JP3603655B2 - Conductive paste and method for manufacturing ceramic electronic component using the same - Google Patents

Conductive paste and method for manufacturing ceramic electronic component using the same Download PDF

Info

Publication number
JP3603655B2
JP3603655B2 JP08113699A JP8113699A JP3603655B2 JP 3603655 B2 JP3603655 B2 JP 3603655B2 JP 08113699 A JP08113699 A JP 08113699A JP 8113699 A JP8113699 A JP 8113699A JP 3603655 B2 JP3603655 B2 JP 3603655B2
Authority
JP
Japan
Prior art keywords
internal electrode
base film
ceramic
conductive paste
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08113699A
Other languages
Japanese (ja)
Other versions
JP2000276944A (en
Inventor
磨人 大宮
淳夫 長井
茂樹 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP08113699A priority Critical patent/JP3603655B2/en
Publication of JP2000276944A publication Critical patent/JP2000276944A/en
Application granted granted Critical
Publication of JP3603655B2 publication Critical patent/JP3603655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はテレビジョンの受動機の電子チューナ、液晶テレビ、携帯電話等の各種電気製品に広く利用される導電性ペースト及びそれを用いたセラミック電子部品の製造方法に関するものである。
【0002】
【従来の技術】
図2にセラミック電子部品の代表例として積層セラミックコンデンサを示した。図において、1は誘電体セラミック層、2は内部電極層、3は外部電極である。
【0003】
以下、従来のセラミック電子部品の製造方法をセラミック電子部品の代表である積層セラミックコンデンサの製造方法を例に説明する。
【0004】
従来の積層セラミックコンデンサの製造方法は、先ず、チタン酸バリウム等の誘電体材料粉末にバインダ成分としてポリビニルブチラール、可塑剤成分としてベンジルブチルフタレート、溶剤成分として酢酸ブチルを加えて混合し、スラリー化した後ドクターブレード法を用いてPET等のベースフィルム上にスラリーを塗工乾燥し、厚み5〜50μmの誘電体セラミック1用のセラミックグリーンシートを作製する。
【0005】
また、これとは別に、PET等のベースフィルム上に、ニッケルを主成分とする導電体ペーストを用いて印刷法により複数個の厚さ2〜4μmの内部電極層2を並設する。内部電極層2の厚みが薄い場合には、その後の積層セラミックコンデンサの焼成時に内部電極層2が収縮し部分的に不連続な状態となり、静電容量の低下を招く惧れがあるために少なくとも2μm以上塗工する必要がある。
【0006】
次に、ベースフィルム面に塗工した内部電極層2をセラミックグリーンシート面に熱転写を行う。熱転写したセラミックグリーンシートを複数層積層加圧し積層グリーンブロック(図示せず)を作製する。尚、セラミックグリーンシートの積層は、一層ごと交互に転写した内部電極層2の長手方向に所定寸法ずらして行う。
【0007】
次いで、積層グリーンブロックを所定寸法に切断した後、所定条件で焼成し焼結体を作製する。焼結体はその長手方向の両端面には内部電極層2が誘電体セラミック層1を挟んで一層おきに相対する異なる端面に露出した構成となっている。
【0008】
得られた焼結体に内部電極層2が露出した端面に外部電極3を設け積層セラミックコンデンサを完成させる。例えば、特公平5−25381号公報にその方法が開示されている。
【0009】
【発明が解決しようとする課題】
