JPH02119161A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH02119161A
JPH02119161A JP27093188A JP27093188A JPH02119161A JP H02119161 A JPH02119161 A JP H02119161A JP 27093188 A JP27093188 A JP 27093188A JP 27093188 A JP27093188 A JP 27093188A JP H02119161 A JPH02119161 A JP H02119161A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
main surface
isolation
manufacturing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27093188A
Other languages
Japanese (ja)
Inventor
Takeshi Tanaka
武 田中
Yasuhiro Mochizuki
康弘 望月
Hironori Inoue
洋典 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27093188A priority Critical patent/JPH02119161A/en
Publication of JPH02119161A publication Critical patent/JPH02119161A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a separated substrate with high adhesive strength by mirror- finishing the main surface of a substrate, forming separating grooves, forming an insulating film on the surface and on the inner surface of the grooves, and then bonding the grooves and a supporting base to each other so that the space therebetween is made vacuum. CONSTITUTION:A first main surface of a semiconductor substrate 10 consisting of an n-type Si monocrystal is mirror-finished and separating grooves 11 are formed therein by etching. Next, an insulating film 12 consisting of an oxide film is formed on the first main surface and on the inner surface of the grooves 11 and a supporting base 13 is bonded thereon. Then, the substrate 10 is ground and polished from a second main surface side thereof to form groove segments to the neighborhood of the grooves 11. Further, the polished surface of the substrate 10 is oxidized to form an oxide film 14 connected to the film 12 on the inner surface of the grooves 11 so that a plurality of separated island-like regions are formed. Therefore, the substrate surface, with high degree flatness, can be joined to the supporting base, and the space formed by the separating grooves and the supporting base is made vacuum, so that a separated substrate with high adhesive strength and high reliability can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体装置用の誘電体分離基板に係り、特に
、湾曲が小さく、信頼性の高い誘電体分離基板による半
導体装置及びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a dielectric isolation substrate for semiconductor devices, and in particular, to a semiconductor device using a dielectric isolation substrate with small curvature and high reliability, and a method for manufacturing the same. Regarding.

[従来の技術] 誘電体分離基板の製造方法に関する従来技術として、例
えば、特開昭81−292934号公報。
[Prior Art] As a prior art related to a method of manufacturing a dielectric isolation substrate, for example, Japanese Patent Application Laid-Open No. 81-292934.

特開昭62−24641号公報等に記載された技術が知
られている。この従来技術は、能動領域となるSi半導
体基板に分離溝を形成し、酸化膜形成後、この分離溝内
部に多結晶Si等を充填し、その表面を平坦にし、さら
に支持台に接着し、前記半導体基板を裏面から研磨して
複数の島状に分離するという方法である。
A technique described in Japanese Patent Application Laid-Open No. 62-24641 is known. This conventional technique involves forming an isolation groove in a Si semiconductor substrate that will become an active region, and after forming an oxide film, filling the isolation groove with polycrystalline Si or the like, flattening its surface, and bonding it to a support. This method involves polishing the semiconductor substrate from the back side and separating it into a plurality of islands.

[発明が解決しようとする課題] 前記従来技術は1分離溝内に多結晶Si等を充填した半
導体基板と支持台との接着における製造歩留り(ボイド
)を向上させることができず、製造された基板に対する
その後の処理、例えば、酸化、拡散、アニール等の熱処
理により、基板に湾曲(反り)を生じる等の問題点を有
している。
[Problems to be Solved by the Invention] The above-mentioned conventional technology cannot improve the manufacturing yield (voids) in adhering the semiconductor substrate filled with polycrystalline Si or the like in one isolation groove to the support base, and There is a problem in that the substrate is curved (warped) due to subsequent processing on the substrate, such as heat treatment such as oxidation, diffusion, and annealing.

本発明の目的は、前記従来技術の問題点を解決し、分離
溝を形成した半導体基板と支持台との接着において、害
鳥の接着歩留りを向上させ、接着の信頼性を確保でき、
かつ、半導体基板の湾曲(反り)、特に、後工程の熱処
理等において生じる湾曲及びその変動を小さくすること
のできる半導体装置及びその製造方法を提供することに
ある。
An object of the present invention is to solve the problems of the prior art, improve the adhesion yield of harmful birds, and ensure the reliability of adhesion in adhesion between a semiconductor substrate in which a separation groove is formed and a support base.
Another object of the present invention is to provide a semiconductor device and a method for manufacturing the same, which can reduce the curvature (warpage) of a semiconductor substrate, particularly the curvature and variation thereof that occur during post-process heat treatment.

さらに、本発明の目的は、製造プロセスを簡略化し、半
導体装置のコストを低減させることのできる半導体装置
の製造方法を提供することにある。
A further object of the present invention is to provide a method for manufacturing a semiconductor device that can simplify the manufacturing process and reduce the cost of the semiconductor device.

[課題を解決するための手段] 本発明は、Si半導体基板の一生表面を鏡面研磨仕上げ
し、表面から分離溝を形成し、その表面及び分離溝内面
に絶縁膜を形成した後1分離溝内に多結晶Si等の耐熱
材料を充填することなく、あるいは、分離溝内に多結晶
Si等の耐熱材料を溝深さの80%以下に充填して、分
離溝と支持台との間に生じる空間が真空となるように、
Si半導体基板と支持台とを接着することにより達成さ
れる。
[Means for Solving the Problems] The present invention provides mirror polishing of the surface of a Si semiconductor substrate, forming a separation groove from the surface, forming an insulating film on the surface and the inner surface of the separation groove, and then forming one groove within the separation groove. If the separation groove is not filled with a heat-resistant material such as polycrystalline Si, or the separation groove is filled with a heat-resistant material such as polycrystalline Si to 80% or less of the groove depth, the separation groove and the support stand are Just as space becomes a vacuum,
This is achieved by bonding the Si semiconductor substrate and the support.

[作用] 半導体基板、特に、能動領域を形成する島となる部分と
支持台とを、ボイドがなく信頼性を高く接着するために
は、両者の表面が鏡面と同等の平坦性を有し、段差、う
ねり、異物等が存在しないことが必要である。分離溝に
充填される多結晶Siは、配向性や結晶粒径が異なると
平坦に鏡面仕上げすることが困難となり、半導体表面に
、うねり。
[Function] In order to bond the semiconductor substrate, especially the part that becomes the island forming the active region, and the support base without voids and with high reliability, the surfaces of both must have flatness equivalent to a mirror surface, and It is necessary that there are no steps, undulations, foreign objects, etc. Polycrystalline Si filled in the separation grooves has different orientations and crystal grain sizes, making it difficult to achieve a flat, mirror-finished surface, resulting in waviness on the semiconductor surface.

