4Fgの表面に金属単体、合金またはそれらの酸化
物、たとえば銅単体、酸化銅、ニノケルー銅合金、亜鉛
一銅合金等を形成させたり、銅箔の表面をカンブリング
剤、たとえばアミノシラン系カンプリング剤、エポキシ
シラン系カップリング剤、メルカブタン系カップリング
剤等で処理することも好ましい。さらに、銅箔表面の防
錆のために、銅箔上に酸化亜鉛処理、亜鉛−クロメート
処理、酸化クロム処理等を行なうことも好ましい。
When coating a 7 volume solution of polyamic acid on W4 foil, the polyamic acid solution can be coated as it is, diluted with the above-mentioned organic solvent, or heated for 10 minutes or more at a temperature below the boiling point of the solvent. 5~
Contains 40% by weight, particularly preferably 10 to 30% by weight,
and the logarithmic viscosity is 0.5 to 6a/g (35°c,'a
The physical properties of the polyimide produced and the polyamide Preferable from the viewpoint of acid coating suitability and economic efficiency in the drying process. A simple method is to measure the viscosity using a rotational viscometer at the time of application;
It is 0~l00000cps. The operation of coating the copper foil with the polyamic acid solution is preferably carried out by casting. Specifically, the polyamic acid solution is sprayed onto the surface of the 1i1 foil from a film-forming slit to coat the copper foil with a uniform thickness. Form a membrane layer. The thickness of the coating Wj4Ji is based on the thickness of the final polyimide film layer.
The thickness is adjusted to approximately 1000 μm. As other coating means, known means such as a doctor blade, roll coater, knife coater, comma coater, flow coater, etc. can be used. Both rolled copper foil and electrolytic W4 foil can be used as W4 foil, but their thickness is usually about 1μII to 100μ. In addition, in order to increase the adhesive strength between copper foil and polyimide, metals, alloys, or oxides thereof, such as simple copper, copper oxide, Ninokeru copper alloy, zinc-copper alloy, etc., may be formed on the surface of w4Fg. It is also preferable to treat the surface of the copper foil with a cambling agent, such as an aminosilane-based camping agent, an epoxysilane-based coupling agent, a mercabutane-based coupling agent, or the like. Furthermore, in order to prevent rust on the surface of the copper foil, it is also preferable to subject the copper foil to zinc oxide treatment, zinc-chromate treatment, chromium oxide treatment, or the like.

