JPH02117117A - Manufacture of laminated ceramic capacitor - Google Patents

Manufacture of laminated ceramic capacitor

Info

Publication number
JPH02117117A
JPH02117117A JP27115388A JP27115388A JPH02117117A JP H02117117 A JPH02117117 A JP H02117117A JP 27115388 A JP27115388 A JP 27115388A JP 27115388 A JP27115388 A JP 27115388A JP H02117117 A JPH02117117 A JP H02117117A
Authority
JP
Japan
Prior art keywords
dielectric layer
dielectric
binder
base film
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27115388A
Other languages
Japanese (ja)
Other versions
JP2615477B2 (en
Inventor
Yasutaka Horibe
堀部 泰孝
Keiichi Nakao
恵一 中尾
Hikoharu Okuyama
彦治 奥山
Masahiro Kato
昌弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63271153A priority Critical patent/JP2615477B2/en
Publication of JPH02117117A publication Critical patent/JPH02117117A/en
Application granted granted Critical
Publication of JP2615477B2 publication Critical patent/JP2615477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To obtain a laminated ceramic capacitor which can be produced by transferring dielectric layers at a low temperature by means of a hot stamping system without the need of using a large amount of binder in the dielectric layers, by providing a green sheet having an adhesive layer formed partially on the surface of a dielectric layer into a meshy or spotted form and transferring the dielectric layer to an object to be transferred while exerting heat and pressure onto the base film of the green sheet. CONSTITUTION:A dielectric layer 4 consisting of dielectric powder 2, a plasticizer and a binder 3 is provided on a base film 1, and an adhesive layer 5 is applied thereon partially in to a meshy or spotted form. A hot-stamping sheet thus produced is applied against a dielectric layer having inner electrodes printed thereon, so that the dielectric layer 4 on the base film 1 is transferred thereto by exerting heat and pressure onto the base film 1. A laminated ceramic capacitor is produced in this manner. According to this method, dielectric layers can be laminated at a low temperature by means of a hot stamping system.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、積層磁器コンデンサの製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a multilayer ceramic capacitor.

従来の技術 近年、ラジオ、マイクロヵセ・7トレコータ、電子チュ
ーナ、ビデオカメラ等の超小型、薄型軽量電子機器の発
展に伴ない回路素子として使用されるコンデンサの小型
、大容量化が強く要求されるようになってきた。これら
の要求を満足する部品として積層磁器コンデンサが知ら
れている。
Background of the Invention In recent years, with the development of ultra-compact, thin, and lightweight electronic devices such as radios, microcassettes/7 recorders, electronic tuners, and video cameras, there has been a strong demand for smaller and larger capacity capacitors used as circuit elements. It has become. A multilayer ceramic capacitor is known as a component that satisfies these requirements.

積層磁器コンデンサの製造方法としては、先ず誘電体粉
末、バインダ、可塑剤および有機溶剤からなるヌラリー
を用いてドクターブレード法により有機フィルム上に厚
さ数十μmのセラミック誘電体層を設けてグリーンシー
トを作成する。次にこのシート上に内部電極を印刷した
ものを複数枚積み重ねた後、圧着して積層成形体を作成
し、しかる後チリプ状に切断、焼成後、外部電極を形成
して作成される。(「絶縁誘電体セラミック7」CMC
社発行、塩崎忠監修、9211〜227゜1986年) 一方さらに大容量化を達成するには誘電体層を薄くする
ことが望まれるが、ドクターブレード法では誘電体層厚
みに限度があることからバインダ量を従来よりも増量し
、ヌラリー粘度をさらに小すくシてリバークロール法に
より10μm以下の薄型シートを作成し、バインダ量の
多いことを利用してグリーンシートのベーヌフィルム面
側から熱圧着により誘電体層を転写する、いわゆるホ。
The method for manufacturing multilayer ceramic capacitors is to first form a ceramic dielectric layer several tens of micrometers thick on an organic film using a doctor blade method using a nullary consisting of dielectric powder, a binder, a plasticizer, and an organic solvent, and then form a green sheet. Create. Next, a plurality of sheets with internal electrodes printed on them are stacked and pressed together to create a laminated molded body, which is then cut into chip shapes, fired, and then external electrodes are formed. (“Insulating Dielectric Ceramic 7” CMC
On the other hand, in order to achieve even higher capacity, it is desirable to make the dielectric layer thinner, but since there is a limit to the thickness of the dielectric layer in the doctor blade method, By increasing the amount of binder than before and further reducing the nullary viscosity, we created a thin sheet of 10 μm or less using the river crawl method.Using the large amount of binder, we created a dielectric sheet from the vane film side of the green sheet by thermocompression bonding. The so-called ho, which transfers the body layer.