段差を生じさせる。このため、従来技術は、接着の歩留
りが低下していた。本発明では、分離溝内には、何も充
填されないが、その一部にのみ多結晶Siが充填されて
いるのみであるので、半導体基板と支持台との接着は、
接着させる表面層が多結晶質でなく、単結晶または無配
向性の非晶質のもの同志で、しかも、同一の材料同志で
行われることになり、その接着強度を向上させることが
できる。
Creates a step. For this reason, in the prior art, the bonding yield was reduced. In the present invention, the separation trench is not filled with anything, but only a part of it is filled with polycrystalline Si, so that the adhesion between the semiconductor substrate and the support is as follows.
Since the surface layers to be bonded are not polycrystalline but single crystal or non-oriented amorphous, and are made of the same material, the adhesive strength can be improved.

また、Si半導体基板と支持台との接着を、酸素雰囲気
中で熱処理を行うことにより1分離溝内の酸素ガスは、
シリコン酸化膜(膜厚約数nm)を形成することにより
消費され、分離溝と支持台表面との間に形成される空間
は真空となる。このため、Si半導体基板と支持台との
間の接着は。
In addition, by heat-treating the adhesion between the Si semiconductor substrate and the support base in an oxygen atmosphere, the oxygen gas within the one-separation groove is
It is consumed by forming a silicon oxide film (film thickness of about several nm), and the space formed between the separation groove and the surface of the support becomes a vacuum. Therefore, the adhesion between the Si semiconductor substrate and the support base is poor.

強固なものとなり、高い信頼性を備えるものとできる。It becomes strong and has high reliability.

また、後工程において島となる部分に各種半導体装置を
形成する工程で、拡散等の高温熱処理が行われる場合に
も、溝内の応力分布が変化することがなく、半導体基板
の湾曲(反り)の変動を防止することができる。
In addition, even when high-temperature heat treatment such as diffusion is performed in the process of forming various semiconductor devices in the parts that will become islands in the post-process, the stress distribution within the groove does not change and the semiconductor substrate does not bend (warp). fluctuations can be prevented.

さらに、分離溝内の底部にのみ多結晶Si等の耐熱材料
を充填することにより、半導体基板を溝片化し、能動領
域となる島を形成する際、溝片化の厚さ制御精度の余裕
を大きくすることが可能となる。すなわち、溝片化のた
めの研磨やエツチングが、半導体基板内でばらついて1
分離溝まで到達してしまうことが許容できることになる
Furthermore, by filling only the bottom of the isolation trench with a heat-resistant material such as polycrystalline Si, when cutting the semiconductor substrate into grooves and forming islands that will become active regions, it is possible to increase margins in the accuracy of controlling the thickness of the trenches. It is possible to make it larger. In other words, polishing and etching to create grooves may vary within the semiconductor substrate, resulting in
This means that it is acceptable for the particles to reach the separation groove.

本発明による半導体装置の基板の湾曲高さ及びその変動
、接着強度におよぼす分離溝内に充填する多結晶Siの
充填率の関係を実験により調べた結果1次のようなこと
がわかった。
As a result of an experimental investigation of the relationship between the curved height of the substrate of the semiconductor device according to the present invention, its variation, and the filling rate of polycrystalline Si filled in the separation grooves on the adhesive strength, the following was found.

すなわち、分離溝内の多結晶Si等の耐熱材料の充填率
(断面観察による耐熱充填材料である多結晶Siの厚み
/分離溝の深さ)が80%を越えると、基板の湾曲は大
きくなり、かつ、その変動も大きくなる。また、前述の
充填率が50%以下となると、接着強度のばらつきが小
さくなる。
In other words, when the filling rate of the heat-resistant material such as polycrystalline Si in the separation groove (thickness of the polycrystalline Si, which is the heat-resistant filling material by cross-sectional observation/depth of the separation groove) exceeds 80%, the curvature of the substrate increases. , and its fluctuation also increases. Further, when the above-mentioned filling rate is 50% or less, the variation in adhesive strength becomes small.

これらは、前述の充填率が大きくなる程、後工程の熱処
理による多結晶Siの結晶粒の成長と体積収縮が大きく
なり1分離溝内部での応力が大きくなることが原因にな
っていると考えられる。
These are thought to be caused by the fact that as the filling rate increases, the growth and volumetric shrinkage of polycrystalline Si crystal grains due to heat treatment in the post-process increases, and the stress inside the 1-separation groove increases. It will be done.

[実施例] 以下、本発明による半導体装置及びその製造方法の一実
施例を図面により詳細に説明する。
[Example] Hereinafter, an example of a semiconductor device and a method for manufacturing the same according to the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1の実施例による製造方法を説明す
る図である。第1図において、10は半導体基板、11
は分離溝、12は絶縁膜、13は支持台、14は酸化膜
である。
FIG. 1 is a diagram illustrating a manufacturing method according to a first embodiment of the present invention. In FIG. 1, 10 is a semiconductor substrate, 11
12 is an isolation trench, 12 is an insulating film, 13 is a support base, and 14 is an oxide film.

(1)まず、半導体基板10を用意する。この半導体基
板10は、n型Si単結晶であり、CZ法により製造さ
れた、抵抗率20〜30Ωcm、面方位[111コ、直
径4″φ、厚み400μmのもので1分離溝11が形成
される側の第1の主表面が超ミラー仕上げされている[
第1図(a)]。
(1) First, a semiconductor substrate 10 is prepared. This semiconductor substrate 10 is an n-type Si single crystal, manufactured by the CZ method, has a resistivity of 20 to 30 Ωcm, a plane orientation of [111 mm, a diameter of 4″φ, and a thickness of 400 μm, with one isolation groove 11 formed therein. The first main surface on the opposite side has a super mirror finish [
Figure 1(a)].

(2)半導体基板10の第1の主表面から分離溝11を
形成する。この分離溝11は、熱酸化5i02膜(図示
省略)をマスクとして、フッ酸、硝酸、酢酸の混合液(
70%HNO,:49%HF:100%CH,C00H
(7)容積比5 : 3 : 3)を用い、深さ35μ
・mエツチングして形成する[第1図(b) ] 。
(2) Forming isolation grooves 11 from the first main surface of semiconductor substrate 10. This separation groove 11 is formed using a mixed solution of hydrofluoric acid, nitric acid, and acetic acid (
70%HNO, :49%HF:100%CH,C00H
(7) Using volume ratio 5:3:3), depth 35μ
- Form by etching [Fig. 1(b)].

(3)半導体基板10の第1の主表面及び分離溝11の
内面に酸化膜による絶縁膜12を形成する。
(3) An insulating film 12 made of an oxide film is formed on the first main surface of the semiconductor substrate 10 and the inner surface of the isolation trench 11 .