前述のようにして調整されたボリアミド酸塗布層を、次
に加熱して脱溶媒、脱水縮合反応を行なう.この操作は
、常圧、減圧、あるいは加圧など任意の条件で行なうこ
とができる.また加熱方法は熱風、赤外、遠赤外等いず
れを用いてもよく、また併用することもさしつかえない
。これらの脱溶媒、脱水工程で、銅箔表面が酸化される
温度以上の温度にさらされる場合には、w4箔表面の酸
化が起こり、w4箔の機械特性、電気特性および接着性
の低下が起こり易くなることがあるため、銅箔が酸化さ
れる温度以上では脱溶媒、脱水工程を窒素、ヘリウム、
ネオン、アルゴン等の不活性ガス中で行なうことが、銅
箔表面の酸化を防止するために特に好ましい.ここで不
活性ガス中とは、銅箔表面が、所定時間の加熱の際に実
質的に電気特性あるいは接着力等に悪影響を与える酸化
反応を受けない気体雰囲気中であることを意味し、加熱
温度にも依存するが、通常酸素4度が10%以下、好ま
しくは5%以下、さらに好ましくは1%以下である気体
雰囲気を意味する. 以上に述べたように、本発明で提案されたFCLは、接
着剤を含まないために耐熱性が良好で、優れたポリイミ
ドの使用により耐折性、引き剥がし強度、腰の強さ等の
点で優れた特性を存する.〔実施例) 次に実施例を示してさらに本発明を説明する.実施例 攪拌機、還流冷却器および窒素導入管を備えた容器中に
おいて(2a)のジアミンたるバラフエニレンジアミン
151g(1.4モル)と(2b)のジアミンたる4.
4’−(3−アミノフェノキシ)ビフエニル221g(
0.6モル)を、N,N−ジメチルホルムアミド350
0adに溶解した.この溶液に窒素雰囲気下において3
.3″,4,4゜−ビフェニルテトラカルボン酸二無水
物588g(2.0モル)を加えて、室温にて24時間
反応させた. こうして得られたポリアミド酸溶液の対数粘度は1 .
 8 a / gであった. このボリアミド酸溶液を、ジメチルフォルムアミドで1
8%まで希釈し、回転粘度を10, 000cpsに調
節した. このボリアミド酸溶液を、電解w4箔(福田金属金属箔
粉工業(株)製、CF−T8、厚さ35μ噴)上に均一
に流延塗布し、135゜Cで5分間、さらに180’C
で4分間加熱乾燥した後、250゜Cの窒素雰囲気中で
3分間さらに350゜Cの窒素雰囲気中で5分間加熱し
て、銅箔上にポリイミドフィルムが形成されたフレキシ
ブル銅張り積層板を得た.こうして得られたフレキシブ
ル基板のポリイミド層の膜厚は30μmであった。
The polyamic acid coating layer prepared as described above is then heated to perform solvent removal and dehydration condensation reactions. This operation can be performed under any conditions such as normal pressure, reduced pressure, or increased pressure. Further, as a heating method, any of hot air, infrared rays, far infrared rays, etc. may be used, and it is also possible to use them in combination. During these desolvation and dehydration processes, if the copper foil surface is exposed to temperatures higher than the oxidation temperature, the W4 foil surface will oxidize, resulting in a decline in the mechanical properties, electrical properties, and adhesive properties of the W4 foil. The desolvation and dehydration process may be performed using nitrogen, helium,
It is particularly preferable to carry out the process in an inert gas such as neon or argon in order to prevent oxidation of the copper foil surface. Here, in an inert gas atmosphere means that the surface of the copper foil is in a gas atmosphere in which it does not substantially undergo an oxidation reaction that adversely affects electrical properties or adhesive strength, etc. during heating for a predetermined period of time. Although it depends on the temperature, it usually means a gas atmosphere with an oxygen content of 10% or less, preferably 5% or less, and more preferably 1% or less. As described above, the FCL proposed in the present invention has good heat resistance because it does not contain adhesive, and has excellent bending durability, peel strength, stiffness, etc. due to the use of excellent polyimide. It has excellent characteristics. [Example] Next, the present invention will be further explained with reference to Examples. EXAMPLE In a container equipped with a stirrer, a reflux condenser and a nitrogen inlet tube, 151 g (1.4 mol) of paraphenylenediamine, the diamine (2a), and 4.
221 g of 4'-(3-aminophenoxy)biphenyl (
0.6 mol), N,N-dimethylformamide 350
Dissolved in 0ad. Add 3 to this solution under nitrogen atmosphere.
.. 588 g (2.0 mol) of 3'',4,4゜-biphenyltetracarboxylic dianhydride was added and allowed to react at room temperature for 24 hours. The logarithmic viscosity of the polyamic acid solution thus obtained was 1.
It was 8 a/g. This polyamic acid solution was diluted with dimethylformamide.
It was diluted to 8% and the rotational viscosity was adjusted to 10,000 cps. This polyamic acid solution was uniformly cast onto electrolytic W4 foil (manufactured by Fukuda Metal Foil and Powder Co., Ltd., CF-T8, thickness 35 μm), heated at 135°C for 5 minutes, and then heated at 180°C.
After drying by heating for 4 minutes at 250° C. in a nitrogen atmosphere, it was further heated for 5 minutes in a nitrogen atmosphere at 350° C. to obtain a flexible copper-clad laminate with a polyimide film formed on the copper foil. Ta. The thickness of the polyimide layer of the flexible substrate thus obtained was 30 μm.