トヌタンプ方式により誘電体層を積層する方法も最近提
案されている。
A method of laminating dielectric layers using the Tonu-Tamp method has also been recently proposed.

第2図を用いてホットスタンプ方式による積層磁器コン
デンサの積層工程を簡単に説明する。
The lamination process of a laminated ceramic capacitor using the hot stamping method will be briefly explained using FIG.

誘電体粉末にバインダ、可塑剤、溶剤などを加えて混合
し調製されたヌラリーを用い、リバークロール法などに
より、数μmから数十μmの極薄の誘電体層6.11を
ベースフィルム1oに形成し、ホットスタンプシートを
作成する。なおこの場合誘電体層6の組成はホットスタ
ンプシートムが可能となるようなバインダ量が含有され
ていなければならない。このホットスタンプシートの誘
電体層6面上に内部電極7を形成し、その後別のホ7)
スタンプシート8を重ね合わせ、次に熱ローラ9等で熱
と圧力をベースフィルム10面側から同時にかけること
によりホットスタンプシート8の誘電体層11を、内部
電極7が印刷された誘電体層6に転写させ、その後ホッ
トスタンプシート8のペーヌフイルム10を剥離する。
Using a nullary prepared by adding a binder, a plasticizer, a solvent, etc. to dielectric powder and mixing it, an ultra-thin dielectric layer 6.11 of several μm to several tens of μm is formed on the base film 1o by a river crawl method or the like. Form and create hot stamp sheets. In this case, the composition of the dielectric layer 6 must contain an amount of binder that enables hot stamping. Internal electrodes 7 are formed on the dielectric layer 6 surface of this hot stamp sheet, and then another hole 7) is formed.
The stamp sheets 8 are overlapped, and then heat and pressure are simultaneously applied from the base film 10 side using a heat roller 9 or the like to form the dielectric layer 11 of the hot stamp sheet 8 into the dielectric layer 6 on which the internal electrodes 7 are printed. After that, the Peine film 10 of the hot stamp sheet 8 is peeled off.

火にこの剥離面上に内部電極子を形成した後、さらに別
のホットスタンプシートの重ね合わせ、熱圧着による転
写、ベースフィルムの剥離、電極形成を繰り返すことに
より積層する。なお第2図において12はヒータ、13
はホ・・ノトヌタンプ装置の架台である。
After forming internal electrodes on this peeled surface, the layers are laminated by repeating the steps of overlapping another hot stamp sheet, transferring by thermocompression, peeling off the base film, and forming electrodes. In addition, in FIG. 2, 12 is a heater, and 13 is a heater.
is the stand for the Ho-notonutamp device.

発明が解決しようとする課題 ホ・7トヌタンプ方式のグリーンシートは熱転写が可能
となるように従来法によるグリーンシートに比べ、バイ
ンダ量が多いため積層成形体を焼成する時にバインダの
除去が難しく、焼結後誘電体層6と内部電極7間で剥離
現象がおきる原因ともな−ている。また積層数が増える
とバインダ量が多い場合、積層時の熱と圧力の為に内部
電極7の電極ずれが発生し、コンデンサとしての電気容
量が低下するなどの問題点を有していた。
Problems to be Solved by the Invention E. 7 In order to enable thermal transfer, green sheets using the tonutamp method contain a larger amount of binder than green sheets made using the conventional method, making it difficult to remove the binder when firing a laminated molded product. This is also a cause of peeling between the dielectric layer 6 and the internal electrode 7 after curing. Further, when the number of laminated layers increases and the amount of binder is large, electrode displacement of the internal electrodes 7 occurs due to heat and pressure during lamination, resulting in problems such as a decrease in capacitance as a capacitor.