この絶縁膜12の形成は、水蒸気中で1200℃の加熱
を5時間実施することにより行われる。このとき、形成
される酸化膜の厚さは2.0μmである[第1図(c)
]。
This insulating film 12 is formed by heating at 1200° C. for 5 hours in water vapor. At this time, the thickness of the oxide film formed is 2.0 μm [Fig. 1(c)
].

(4)半導体基板1oの第1の主表面側に支持台13を
接着する。支持台13は、半導体基板1゜と同一材料、
同一品位のものであり、半導体基板10と接着される面
が超ミラー仕上げされている。
(4) The support base 13 is adhered to the first main surface side of the semiconductor substrate 1o. The support base 13 is made of the same material as the semiconductor substrate 1°.
They are of the same quality, and the surface to be bonded to the semiconductor substrate 10 has a super mirror finish.

半導体基板10と支持台13との接着は、両者を酸素雰
囲気中で接触させ、酸素気流中で、 1200℃、2時
間の熱処理を行い、両者の界面を酸化接着させることに
より行う、このとき1分離溝11と支持台13とにより
形成される空間内の酸素は、支持台または酸化膜12を
通して分離溝11の内面のSiと反応して酸化膜を生成
させることにより消費され、前述の空間内は、真空とな
る[第1図(d)]。
The semiconductor substrate 10 and the support base 13 are bonded by bringing them into contact in an oxygen atmosphere and heat-treated at 1200° C. for 2 hours in an oxygen stream to form an oxidized bond at the interface between the two. Oxygen in the space formed by the separation groove 11 and the support base 13 is consumed by reacting with Si on the inner surface of the separation groove 11 through the support base or the oxide film 12 to generate an oxide film. becomes a vacuum [Fig. 1(d)].

(5)半導体基板10を第2の主表面側から研削及び研
磨し、分離溝近傍までに溝片化する。この研削、研磨は
、まず、#400の研削盤を用いて約350μm研削し
、その後、研磨剤としてのシリカ微粉末をアルカリ溶剤
中に懸濁させた研磨液により、メカノケミカルポリッシ
ングすることにより行う、研磨後の半導体基板10の厚
みは、37〜38μmとなり、分離溝までの厚みは2〜
3μmである[第1図(e)]。
(5) Grind and polish the semiconductor substrate 10 from the second main surface side to form grooves up to the vicinity of the separation grooves. This grinding and polishing is performed by first grinding to approximately 350 μm using a #400 grinder, and then performing mechanochemical polishing using a polishing liquid in which fine silica powder as an abrasive is suspended in an alkaline solvent. The thickness of the semiconductor substrate 10 after polishing is 37 to 38 μm, and the thickness up to the separation groove is 2 to 38 μm.
It is 3 μm [Fig. 1(e)].

(6)半導体基板10の研磨面を酸化して酸化膜14を
形成し、分離溝11の内面の絶縁膜12と接続させ、半
導体基板10を複数の島状領域に分離する。この研磨面
の酸化は、水蒸気中で、1200℃、9時間行い、3.
1μmの厚みのS i O2膜を形成させた[第1図(
f)]。
(6) The polished surface of the semiconductor substrate 10 is oxidized to form an oxide film 14, which is connected to the insulating film 12 on the inner surface of the isolation groove 11, thereby separating the semiconductor substrate 10 into a plurality of island-like regions. The polished surface was oxidized in steam at 1200°C for 9 hours.3.
A SiO2 film with a thickness of 1 μm was formed [Fig.
f)].

本発明の第1の実施例は、前述の工程により、誘電体分
離基板を形成するものであり、この実施例により作成さ
れた半導体装置の単結晶島と支持台との間の接着強度は
、140〜145kg/aJと強固で安定である。また
、半導体装置の湾曲高さは、10〜20μm(41φ、
能動領域側が凸状)と小さなものであり、その後のプロ
セスも不都合な〈実施できる。なお、第1図(f)によ
る研磨面の酸化は、その全面に行う必要はなく、分離溝
のある部分のみ行ってもよい。
In the first embodiment of the present invention, a dielectric isolation substrate is formed by the above-described steps, and the adhesive strength between the single crystal island and the support base of the semiconductor device manufactured by this embodiment is as follows: It is strong and stable at 140-145 kg/aJ. In addition, the bending height of the semiconductor device is 10 to 20 μm (41φ,
The active area side is convex) and small, and the subsequent process is also inconvenient. Note that the oxidation of the polished surface as shown in FIG. 1(f) does not need to be performed on the entire surface, and may be performed only on the portion where the separation groove is present.

第2図は本発明の第2の実施例による製造方法を説明す
る図、第3図は分離溝内に充填される多結晶Siの量と
、基板湾曲及び接合強度との関係を説明する図である。
FIG. 2 is a diagram illustrating the manufacturing method according to the second embodiment of the present invention, and FIG. 3 is a diagram illustrating the relationship between the amount of polycrystalline Si filled in the separation groove, substrate curvature, and bonding strength. It is.

第2図において、20は半導体基板、21は分離溝、2
2は絶縁膜(Sin2)。
In FIG. 2, 20 is a semiconductor substrate, 21 is an isolation trench, 2
2 is an insulating film (Sin2).

23は絶縁膜(Si3N4)、24は多結晶Si。23 is an insulating film (Si3N4), and 24 is polycrystalline Si.

25は支持台、26は酸化膜である。25 is a support base, and 26 is an oxide film.

(1)まず、半導体基板20を用意する。この半導体基
板20は、n型Si単結晶であり、FZ法により製造さ
れた。抵抗率50〜60Ω備、面方位[100]、直径
41φ、厚み400μmのもので、分離溝21が形成さ
れる側の第1の主表面が超ミラー仕上げされている[第
2図(a)]。
(1) First, a semiconductor substrate 20 is prepared. This semiconductor substrate 20 is an n-type Si single crystal and was manufactured by the FZ method. It has a resistivity of 50 to 60Ω, a surface orientation of [100], a diameter of 41φ, and a thickness of 400 μm, and the first main surface on the side where the separation groove 21 is formed is super mirror finished [Figure 2 (a) ].

(2)半導体基板2oの第1の主表面から分離溝21を
形成する。この分離溝11は、熱酸化膜Sin、をマス
クとして、47%KOH水溶液とイソプロビールアルコ
ールの混合液(85℃)中で、異方性エツチングして形
成し、その溝深さを60μmとした。その後、マスクの
酸化膜を除去してから、アンチモンを拡散し、第1の主
表面及び分離溝21の内面にn+拡散層(図示省略)を
形成する[第2図(b)】。
(2) Forming a separation groove 21 from the first main surface of the semiconductor substrate 2o. This separation groove 11 was formed by anisotropic etching in a mixed solution of 47% KOH aqueous solution and isoprobil alcohol (85°C) using a thermal oxide film Sin as a mask, and the groove depth was set to 60 μm. . Thereafter, after removing the oxide film of the mask, antimony is diffused to form an n+ diffusion layer (not shown) on the first main surface and the inner surface of the isolation trench 21 [FIG. 2(b)].