このフレキシブル基板の特性は表1に示される通りであ
った。
The characteristics of this flexible substrate were as shown in Table 1.

比較例1 実施例において、ジアミンとしてパラフエニレンジアミ
ン216g(2.0モル)のみを用いてボリアミド酸溶
液を合成した.こうして合成したボリアミド酸溶液を濃
度18%、回転粘度10000cpsに調節した。
Comparative Example 1 In Example, a polyamic acid solution was synthesized using only 216 g (2.0 mol) of paraphenylene diamine as the diamine. The polyamic acid solution thus synthesized was adjusted to a concentration of 18% and a rotational viscosity of 10,000 cps.

こうして得られたボリアミド酸溶液を実施例と同様に、
電解銅箔上に均一に流延塗布し、加熱して銅箔上にポリ
イミドフィルムが形成されたフレキシブル銅張り積層板
を得た。
The polyamic acid solution thus obtained was treated in the same manner as in the example.
A flexible copper-clad laminate in which a polyimide film was formed on the copper foil was obtained by uniformly casting and heating the electrolytic copper foil.

こうして得られたフレキシブル基板のポリイミド層の膜
厚は30μmであった. このフレキシブル基板の特性は表1に示される通りであ
った. 比較例2 実施例において、ジアミンとして4.4’−(3−アミ
ノフェノキシ)ビフェニル736g(2.0モル)のみ
を用いてボリアミド酸溶液を合成した.こうして合成し
たポリアミド酸溶液を濃度18%、回転粘度10000
cpsに調節した。
The thickness of the polyimide layer of the flexible substrate thus obtained was 30 μm. The characteristics of this flexible substrate were as shown in Table 1. Comparative Example 2 In Example, a polyamic acid solution was synthesized using only 736 g (2.0 mol) of 4.4'-(3-aminophenoxy)biphenyl as the diamine. The polyamic acid solution synthesized in this way has a concentration of 18% and a rotational viscosity of 10,000.
Adjusted to cps.

こうして得られたボリアミド酸溶液を実施例と同様に、
電解1t;I箔上に均一に流延塗布し、加熱して洞箔上
にポリイミドフィルムが形成されたフレキシブル銅張り
積層板を得た. こうして得られたフレキシブル基板のポリイミド層の膜
厚は30μmであった. このフレキシブル基板の特性は表1に示される通りであ
った. 実施例および比較例の特性を次に比較する.比較例1に
ついては耐熱性に問題はないが、引き剥がし強度が小さ
く、耐折性にも劣るのでフレキシブル基板としては十分
な性能を有しているとは言えず、比較例2については引
き剥がし強度が高く、耐折性にも問題はないものの、耐
手半田性に劣る短所がある.一方、実施例については引
き剥がし強度、耐折性、耐手半田性について十分に使用
に耐え得る.また、フィルムの引っ張り弾性率は「硬さ
」とも言えるものであるが、フレキシブル基板としては
、300〜450kg/ms”程度が使用し易く、比較
例1は硬過ぎ、比較例2は柔らか過ぎ、実施例の基板が
実用上丁度適当な「硬さ」を有しているのである。
The polyamic acid solution thus obtained was treated in the same manner as in the example.
Electrolysis: 1 t: Cast coating was applied uniformly onto I foil and heated to obtain a flexible copper-clad laminate with a polyimide film formed on the foil. The thickness of the polyimide layer of the flexible substrate thus obtained was 30 μm. The characteristics of this flexible substrate were as shown in Table 1. The characteristics of the example and comparative example are compared next. Comparative Example 1 has no problem with heat resistance, but it has low peel strength and poor folding durability, so it cannot be said that it has sufficient performance as a flexible substrate, and Comparative Example 2 has no problem with peel strength. Although it has high strength and no problems with bending durability, it has the disadvantage of poor hand solderability. On the other hand, the examples have sufficient peel strength, folding durability, and hand soldering resistance to withstand use. In addition, the tensile modulus of the film can also be called "hardness", but for flexible substrates, it is easy to use a tensile modulus of about 300 to 450 kg/ms, Comparative Example 1 is too hard, Comparative Example 2 is too soft, The substrate of this example has just the right "hardness" for practical use.