本発明は上記問題点に鑑み、誘電体層のバインダ量を多
量に含有しなくてもホソトヌタンプシヌテムが可能でか
つ低温転写が出来る積層磁器コンデンサの製造方法を提
供しようとするものである。
In view of the above-mentioned problems, the present invention aims to provide a method for manufacturing a multilayer ceramic capacitor that can be transferred at low temperatures and that can be transferred without using a large amount of binder in the dielectric layer. .

課題を解決するための手段 上記問題点を解決するために本発明の積層磁器コンデン
サに使用するグリーンシートは、ベーヌフィルム面上に
順に、誘電体粉末、バインダ、可塑剤からなる誘電体層
および部分的に接着剤層を設けてなるものである。そし
てかかるグリーンシートの上記ベースフィルム面側から
熱と圧力をかけて被写物に誘電体層を転写することによ
り積層するものである。
Means for Solving the Problems In order to solve the above problems, the green sheet used in the multilayer ceramic capacitor of the present invention has a dielectric layer made of dielectric powder, a binder, a plasticizer, and a partial layer formed on the surface of the Baine film in this order. An adhesive layer is provided on the surface. The dielectric layer is then laminated by applying heat and pressure from the base film side of the green sheet to transfer the dielectric layer to the object.

作用 本発明の積層磁器コンデンサの製造に使用するグリーン
シートの一例を第1図に示す。第1図のグリーンシート
はベースフィルム1面上に誘電体粉末2.可塑剤、バイ
ンダ3からなる誘電体層4を設け、さらにその面上に接
着剤層6が網目状あるいは斑点状などの形状で部分的に
形成された構造からなっている。このような構造からな
るホットスタンプシートを用いて第2図と同様の方法で
グリーンシートのベースフィルム1面側かう熱ト圧力を
かけて内部電極が印刷された誘電体層上にベークフィル
ム1上の誘電体層4を転写して積層磁器コンデンサを作
成したとする。従来の接着剤層なしでホントヌタンブ法
により誘電体層同士を積層しようとすると加熱圧着時に
、−旦誘電体層中のバインダが軟化し熱転写が可能とな
゛るだけの多量のバインダ量を必要とするが、本発明の
製造方法に使用するグリーンシートは低温加[Eで軟化
固着する感圧性の接着剤層を網目状あるいは斑点状など
の形状で部分的に誘電体層表面に形成していることから
誘電体層内には特に予示のバインダを必要としなくても
容易に低温でホットスタンプ方式により誘電体層同士を
積層することが出来る。
Function FIG. 1 shows an example of a green sheet used in manufacturing the multilayer ceramic capacitor of the present invention. The green sheet in Figure 1 has two layers of dielectric powder on one side of the base film. It has a structure in which a dielectric layer 4 made of a plasticizer and a binder 3 is provided, and an adhesive layer 6 is partially formed on the surface thereof in the shape of a network or spots. Using a hot stamp sheet with such a structure, heat and pressure is applied to one side of the base film of the green sheet in the same manner as shown in Figure 2, and the bake film 1 is placed on the dielectric layer on which internal electrodes are printed. It is assumed that a multilayer ceramic capacitor is created by transferring the dielectric layer 4 of . If dielectric layers were to be laminated using the Hontonutanbu method without a conventional adhesive layer, a large amount of binder would be needed to soften the binder in the dielectric layer and make thermal transfer possible during heat-press bonding. However, the green sheet used in the manufacturing method of the present invention has a pressure-sensitive adhesive layer that is softened and fixed at low temperature [E] partially formed in the shape of a network or spots on the surface of the dielectric layer. Therefore, the dielectric layers can be easily laminated together by a hot stamping method at a low temperature without requiring any special binder in the dielectric layers.