(3)半導体基板20を熱酸化して、第1の主表面及び
分離溝21の内面にシリコン酸化膜による絶縁膜22を
形成する。この絶縁膜22の形成は。
(3) The semiconductor substrate 20 is thermally oxidized to form an insulating film 22 made of a silicon oxide film on the first main surface and the inner surface of the isolation trench 21. The formation of this insulating film 22 is as follows.

第1の実施例において第1図(C)で説明したと同様に
行われる。絶縁膜22の厚みは2.0μmである[第2
図(c)]。
This is carried out in the same manner as described with reference to FIG. 1(C) in the first embodiment. The thickness of the insulating film 22 is 2.0 μm [second
Figure (c)].

(4)前述で酸化膜22を形成した基板20に、さらに
Si3N4による絶縁膜23を推積させる。
(4) An insulating film 23 made of Si3N4 is further deposited on the substrate 20 on which the oxide film 22 has been formed as described above.

このSi3N4膜は、後述する第2図(f)における選
択エツチングのストッパとして用いるために形成され、
5iH2Cut2とNH,とを原料とした減圧CVD法
により、基板温度770℃、圧力0.8mbar、反応
時間28分で、膜厚1000±50人となるように推積
させて形成した[第2図(d)]。
This Si3N4 film is formed to be used as a stopper for selective etching in FIG. 2(f), which will be described later.
The film was formed by a low pressure CVD method using 5iH2Cut2 and NH as raw materials at a substrate temperature of 770°C, a pressure of 0.8 mbar, and a reaction time of 28 minutes to a film thickness of 1000±50 [Fig. (d)].

(5)前述でSi、N4膜による絶縁膜23を形成した
基板20の分離溝21のある側の第1の主表面に多結晶
シリコン膜24を推積させ、分離溝21内に多結晶Si
を充填する。多結晶シリコン膜24は、SiH,CR2
を原料として用いた常圧CVD法により、基板温度11
50℃で、第1の主表面上に厚さ50μm推積させて形
成される。このとき1分離溝21内部には、膜厚70〜
85μmの厚さで、多結晶シリコン膜が推積され、同時
に。
(5) A polycrystalline silicon film 24 is deposited on the first main surface of the substrate 20 on the side where the isolation trench 21 is formed, on which the insulating film 23 made of Si and N4 films is formed as described above, and the polycrystalline silicon film 24 is deposited in the isolation trench 21.
Fill it. The polycrystalline silicon film 24 is made of SiH, CR2
By atmospheric pressure CVD method using as a raw material, the substrate temperature was 11
It is formed at 50° C. to a thickness of 50 μm on the first main surface. At this time, the inside of the one-separation groove 21 has a film thickness of 70 to
At the same time, a polycrystalline silicon film with a thickness of 85 μm was deposited.

Si3N4膜による絶縁膜23が微密化(デンシファイ
)される[第2図(e)]。
The insulating film 23 made of the Si3N4 film is densified [FIG. 2(e)].

(6)次に、前述で第1の主表面上に推積させた多結晶
シリコン膜24を除去し、分離溝21内部にのみ多結晶
シリコンを残す。多結晶シリコン膜24の除去のための
エツチングは、第1の実施例において、第1図(b)で
説明したと同様のフッ酸、消酸系混合液を用いて、5膜
1℃に冷却し、撹拌せずに行った。このとき、Si3N
4膜による絶縁膜24がエツチングストッパとして作用
し、半導体基板20の第1の主表面を平坦に保つことが
できる[第2図(f)]。
(6) Next, the polycrystalline silicon film 24 deposited on the first main surface as described above is removed, leaving polycrystalline silicon only inside the isolation trench 21. Etching for removing the polycrystalline silicon film 24 was performed in the first embodiment by cooling the five films to 1° C. using the same hydrofluoric acid/oxidant mixture as explained in FIG. 1(b). This was done without stirring. At this time, Si3N
The insulating film 24 made of four films acts as an etching stopper and can keep the first main surface of the semiconductor substrate 20 flat [FIG. 2(f)].

(7)半導体基板20の第1の主表面側に支持台25を
接着する。接着の方法は、第1の実施において、第1図
(d)で説明した方法と同様である[第2図(g)]。
(7) Attach the support base 25 to the first main surface side of the semiconductor substrate 20. The method of adhesion is the same as that described in FIG. 1(d) in the first implementation [FIG. 2(g)].

(8)半導体基板20を第2の主表面側から研削及び研
磨し薄片化する。この薄片化のための研削及び研磨は、
第1の実施例において、第1図(e)で説明したと同様
な方法で行う。ただし、この本発明の第2の実施例にお
いては、分離溝21の近傍まで研磨する場合、及び、分
離溝21の頂部を横切る位置まで研磨する場合の両者が
可能となり、研磨量の許容幅を広く取ることができるの
で、研磨量の制御が容易となり、製造歩留りの向上を図
ることができる[第2図(h)]。
(8) Grind and polish the semiconductor substrate 20 from the second main surface side to make it into a thin piece. Grinding and polishing for thinning
In the first embodiment, a method similar to that described in FIG. 1(e) is used. However, in the second embodiment of the present invention, it is possible to perform both polishing up to the vicinity of the separation groove 21 and polishing to a position crossing the top of the separation groove 21, thereby increasing the allowable range of the amount of polishing. Since it can be made widely, the amount of polishing can be easily controlled and the manufacturing yield can be improved [FIG. 2(h)].

(9)半導体基板20の研磨面を酸化させ、誘電体絶縁
分離基板を完成させる。研磨面の酸化は、第1の実施例
における第1図(f)で説明したと同様に行う[第2図
(i)]。
(9) Oxidize the polished surface of the semiconductor substrate 20 to complete a dielectric insulation isolation substrate. The oxidation of the polished surface is carried out in the same manner as described in FIG. 1(f) in the first embodiment [FIG. 2(i)].

前述した工程による本発明の第2の実施例は。A second embodiment of the invention according to the steps described above.