[発明の効果] 本発明により提案された銅箔上にポリイミドフィルムを
形成させたFCLは、接着剤層を用いていないために耐
熱性に優れており、かつ耐折性も良く、引き剥がし強度
も高く、腰の強い優れた特性を持つフレキシブル銅張り
積層板であり、このようなフレキシブル鋼張り積層板は
、特にフレキシブルプリント配線板として使用した場合
には、掴めて有用な材料とされることができる。
[Effects of the Invention] The FCL proposed by the present invention, in which a polyimide film is formed on a copper foil, has excellent heat resistance because it does not use an adhesive layer, has good folding durability, and has high peel strength. It is a flexible copper-clad laminate with excellent characteristics of high strength and stiffness, and such a flexible steel-clad laminate is considered to be a useful material that can be gripped, especially when used as a flexible printed wiring board. Can be done.

Claims (3)

【特許請求の範囲】[Claims] 1.芳香族テトラカルボン酸二無水物と芳香族第一級ジ
アミンを反応させて生成したポリイミドのフィルムが銅
箔上に形成されているフレキシブル銅張り積層板におい
て、該芳香族テトラカルボン酸無水物が以下の(1)式
、該芳香族第一級ジアミンが以下の(2a)式と(2b
)式の混合物であることを特徴とするフレキシブル銅張
り積層板。 ▲数式、化学式、表等があります▼(1) ▲数式、化学式、表等があります▼(2a) ▲数式、化学式、表等があります▼(2b)
1. In a flexible copper-clad laminate in which a polyimide film produced by reacting an aromatic tetracarboxylic dianhydride and an aromatic primary diamine is formed on a copper foil, the aromatic tetracarboxylic anhydride is (1), the aromatic primary diamine is represented by the following formulas (2a) and (2b).
) A flexible copper-clad laminate characterized by being a mixture of the formula. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(1) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(2a) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(2b)
2.請求項第1項において、(2a)式で表された芳香
族第一級ジアミンと(2b)式で表された芳香族第一級
ジアミンとの当量比が90〜40:10〜60であるフ
レキシブル銅張り積層板。
2. In claim 1, the equivalent ratio of the aromatic primary diamine represented by the formula (2a) to the aromatic primary diamine represented by the formula (2b) is 90-40:10-60. Flexible copper clad laminate.
3.請求項第1項に規定するフレキシブル銅張り積層板
の製法にして、(2a)式で表された芳香族第一級ジア
ミンと(2b)式で表された芳香族第一級ジアミンを当
量比で90〜40:10〜60の割合で混合し、芳香族
テトラカルボン酸無水物と反応させて生成したポリアミ
ド酸の有機溶媒溶液を、銅箔上にコーティングした後、
加熱、乾燥、脱水してポリイミドフィルム層を銅箔上に
形成させることを特徴とするフレキシブル銅張り積層板
の製法。
3. In the method for manufacturing a flexible copper-clad laminate as defined in claim 1, the aromatic primary diamine represented by the formula (2a) and the aromatic primary diamine represented by the formula (2b) are mixed in an equivalent ratio. After coating a copper foil with an organic solvent solution of polyamic acid produced by mixing in a ratio of 90 to 40:10 to 60 and reacting with aromatic tetracarboxylic acid anhydride,
A method for producing a flexible copper-clad laminate, which comprises forming a polyimide film layer on copper foil by heating, drying, and dehydrating.
JP28571988A 1988-11-14 1988-11-14 Flexible copper-clad laminated board Pending JPH02131936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28571988A JPH02131936A (en) 1988-11-14 1988-11-14 Flexible copper-clad laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28571988A JPH02131936A (en) 1988-11-14 1988-11-14 Flexible copper-clad laminated board

Publications (1)

Publication Number Publication Date
JPH02131936A true JPH02131936A (en) 1990-05-21