従って従来のホ7)ヌタンブ式グリーンシートを使用す
る時に比ベパインダの除去が容易であると共に低温転写
が可能なことから高積層時においても電極ずれが起こら
ない。なお誘電体層面上に全面接着剤層を形成するとホ
リトヌタンプ時の熱転写は良好であるが焼成時に有機物
である接着剤が熱分解し多量のガヌを発生することから
焼結体内には誘電体層間で多数のデラミネーションが生
じる。
Therefore, when using the conventional E7) Nutanbu type green sheet, it is easy to remove the binder and low temperature transfer is possible, so that electrode displacement does not occur even when a high number of layers are stacked. Note that if an adhesive layer is formed on the entire surface of the dielectric layer, the thermal transfer during horitonutamping will be good, but the organic adhesive will thermally decompose during firing and generate a large amount of adhesive, so there will be a gap between the dielectric layers in the sintered body. A large number of delaminations occur.

実施例 本発明の具体的実施例について詳しく説明する。Example Specific embodiments of the present invention will be described in detail.

BaTi0.を主成分とする誘電体粉末1oO重量部に
対しポリビニルブチラール樹脂12重量部、フタル酸ジ
オクチル2重量部を配合した後、溶剤にテトラヒドロフ
ランを用いてボールミルで20時間混練し、30 cp
sの粘度からなる7ラリーを作成した。このヌラリーを
脱泡処理後リバースロール法により厚み60μmのボリ
エヌテルフィルム上に厚み9μmの誘電体層4を形成し
た。次にとの誘電体層4面上にグラビアコーティング法
により網目状に熱可塑性アクリルーヌチレンー塩酢ピ系
接着剤層6を厚み1μmで形成し、グリーンシートを作
成した。なお誘電体層4面上における接着剤層6形成面
と形成していない面の比率は1:1とした。また比較の
ために誘電体層4全面に前述と同じ接着剤からなる接着
剤層を形成したシートも作成した。
BaTi0. After blending 12 parts by weight of polyvinyl butyral resin and 2 parts by weight of dioctyl phthalate with 100 parts by weight of dielectric powder mainly composed of
Seven rallies were prepared with a viscosity of s. After degassing this nullary, a dielectric layer 4 with a thickness of 9 μm was formed on a Borien ether film with a thickness of 60 μm by a reverse roll method. Next, a thermoplastic acrylic-nutyrene-salt-acid-vinyl-pi-based adhesive layer 6 with a thickness of 1 μm was formed in a network shape by a gravure coating method on the dielectric layer 4 to prepare a green sheet. The ratio of the surface on which the adhesive layer 6 was formed and the surface on which the adhesive layer 6 was not formed on the surface of the dielectric layer 4 was 1:1. For comparison, a sheet was also prepared in which an adhesive layer made of the same adhesive as described above was formed on the entire surface of the dielectric layer 4.

次に第2図の方法に従い前述の2種類のグリーンシート
を使用して積層数50層からなる高積層の積層成形体を
ホットスタンプ法によりf¥成した。
Next, in accordance with the method shown in FIG. 2, a highly laminated molded product consisting of 50 layers was formed by hot stamping using the two types of green sheets described above.