第2図(h)で説明したように、単結晶島分離のための
半導体基板20の第2の主表面からの研磨量の制御が容
易になるが、半導体基板20と支持台25との接着強度
及び基板全体の湾曲に対しては、分離溝21内の多結晶
シリコンの充填量の制御が重要である。
As explained in FIG. 2(h), the amount of polishing from the second main surface of the semiconductor substrate 20 for single-crystal island separation can be easily controlled; Controlling the amount of polycrystalline silicon filled in the isolation trenches 21 is important for the strength and curvature of the entire substrate.

第3図は分離溝内に充填される多結晶シリコンの充填率
(断面研磨した面における最大分離溝深さと最大充填厚
の割り合い)と半導体基板の湾曲高さ及び半導体基板と
支持台との接着強度との関係を示しており、以下、これ
について説明する。
Figure 3 shows the filling rate of polycrystalline silicon filled in the isolation trench (the ratio of the maximum isolation trench depth to the maximum filling thickness on the cross-sectionally polished surface), the curved height of the semiconductor substrate, and the relationship between the semiconductor substrate and the support base. This shows the relationship with adhesive strength, and this will be explained below.

なお、充填率の高い試料は、多結晶シリコン膜を研削し
た後に、第2図(f)と同様なエツチングを施すことに
より製造したものである。
The sample with a high filling rate was manufactured by grinding the polycrystalline silicon film and then etching it as shown in FIG. 2(f).

第3図から明らかなように、接着強度は、充填率が80
%以下の場合に、140〜160kg/aJの値が得ら
れ、充分な強度を持った半導体装置を得ることができる
が、充填率が80%を越えると急速に低下し、100%
の充填では前述の半分以下となってしまう、これは、充
填率100%では、分離溝に充填した多結晶Siの表面
と半導体基板の第1の主表面とを、同一平面に平坦化仕
上げすることが困難なため、接着にむらが生じることに
よるためである。
As is clear from Figure 3, the adhesive strength is determined by the filling rate of 80
% or less, a value of 140 to 160 kg/aJ can be obtained, and a semiconductor device with sufficient strength can be obtained. However, when the filling rate exceeds 80%, it rapidly decreases and becomes 100%.
If the filling rate is 100%, the surface of the polycrystalline Si filled in the isolation trench and the first main surface of the semiconductor substrate will be flattened and finished on the same plane. This is because it is difficult to do so, resulting in uneven adhesion.

また、半導体基板の湾曲高さは、充填率が80%以下の
場合に100μm以下と小さく、その後のホトリソプラ
ノイのアライメント工程におけるパターン精度を±0.
2μm程度にすることが容易である。特に、充填率50
%以下の場合、その湾曲高さを50μmとでき、しかも
、ばらつきを小さくできるので、以後の工程で、より高
精度のパターニングを行うことが可能となる。しかし、
充填率が80%を越えると、その湾曲高さは、急速に大
きくなり、しかも、そのばらつきも大きくなって、以後
の工程におけるパターニング精度を保障することができ
ないものとなる。
In addition, the bending height of the semiconductor substrate is as small as 100 μm or less when the filling rate is 80% or less, and the pattern accuracy in the subsequent photolithography alignment process is ±0.
It is easy to set the thickness to about 2 μm. In particular, the filling rate is 50
% or less, the height of the curvature can be made 50 μm, and the variation can be made small, making it possible to perform patterning with higher precision in subsequent steps. but,
When the filling rate exceeds 80%, the height of the curvature increases rapidly, and its variation also increases, making it impossible to guarantee patterning accuracy in subsequent steps.

従って、分離溝内への多結晶Siの充填率は、80%以
下とすることが望ましい。
Therefore, it is desirable that the filling rate of polycrystalline Si into the isolation groove be 80% or less.

第4図は本発明の第3の実施例による製造方法を説明す
る図である。第4図において、30は半導体基板、31
は分離溝、32は絶縁膜、34は耐熱材料、35は支持
台、36は酸化膜である。
FIG. 4 is a diagram illustrating a manufacturing method according to a third embodiment of the present invention. In FIG. 4, 30 is a semiconductor substrate, 31
3 is a separation groove, 32 is an insulating film, 34 is a heat-resistant material, 35 is a support base, and 36 is an oxide film.

(1)本発明の第2の実施例における第2図(a)〜第
2図(c)と同様に、半導体基板30に分離溝31を形
成し、その表面にS i O,膜による絶縁膜32を形
成する[第4図(a)]。
(1) Similar to FIGS. 2(a) to 2(c) in the second embodiment of the present invention, a separation trench 31 is formed in a semiconductor substrate 30, and an insulation film such as SiO is formed on the surface of the isolation trench 31. A film 32 is formed [FIG. 4(a)].

(2)次に、分離溝底部の絶縁膜をホトリソグラフィに
より選択的に途去し、半導体基板30内部の単結晶Si
を露出させる[第4図(b)]。
(2) Next, the insulating film at the bottom of the isolation trench is selectively removed by photolithography, and the single crystal Si inside the semiconductor substrate 30 is removed.
[Figure 4(b)].

(3)SiHCQ、を原料としたCVD法を用い、雰囲
気中に0.5%〜1%のHCfiを添加して選択デポジ
ションを行い、露出した半導体基板内の単結晶Siを種
として、多結晶5i34を30μmの厚さに推積させる
[第4図(c)]。
(3) Using the CVD method using SiHCQ as a raw material, selective deposition is performed by adding 0.5% to 1% HCfi into the atmosphere, and the single crystal Si in the exposed semiconductor substrate is used as a seed to The crystal 5i34 is estimated to have a thickness of 30 μm [FIG. 4(c)].

(4)次に、半導体基板30を支持台35と接着した後
、分離溝31の絶縁膜に達するまで、半導体基板30を
その第2の主表面から研削、研磨し、その研磨面を酸化
し、酸化膜36を形成し、該酸化膜36と分離溝31内
面の酸化膜による絶縁膜32とを接続して、半導体基板
30を島状に分離する[第4図(d)]。
(4) Next, after bonding the semiconductor substrate 30 to the support base 35, the semiconductor substrate 30 is ground and polished from its second main surface until it reaches the insulating film of the separation groove 31, and the polished surface is oxidized. Then, an oxide film 36 is formed, and the oxide film 36 is connected to the insulating film 32 made of an oxide film on the inner surface of the isolation groove 31, thereby separating the semiconductor substrate 30 into island shapes [FIG. 4(d)].

前述したような本発明の第3の実施例によっても1本発
明の第1及び第2の実施例と同様な効果を奏することが
できる。
The third embodiment of the present invention as described above can also provide the same effects as the first and second embodiments of the present invention.

なお、前述の本発明の第3の実施例において、第4図(
e)で説明した選択デポジションは、分離溝31にのみ
励起光を照射しながら行う光CVD法を用いることによ
っても、同様に行うことが可能である。
In addition, in the third embodiment of the present invention described above, FIG.
The selective deposition described in e) can be similarly performed by using a photo-CVD method in which only the separation groove 31 is irradiated with excitation light.