Family

ID=17695141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28571988A Pending JPH02131936A (en) 1988-11-14 1988-11-14 Flexible copper-clad laminated board

Country Status (1)

Country Link
JP (1) JPH02131936A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459351A (en) * 1990-06-29 1992-02-26 Sumitomo Metal Mining Co Ltd Heat treating method for copper-coated polyimide base plate and heating device
JPH04199760A (en) * 1990-11-29 1992-07-20 Nippon Mektron Ltd Single-sided flexible circuit board and manufacture thereof
JP2006192861A (en) * 2005-01-17 2006-07-27 Noritake Co Ltd Manufacturing method and equipment for flexible polyimide-metal laminate
KR100646248B1 (en) * 2004-05-04 2006-11-23 주식회사 엘지화학 The Preparation Method of 2-Layer Copper Clad Laminate
JP2008053762A (en) * 2007-11-12 2008-03-06 Sharp Corp Semiconductor device and display module using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459351A (en) * 1990-06-29 1992-02-26 Sumitomo Metal Mining Co Ltd Heat treating method for copper-coated polyimide base plate and heating device
JPH04199760A (en) * 1990-11-29 1992-07-20 Nippon Mektron Ltd Single-sided flexible circuit board and manufacture thereof
KR100646248B1 (en) * 2004-05-04 2006-11-23 주식회사 엘지화학 The Preparation Method of 2-Layer Copper Clad Laminate
JP2006192861A (en) * 2005-01-17 2006-07-27 Noritake Co Ltd Manufacturing method and equipment for flexible polyimide-metal laminate
JP4550594B2 (en) * 2005-01-17 2010-09-22 株式会社ノリタケカンパニーリミテド Method and apparatus for manufacturing flexible polyimide metal laminate
KR101247397B1 (en) * 2005-01-17 2013-03-25 가부시키가이샤 노리타케 캄파니 리미티드 Method and device for manufacturing a flexible polyimide metal laminate
TWI406756B (en) * 2005-01-17 2013-09-01 Noritake Co Ltd Flexible polyimide metal laminated sheet manufacturing method and device
JP2008053762A (en) * 2007-11-12 2008-03-06 Sharp Corp Semiconductor device and display module using the same

Similar Documents

Publication Publication Date Title
JP5880658B2 (en) Polyimide film, and these polyimide laminates and polyimide metal laminates
JPH0231516B2 (en)
JPH057067A (en) Manufacture of flexible printed wiring board fitted with coverlay film
JP3102622B2 (en) Metal foil laminated polyimide film
JP3067127B2 (en) Polyimide film laminated with metal foil
JPH08224843A (en) Multilayer aromatic polyimide film
JP2007098791A (en) Flexible one side copper-clad polyimide laminated plate
JP4193797B2 (en) Novel polyimide copolymer and its metal laminate
KR900003810B1 (en) Flexible printed circuit board and process for its production
JPH0686534B2 (en) Flexible printed circuit board manufacturing method
JPH02131936A (en) Flexible copper-clad laminated board
JP2729063B2 (en) Method of manufacturing flexible metal foil laminate
JP2761655B2 (en) Manufacturing method of flexible printed circuit board
JP2668752B2 (en) Heat resistant adhesive
JP2514313B2 (en) Flexible copper clad circuit board
JPH0284326A (en) Flexible copper clad laminated plate
JPH0812856A (en) Thermosetting resin composition, adhesive sheet, adhesive-attached metal foil, adhesive-attached polyimide film and metal foil-laminated polyimide film
JPH04318025A (en) Polyamic acid resin composition
JPS63234589A (en) Multilayer interconnection board
JP3664255B2 (en) Adhesive polyimide
JPH0563322A (en) Manufacture of flexible printed board
JPH07258623A (en) Heat-resistant adhesive composition
JPH0768728A (en) Manufacture of flexible metal polyimide laminated plate
JPH02131934A (en) Flexible printed board
JPH0758428A (en) Flexible printed board and its manufacture