なおホ・シトスタンプ時の温度は100℃、圧力は26
Ky/cdである。また内部電極としては市販のPdペ
ーヌトを使用した。しかる後、チ、ツブ状に切断後、チ
ップ成形体をZrO2粉末中にまぶしながら1000°
Cで2時間焼成した。このようにして作成した積層チ、
フプコンデンサの焼結体内部を走査型電子顕微鏡により
微細構造を観察した。その結果、接着剤層5を誘電体層
4面に全面形成したシートを使用した場合、試量数2Q
個に対し全数、誘電体層4と内部電極の間でデラミネー
ションが発生しておりコンデンサとして使用することが
出来なか−た。一方接着剤層Sを誘電体層4面上に部分
的に形成したグリーンシートを用いた焼結体はデラミネ
ーションは全く見られず内部電極の位置ずれもなかった
。また電気容量を測定した結果、測定数60個に対し容
量のバラツキは理論計算値の±1%におさまり弛めて容
量命中率が高いことが確認された。
The temperature at the time of stamping was 100℃ and the pressure was 26℃.
Ky/cd. Furthermore, commercially available Pd paint was used as the internal electrode. After that, after cutting into chunks, the chip molded body was heated at 1000° while being sprinkled in ZrO2 powder.
It was baked at C for 2 hours. The laminated chip created in this way,
The fine structure inside the sintered body of the HUP capacitor was observed using a scanning electron microscope. As a result, when using a sheet in which the adhesive layer 5 was formed on the entire surface of the dielectric layer 5, the trial amount was 2Q.
In all of the capacitors, delamination occurred between the dielectric layer 4 and the internal electrodes, making it impossible to use them as capacitors. On the other hand, in the sintered body using a green sheet in which the adhesive layer S was partially formed on the dielectric layer 4 surface, no delamination was observed and there was no displacement of the internal electrodes. Further, as a result of measuring the capacitance, it was confirmed that the variation in capacitance was within ±1% of the theoretically calculated value for 60 measurements, and that the capacitance accuracy was high.

なお本実施例に用いたのと同一組成の誘電体層4のみか
らなるグリーンシートを前述と全く同じ条件下でホ・ノ
ドスタンプしても熱転写することが出来なかった。なお
バインダ量を増やし誘電体粉末100重量部に対し、ポ
リビニルブチラール樹脂20重量部、フタルサンジオク
チル2重量部の組成からなる誘電体層シートを作成して
はじめて熱転写が可能となりその場合の温度は186°
Cであった。
Note that even if a green sheet consisting only of the dielectric layer 4 having the same composition as used in this example was hot stamped under exactly the same conditions as described above, thermal transfer could not be achieved. Note that thermal transfer is only possible when the amount of binder is increased to create a dielectric layer sheet with a composition of 100 parts by weight of dielectric powder, 20 parts by weight of polyvinyl butyral resin, and 2 parts by weight of phthalate, and the temperature in that case is 186°C. °
It was C.

以上の結果から明らかなように、誘電体粉末。As is clear from the above results, dielectric powder.

バインダ、可塑剤からなる誘電体層4の面上に接着剤層
6を部分的に形成した積層磁器コンデンサ用グリーンシ
ートを用いると、従来より86°Cも低温でホ・ソトヌ
タンプ方式により積層することが出来ることから、内部
電極の位置ずれもなくなり、電気容量の命中率も大幅に
向上することが出来た。
When using a green sheet for laminated ceramic capacitors in which an adhesive layer 6 is partially formed on the surface of a dielectric layer 4 made of a binder and a plasticizer, it is possible to laminate layers using the Ho-Sotonutan method at a temperature 86°C lower than conventional methods. As a result, there was no misalignment of the internal electrodes, and the accuracy of the capacitance was greatly improved.

また接着剤層6を誘電体層40面上に部分的に形成する
ことにより、誘電体層4K特に多量にバインダを含有し
なくても熱転写で積層出来ることから焼成時のバインダ
除去も容易となり、焼結体のデラミネーションの発生を
著しく抑制することが出来た。
In addition, by partially forming the adhesive layer 6 on the surface of the dielectric layer 40, the dielectric layer 4K can be laminated by thermal transfer even if it does not contain a particularly large amount of binder, making it easy to remove the binder during firing. It was possible to significantly suppress the occurrence of delamination in the sintered body.

なお、実施例では接着剤層5を誘電体層4面に網目状に
形成しだが斑点状、縞状等部分的に形成しても同様の効
果を得ることが出来る。
In the embodiment, the adhesive layer 5 is formed in a mesh shape on the surface of the dielectric layer 4, but the same effect can be obtained even if it is formed partially in spots, stripes, etc.