第5図は本発明の第4の実施例による製造方法を説明す
る図である。第5図において、4oは半導体基板、41
は分離溝、42は絶縁膜、44は耐熱材料、45は支持
台、47はレジスト膜である。
FIG. 5 is a diagram illustrating a manufacturing method according to a fourth embodiment of the present invention. In FIG. 5, 4o is a semiconductor substrate, 41
42 is a separation groove, 42 is an insulating film, 44 is a heat-resistant material, 45 is a support base, and 47 is a resist film.

(1)本発明の第1の実施例における第1図(a)〜第
1図(C)と同様に、半導体基板40に分nFR41を
形成し、その表面にS i O,膜によるi1!縁膜4
2を形成する[第5図(a)]。
(1) Similarly to FIGS. 1(a) to 1(C) in the first embodiment of the present invention, an nFR 41 is formed on the semiconductor substrate 40, and an i1! Membrane 4
2 [Fig. 5(a)].

(2)多結晶シリコン膜による耐熱材料44を半導体基
板40の分離溝41を形成した第1の主表面に形成する
[第5図(b)]。
(2) A heat-resistant material 44 made of a polycrystalline silicon film is formed on the first main surface of the semiconductor substrate 40 on which the isolation trench 41 is formed [FIG. 5(b)].

(3)耐熱材料44上にレジスト膜47を塗布し、分離
溝部もほぼ平坦な形状に整える[第5図(C)]。
(3) A resist film 47 is applied on the heat-resistant material 44, and the separation groove portion is also shaped into a substantially flat shape [FIG. 5(C)].

(4)ドライエッチにより、前記で塗布したレジスト膜
47.多結晶シリコン膜による耐熱材料44の分離溝4
1内に存在する部分以外の部分を除去し、絶縁膜42が
露出するまでエッチバックする[第5図(d)コ。
(4) By dry etching, the resist film 47 applied above. Separation groove 4 of heat-resistant material 44 made of polycrystalline silicon film
1, and etch back until the insulating film 42 is exposed [FIG. 5(d)].

(5)分離溝41内に残ったレジスト膜47を除去した
後、半導体基板40と支持台45とを接合し、分離溝4
1に達するまで、半導体基板40を研削、研磨して、誘
電体分離基板を完成させる[第5図(e)]。
(5) After removing the resist film 47 remaining in the isolation groove 41, the semiconductor substrate 40 and the support base 45 are bonded, and the isolation groove 41 is
The semiconductor substrate 40 is ground and polished until it reaches 1, completing the dielectric isolation substrate [FIG. 5(e)].

第6図は本発明の第5の実施例による製造方法を説明す
る図である。第6図において、50は半導体基板、51
は分離溝、52は絶縁膜、54は耐熱材料、58はレジ
スト膜である。
FIG. 6 is a diagram illustrating a manufacturing method according to a fifth embodiment of the present invention. In FIG. 6, 50 is a semiconductor substrate, 51
5 is a separation groove, 52 is an insulating film, 54 is a heat-resistant material, and 58 is a resist film.

(1)本発明の第2の実施例における第2図(a)〜第
2図(C)と同様に、半導体基板50に分離溝51を形
成し、その表面に5in2膜による絶縁膜52を形成し
た後1分子1il151以外の半導体基板50の第1の
主表面にレジスト膜58を塗布する[第6図(a)]。
(1) Similar to FIGS. 2(a) to 2(C) in the second embodiment of the present invention, a separation trench 51 is formed in a semiconductor substrate 50, and an insulating film 52 made of a 5in2 film is formed on the surface of the isolation trench 51. After the formation, a resist film 58 is applied to the first main surface of the semiconductor substrate 50 except for one molecule 1il 151 [FIG. 6(a)].

(2)次に、蒸着法により、分離溝51内及び半導体基
板50の第1の主表面に非晶質Si膜による耐熱材料5
4を推積させる[第6図(b)]。
(2) Next, a heat-resistant material 5 is formed using an amorphous Si film in the separation groove 51 and on the first main surface of the semiconductor substrate 50 by a vapor deposition method.
4 is estimated [Figure 6(b)].

(3)次に、レジスト膜58を、熱的あるいは化学的な
方法で分解するリフトオフ法により、半導体基板表面上
の非晶質Si膜による耐熱材料54を除去する[第6図
(c)コ。
(3) Next, the heat-resistant material 54 made of the amorphous Si film on the surface of the semiconductor substrate is removed by a lift-off method in which the resist film 58 is decomposed thermally or chemically [FIG. 6(c)] .

(4)その後1本発明の第2の実施例における第2図(
g)〜第2図(i)と同様に、支持台を接合して誘電体
分離基板を完成させる[図示せず]。
(4) Then 1 FIG. 2 in the second embodiment of the present invention (
g) to complete the dielectric isolation substrate by bonding the support base in the same manner as in FIG. 2(i) [not shown].

前述した本発明の第4、第5の実施例によっても、他の
実施例の場合と同様な効果を奏する。
The fourth and fifth embodiments of the present invention described above also produce effects similar to those of the other embodiments.

[発明の効果] 以上説明したように、本発明によれば、支持台に平坦度
の高い基板表面を接合でき、かつ、分離溝と支持台とに
より形成される空間が真空となっているので、基板と支
持台との接着強度及び信頼性の高い半導体装置用の誘電
体分離基板を提供することができ、かつ、その誘電体分
離基板を実質的に単結晶Siによる基板及び支持台で構
成することができるので、誘電体分離基板の基板湾曲を
少なくすることができる。また、本発明によれば、前述
したような誘電体分離基板を少ない工程で安価に製造す
ることのできる製造方法を提供することができる。
[Effects of the Invention] As explained above, according to the present invention, a highly flat substrate surface can be bonded to the support base, and the space formed by the separation groove and the support base is a vacuum. , it is possible to provide a dielectric separation substrate for a semiconductor device with high adhesive strength and reliability between the substrate and the support, and the dielectric separation substrate is substantially composed of a substrate made of single crystal Si and the support Therefore, substrate curvature of the dielectric isolation substrate can be reduced. Further, according to the present invention, it is possible to provide a manufacturing method that can manufacture the dielectric isolation substrate as described above at low cost with fewer steps.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の第1及び第2の実施例による
製造方法を説明する図、第3図は第2の実施例における
分離溝内に充填される多結晶Siの量と、基板湾曲及び
接合強度との関係を説明する図、第4図、第5図、第6
図は本発明の第3、第4、第5の実施例による製造方法
を説明する図である。 10.20,30,40,50−・・・−・半導体基板
、11.21,31,41,51・・・・・・分離溝、
12゜22.23,32,42,52・・・・・・絶縁
膜、13゜25.35.45・・・・・・支持台、14
,26,36・・・・・・酸化膜、24,34,44.
54・旧・・耐熱材料、47.58・・・・・・レジス
ト。 第1図 3B2図 1O:キ尊イ本&緩 20:Si 23:J111慣(Si3N4) s2図 第4図 30:#橡1体基板 3に分1直5角 32:、姫鱒」職 34:@熱材料 第3図 外a漬の汐超晶Siによる充填率(%]第5図 40: f−4#4本本板 44:M鉄材料 4I:分亀遣 45:支持イオに 42;糸色&ル屹 4乙レゾスト
1 and 2 are diagrams explaining the manufacturing method according to the first and second embodiments of the present invention, and FIG. 3 shows the amount of polycrystalline Si filled in the separation trench in the second embodiment. , diagrams explaining the relationship between substrate curvature and bonding strength, Figures 4, 5, and 6.
The figures are diagrams illustrating manufacturing methods according to third, fourth, and fifth embodiments of the present invention. 10. 20, 30, 40, 50-- Semiconductor substrate, 11. 21, 31, 41, 51... Separation groove,
12゜22.23, 32, 42, 52... Insulating film, 13゜25.35.45... Support stand, 14
, 26, 36... Oxide film, 24, 34, 44.
54. Old... Heat resistant material, 47.58... Resist. Fig. 1 3B2 Fig. 1O: Kison I book & loose 20: Si 23: J111 custom (Si3N4) s2 Fig. 4 Fig. 30: @Thermal material Figure 3 Filling rate (%) by supercrystalline Si soaked outside Figure 5 40: f-4 #4 main plate 44: M iron material 4I: Separation 45: Supporting iodine 42; Color & Ru 4 Otsu Resist

Claims (1)

【特許請求の範囲】 1、誘電体分離基板を備えて構成される半導体装置の製
造方法において、 (a)半導体基板の鏡面仕上げされた第1の主表面から
分離溝を形成する工程、 (b)前記半導体基板の第1の主表面及び分離溝内面に
絶縁膜を形成する工程、 (c)前記半導体基板の第1の主表面を前記絶縁膜を介
して支持台に接着する工程、 (d)前記半導体基板を第2の主表面側から、前記分離
溝の附近まで薄片化する工程、 (e)前記半導体基板の第2の主表面の少なくとも分離
溝の上部を酸化し、その酸化膜を分離溝内面の絶縁膜と
接続させ、半導体基板を島状に分離する工程、 から成ることを特徴とする半導体装置の製造方法。 2、誘電体分離基板を備えて構成される半導体装置の製
造方法において、 (a)半導体基板の鏡面仕上げされた第1の主表面から
分離溝を形成する工程、 (b)前記半導体基板の第1の主表面及び分離溝内面に
絶縁膜を形成する工程、 (c)前記分離溝内に耐熱材料を埋め込む工程、(d)
前記半導体基板の第1の主表面を前記絶縁膜を介して支
持台に接着する工程、 (e)前記半導体基板を第2の主表面側から、少なくと
も分離溝に達するまで薄片化する工程、から成ることを
特徴とする半導体装置の製造方法。 3、誘電体分離基板を備えて構成される半導体装置の製
造方法において、 (a)半導体基板の鏡面仕上げされた第1の主表面から
分離溝を形成する工程、 (b)前記半導体基板の第1の主表面及び分離溝内面に
絶縁膜を形成する工程、 (c)前記分離溝内に耐熱材料を埋め込む工程、(d)
前記半導体基板の第1の主表面を前記絶縁膜を介して支
持台に接着する工程、 (e)前記半導体基板を第2の主表面側から、分離溝附
近まで薄片化する工程、 (f)前記半導体基板の第2の主表面を酸化し、その酸
化膜を分離溝内面の絶縁膜と接続させ、半導体基板を島
状に分離する工程、 から成ることを特徴とする半導体装置の製造方法。 4、前記分離溝内への耐熱材料の埋め込みは、分離溝の
深さの80%以内とすることを特徴とする特許請求の範
囲第2項または第3項記載の半導体装置の製造方法。 5、前記分離溝内への耐熱材料の埋め込みは、前記半導
体基板の第1の主表面及び分離溝内面に形成される絶縁
膜をSiO_2あるいはSiO_2を主成分とする材料
とし、この絶縁膜上にSi_3N_4膜を形成し、該S
i_3N_4膜上に多結晶Si膜を形成し、その後、前
記第1の主表面上の前記多結晶Si膜を除去することに
より行うことを特徴とする特許請求の範囲第2項、第3
項または第4項記載の半導体装置の製造方法。 6、前記分離溝内への耐熱材料の埋め込みは、リフトオ
フ法により、分離溝内にのみ多結晶Siまたは非晶質S
iが残るように行われることを特徴とする特許請求の範
囲第2項、第3項または第4項記載の半導体装置の製造
方法。 7、前記分離溝内への耐熱材料の埋め込みは、多結晶S
iまたは非晶質Siの選択デポジションにより行うこと
を特徴とする特許請求の範囲第2項、第3項または第4
項記載の半導体装置の製造方法。 8、前記分離溝内への耐熱材料の埋め込みは、前記分離
溝が形成された半導体基板全面に推積させた多結晶Si
または非晶質Siをエッチバックすることにより行うこ
とを特徴とする特許請求の範囲第2項、第3項または第
4項記載の半導体装置の製造方法。 9、前記分離溝が形成された半導体基板と支持台との接
着は、酸素雰囲気中で加熱して行われ、前記分離溝と支
持台とにより形成される空間内の酸素が前記半導体基板
または支持台の酸化により固定され、前記空間を真空と
することを特徴とする特許請求の範囲第1項ないし第8
項のうち1項記載の半導体装置の製造方法。 10、単結晶半導体基板に分離溝を形成することにより
複数の絶縁分離された島状領域と、これを支持する支持
台を備える誘電体分離構造を有する半導体装置において
、前記分離溝の内部に真空となる空間を備えることを特
徴とする半導体装置。
[Claims] 1. A method for manufacturing a semiconductor device including a dielectric isolation substrate, including: (a) forming an isolation groove from a mirror-finished first main surface of the semiconductor substrate; (b) ) forming an insulating film on the first main surface of the semiconductor substrate and the inner surface of the separation groove; (c) adhering the first main surface of the semiconductor substrate to a support via the insulating film; (d) ) oxidizing at least the upper part of the isolation groove on the second main surface of the semiconductor substrate to remove the oxide film; A method for manufacturing a semiconductor device, comprising the steps of: separating a semiconductor substrate into island shapes by connecting them to an insulating film on the inner surface of a separation trench. 2. A method for manufacturing a semiconductor device including a dielectric isolation substrate, including: (a) forming an isolation groove from a mirror-finished first main surface of the semiconductor substrate; (b) forming an isolation groove from a first main surface of the semiconductor substrate; (c) burying a heat-resistant material in the separation groove; (d)
a step of adhering the first main surface of the semiconductor substrate to a support base via the insulating film; (e) a step of thinning the semiconductor substrate from the second main surface side at least until reaching the separation groove; A method for manufacturing a semiconductor device, characterized in that: 3. A method for manufacturing a semiconductor device including a dielectric isolation substrate, including: (a) forming an isolation groove from a mirror-finished first main surface of the semiconductor substrate; (b) forming an isolation groove from a mirror-finished first main surface of the semiconductor substrate; (c) burying a heat-resistant material in the separation groove; (d)
a step of adhering the first main surface of the semiconductor substrate to a support base via the insulating film; (e) a step of thinning the semiconductor substrate from the second main surface side to the vicinity of the separation groove; (f) A method for manufacturing a semiconductor device, comprising the steps of oxidizing the second main surface of the semiconductor substrate, connecting the oxide film to an insulating film on the inner surface of a separation trench, and separating the semiconductor substrate into island shapes. 4. The method of manufacturing a semiconductor device according to claim 2 or 3, wherein the heat-resistant material is buried in the isolation trench to within 80% of the depth of the isolation trench. 5. The embedding of the heat-resistant material into the isolation trench is performed by using the insulating film formed on the first main surface of the semiconductor substrate and the inner surface of the isolation trench as SiO_2 or a material containing SiO_2 as a main component; A Si_3N_4 film is formed, and the S
Claims 2 and 3 are characterized in that the method is performed by forming a polycrystalline Si film on the i_3N_4 film and then removing the polycrystalline Si film on the first main surface.
5. A method for manufacturing a semiconductor device according to item 4. 6. The heat-resistant material is buried in the separation trench by a lift-off method, and polycrystalline Si or amorphous S is buried only in the separation trench.
5. The method of manufacturing a semiconductor device according to claim 2, 3, or 4, wherein the manufacturing method is performed so that i remains. 7. The heat-resistant material is buried in the separation trench using polycrystalline S.
Claim 2, 3 or 4, characterized in that the method is carried out by selective deposition of i or amorphous Si.
A method for manufacturing a semiconductor device according to section 1. 8. The heat-resistant material is buried in the isolation trench using polycrystalline Si deposited on the entire surface of the semiconductor substrate where the isolation trench is formed.
The method of manufacturing a semiconductor device according to claim 2, 3 or 4, characterized in that the method is carried out by etching back amorphous Si. 9. The semiconductor substrate in which the separation groove is formed and the support are bonded by heating in an oxygen atmosphere, and the oxygen in the space formed by the separation groove and the support is bonded to the semiconductor substrate or the support. Claims 1 to 8 are characterized in that the space is fixed by oxidation of the base and the space is evacuated.
A method for manufacturing a semiconductor device according to item 1 of the items. 10. In a semiconductor device having a dielectric isolation structure including a plurality of insulated and isolated island regions by forming an isolation trench in a single crystal semiconductor substrate and a support base for supporting the island regions, a vacuum is provided inside the isolation trench. A semiconductor device characterized by having a space where
JP27093188A 1988-10-28 1988-10-28 Semiconductor device and manufacture thereof Pending JPH02119161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27093188A JPH02119161A (en) 1988-10-28 1988-10-28 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27093188A JPH02119161A (en) 1988-10-28 1988-10-28 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02119161A true JPH02119161A (en) 1990-05-07