また本実症例では積層磁器コンデンサをとりあげたがホ
ットスタンプ方式により積層可能な他の積層セラミック
電子部品、例えば積層アクチュエータ、積層バリヌタ、
積層基板に適用しても全く同様の効果を得ることが出来
るのは言うまでもないことである。
In addition, although this case study deals with multilayer ceramic capacitors, other multilayer ceramic electronic components that can be stacked using the hot stamping method, such as multilayer actuators, multilayer barinutors, etc.
It goes without saying that the same effect can be obtained even when applied to a laminated substrate.

発明の効果 以上のように本発明による積層磁器コンデンサの製造方
法は、接着剤層を誘電体層の面上に網目状1斑点状など
部分的に形成した構造からなるグリーンシートの、ベー
スフィルムff1(Illカラ熱、!:正圧力かけて被
写物に誘電体層を転写する積層工程を有するものであシ
、従来のホットヌタングシートを使用したときに比べて
誘電体層内のバインダ量を減らしても低温で熱転写が出
来る。従ってデラミネーション発生の抑制、あるいは電
極の位置精度が改善され、そのため電気容愈の命中率が
向上するなどその工業的価値は極めて大なるものがある
Effects of the Invention As described above, the method for manufacturing a multilayer ceramic capacitor according to the present invention is based on the base film ff1 of a green sheet having a structure in which an adhesive layer is partially formed in the form of a network and spots on the surface of a dielectric layer. (Ill Color Heat!: It has a lamination process that transfers the dielectric layer to the object by applying positive pressure.The amount of binder in the dielectric layer is higher than when using a conventional hot nut sheet.) Thermal transfer can be carried out at low temperatures even if the amount of heat is reduced.Therefore, the occurrence of delamination can be suppressed or the positioning accuracy of the electrode can be improved, thereby increasing the accuracy of electromagnetism, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による製造方法に使用する積層磁器コン
デンサ用グリーンシートの断面図、第2図はホソトヌタ
ンプシートを用いて積層する場合の積層工程を説明する
断面図である。 1・・・・・・ベーヌフィルム、2・・・・・・誘電体
粉末、3・・・・・・可塑剤、バインダ、4・・・・・
・誘電体層、6・・・・・・接着剤層。 代理人の氏名 芳理士 粟 野 重 孝 ほか1名第1
図 第2図 1 ・− −m− 3−・− べ−スフ1ルム 誘電体8禾 可′Mj?J、バインタ 論電淳層 僧i削層 =:===)
FIG. 1 is a sectional view of a green sheet for a laminated ceramic capacitor used in the manufacturing method according to the present invention, and FIG. 2 is a sectional view illustrating the lamination process when laminating using a hototonutamp sheet. 1...Baine film, 2...Dielectric powder, 3...Plasticizer, binder, 4...
- Dielectric layer, 6...Adhesive layer. Name of agent: Attorney Shigetaka Awano and 1 other person 1st
Figure 2 Figure 1 ・− −m− 3−・− Base full dielectric material 8 禾可′Mj? J, Bainta Ronden Junsoso i slayer =:===)

Claims (1)

【特許請求の範囲】[Claims] ベースフィルム面上に誘電体粉末,バインダ,可塑剤か
らなる誘電体層を設け、この誘電体層面上に部分的に接
着剤層を設けて形成したグリーンシートの、上記ベース
フィルム面側から熱と圧力をかけて被写物に誘電体層を
転写することにより積層する工程を有することを特徴と
する積層磁器コンデンサの製造方法。
A green sheet is formed by providing a dielectric layer made of dielectric powder, a binder, and a plasticizer on the base film surface, and partially providing an adhesive layer on the dielectric layer surface. A method for manufacturing a multilayer ceramic capacitor, comprising the step of laminating a dielectric layer by applying pressure and transferring the dielectric layer to an object.
JP63271153A 1988-10-27 1988-10-27 Manufacturing method of multilayer ceramic capacitor Expired - Lifetime JP2615477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63271153A JP2615477B2 (en) 1988-10-27 1988-10-27 Manufacturing method of multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63271153A JP2615477B2 (en) 1988-10-27 1988-10-27 Manufacturing method of multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH02117117A true JPH02117117A (en) 1990-05-01
JP2615477B2 JP2615477B2 (en) 1997-05-28