Family

ID=17492993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27093188A Pending JPH02119161A (en) 1988-10-28 1988-10-28 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02119161A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204282A (en) * 1988-09-30 1993-04-20 Nippon Soken, Inc. Semiconductor circuit structure and method for making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357978A (en) * 1976-11-05 1978-05-25 Hitachi Ltd Production of dielectric insulated and isolated substrate
JPS53114361A (en) * 1977-03-16 1978-10-05 Hitachi Ltd Insulating separation substrate
JPS61182242A (en) * 1985-02-08 1986-08-14 Toshiba Corp Manufacture of semiconductor device
JPH01106441A (en) * 1987-10-19 1989-04-24 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5357978A (en) * 1976-11-05 1978-05-25 Hitachi Ltd Production of dielectric insulated and isolated substrate
JPS53114361A (en) * 1977-03-16 1978-10-05 Hitachi Ltd Insulating separation substrate
JPS61182242A (en) * 1985-02-08 1986-08-14 Toshiba Corp Manufacture of semiconductor device
JPH01106441A (en) * 1987-10-19 1989-04-24 Fujitsu Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204282A (en) * 1988-09-30 1993-04-20 Nippon Soken, Inc. Semiconductor circuit structure and method for making the same

Similar Documents

Publication Publication Date Title
JP3635200B2 (en) Manufacturing method of SOI wafer
JP3352896B2 (en) Manufacturing method of bonded substrate
JPH0636414B2 (en) Manufacturing method of semiconductor element forming substrate
JPH01312828A (en) Manufacture of semiconductor
JPH0613456A (en) Manufacture of semiconductor device
JP2541884B2 (en) Method for manufacturing dielectric isolation substrate
JPH0888272A (en) Manufacture of substrate for semiconductor integrated circuit
JPH02119161A (en) Semiconductor device and manufacture thereof
JP2721265B2 (en) Semiconductor substrate manufacturing method
JPH08236615A (en) Dielectrically isolated substrate and fabrication thereof
JPS61234547A (en) Manufacture of semiconductor substrate
JP3160966B2 (en) Method for manufacturing SOI substrate
JPH056883A (en) Manufacture of semiconductor substrate
JPH03265153A (en) Dielectric isolation substrate, manufacture thereof and semiconductor integrated circuit device using same substrate
JPH10242439A (en) Stuck silicon wafer and its manufacture
JP2000252354A (en) Production of substrate having buried insulation film
JPH05226464A (en) Manufacture of joined dielectric isolation wafer
JP3488927B2 (en) Dielectric separation substrate and method of manufacturing the same
JP2000211997A (en) Production of epitaxial wafer
JP3165735B2 (en) Semiconductor substrate manufacturing method
JPH03104224A (en) Manufacture of semiconductor device
JPH11214368A (en) Wafer planarizing method and its device
JPH05226463A (en) Manufacture of joined dielectric isolation wafer
JPH0350817A (en) Manufacture of soi substrate
JPH11195774A (en) Manufacture of semiconductor substrate