Family

ID=17496074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63271153A Expired - Lifetime JP2615477B2 (en) 1988-10-27 1988-10-27 Manufacturing method of multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2615477B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527890B1 (en) 1998-10-09 2003-03-04 Motorola, Inc. Multilayered ceramic micro-gas chromatograph and method for making the same
US6592696B1 (en) * 1998-10-09 2003-07-15 Motorola, Inc. Method for fabricating a multilayered structure and the structures formed by the method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694716A (en) * 1979-12-28 1981-07-31 Fujitsu Ltd Method of manufacturing laminated ceramic condenser
JPS57117227A (en) * 1981-01-12 1982-07-21 Murata Manufacturing Co Method of winding wound-type ceramic capacitor
JPS57160981A (en) * 1981-03-30 1982-10-04 Nippon Electric Co Manufacture of laminate ceramic parts
JPS6324612A (en) * 1986-07-16 1988-02-02 株式会社村田製作所 Manufacture of ceramic laminated unit
JPS63188927A (en) * 1987-01-30 1988-08-04 松下電器産業株式会社 Manufacture of laminated ceramic electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694716A (en) * 1979-12-28 1981-07-31 Fujitsu Ltd Method of manufacturing laminated ceramic condenser
JPS57117227A (en) * 1981-01-12 1982-07-21 Murata Manufacturing Co Method of winding wound-type ceramic capacitor
JPS57160981A (en) * 1981-03-30 1982-10-04 Nippon Electric Co Manufacture of laminate ceramic parts
JPS6324612A (en) * 1986-07-16 1988-02-02 株式会社村田製作所 Manufacture of ceramic laminated unit
JPS63188927A (en) * 1987-01-30 1988-08-04 松下電器産業株式会社 Manufacture of laminated ceramic electronic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527890B1 (en) 1998-10-09 2003-03-04 Motorola, Inc. Multilayered ceramic micro-gas chromatograph and method for making the same
US6572830B1 (en) 1998-10-09 2003-06-03 Motorola, Inc. Integrated multilayered microfludic devices and methods for making the same
US6592696B1 (en) * 1998-10-09 2003-07-15 Motorola, Inc. Method for fabricating a multilayered structure and the structures formed by the method
US6732567B2 (en) 1998-10-09 2004-05-11 Motorola, Inc. Multilayered ceramic micro-gas chromatograph and method for making the same

Also Published As

Publication number Publication date
JP2615477B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
JPH05101970A (en) Laminated porcelain capacitor and its manufacture
JP3603655B2 (en) Conductive paste and method for manufacturing ceramic electronic component using the same
JP2001044071A (en) Manufacture of ceramic electronic component
JPH02117117A (en) Manufacture of laminated ceramic capacitor
JPH0396207A (en) Manufacture of laminated ceramic electronic part
JP2000315618A (en) Manufacture of laminated ceramic electronic parts
JP2615771B2 (en) Green sheets for laminated ceramic capacitors
JPH0374820A (en) Manufacture of laminated porcelain capacitor and manufacture of green sheet used therefor
JPH02155211A (en) Green sheet for laminated porcelain capacitor
JPH0590069A (en) Manufacture of laminated ceramic elements
JPH02117118A (en) Green sheet for laminated ceramic capacitor
JPS63188926A (en) Manufacture of laminated porcelain capacitor
JP3196713B2 (en) Manufacturing method of ceramic electronic components
JPS6159653B2 (en)
JPH02208915A (en) Manufacture of laminated ceramic electronic part
JPH0379007A (en) Green sheet for laminated ceramic capacitor and manufacture of laminated ceramic capacitor
JP2969673B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH02117113A (en) Green sheet for laminated ceramic capacitor
JPH0236512A (en) Manufacture of laminated ceramic electronic component
JPH02117114A (en) Manufacture of laminated ceramic capacitor
JPH0391220A (en) Manufacture of laminated ceramic capacitor
JP2671445B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2671444B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH1126279A (en) Manufacture of laminated ceramic electronic parts
JPH02117115A (en) Manufacture of laminated ceramic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12