しかしながら、ベースフィルム上に塗工した内部電極層2をセラミックグリーンシート面に熱転写する際、内部電極層2がセラミックグリーンシート面に完全に転写されないことがあり、この場合焼結体内で内部電極層2が不連続的な状態となり、設計どおりの静電容量が得られない。また、内部電極層2を熱転写した後、ベースフィルムを剥離する際に内部電極層2がベースフィルムに付着した状態の場合、その付着部分にセラミックグリーンシートが接着、引剥がされ、その部分の誘電体セラミック層1が欠落し焼結体で内部電極層2どうしの短絡不良や、焼結体のヒビや構造欠陥の発生原因となることがある。
【0010】
本発明は前記課題に鑑み、ベースフィルムから内部電極層をセラミックグリーンシート面に確実に熱転写させることを可能とする導電性ペーストを用い内部電極層をベースフィルム上に塗工したものを用いることにより、構造欠陥等の発生のない電気的特性が安定したセラミック電子部品の製造方法を提供するものである。
【0011】
【課題を解決するための手段】
前記問題点を解決するために本発明は、金属粉末に有機バインダーと可塑剤と有機溶剤とを混合し、かつ有機バインダーと可塑剤の混合比率を100対60〜100の範囲に制御することにより有機バインダーとベースフィルムとの接着性を弱めた導電性ペーストを用い、これをベースフィルム面に塗工、乾燥した内部電極層をセラミックグリーンシート面に熱転写するものであり、この導電性ペーストを用いることにより塗工された内部電極層がベースフィルムからの剥離性が良好となり所期の目的を達成することが可能となるものである。
【0012】
一般的にセラミック電子部品の製造に用いる内部電極用の導電性ペーストは、これに含まれる有機バインダーの弾性率やガラス転移点を低下させ、印刷、成形性を確保するため可塑剤を添加する場合があるが、単に印刷、成形性を良くするには、用いる有機バインダーの種類によって異なるが、有機バインダー100に対して可塑剤の比率は50以下である。本発明の導電性ペーストは有機バインダー100に対し60以上の可塑剤を混合したものを用いることにより、ベースフィルムからの内部電極層の剥離性を向上させ、確実にセラミックグリーンシート面に熱転写が可能となる。即ち、多量の可塑剤が有機バインダー分子の表面に吸着されることにより、ベースフィルム面と塗工した内部電極層中の有機バインダーとの間に働く分子間吸着力を低下させ、その接着力を弱めるため、ベースフィルムからの剥離が容易となり熱転写を確実に行うことができるというメカニズムに基づいているものである。
【0013】
【発明の実施の形態】
本発明の請求項1に記載の発明は、セラミック粉末、有機バインダー、可塑剤からなるスラリーからセラミックグリーンシートを作製する工程と、ベースフィルム上に金属粉末と有機バインダーと可塑剤とを含み前記有機バインダーと前記可塑剤の比率を100対60〜100とすることにより前記有機バインダーと前記ベースフィルムとの接着性を弱めた導電性ペーストを塗工し乾燥して導電層を形成する工程と、前記セラミックグリーンシートに前記乾燥後の導電層を熱転写する工程とを有し、導電層を熱転写したセラミックグリーンシートを複数積層し積層体グリーンブロックを作製するセラミック電子部品の製造方法であり、有機バインダー100に対して可塑剤が60〜100である導電層を用いることにより、多量の可塑剤が有機バインダー分子の表面に吸着され、ベースフィルム面と塗工形成した内部電極層中の有機バインダーとの間に働く分子間吸着力を低下させ、その接着力を弱めるため、ベースフィルムからの剥離が容易となり熱転写を確実に行うことができるという作用を有するものである。
【0017】
以下、本発明の一実施の形態をセラミック電子部品の代表例として積層セラミックコンデンサを用い、図面を参照しながら説明する。
【0018】
図1は本実施の形態のベースフィルム6上に塗工形成した内部電極層2の断面図、図3はベースフィルム5面に形成した誘電体セラミック層セラミックグリーンシート4の断面図である。尚、図2は積層セラミックコンデンサの完成品は従来例と同様であるためこれを流用する。
【0019】
積層セラミックコンデンサの製造方法は、先ず、チタン酸バリウム等の誘電体材料粉末に、バインダ成分としてポリビニルブチラール、可塑剤成分としてベンジルブチルフタレート、溶剤成分として酢酸ブチルを加えて混合してスラリー化した後、ドクターブレード法を用いてPET製のベースフィルム5面にスラリーを塗工乾燥し、厚み9μmの誘電体セラミック層1用のセラミックグリーンシート4を作製する。
【0020】
また、これとは別にPET製のベースフィルム6面に、ニッケルを主成分とする導電性ペーストをスクリーン印刷法により複数個の厚さ2.5μmの内部電極層2を並設塗工した後、乾燥を行う。内部電極層2の厚みが薄い場合には、その後の積層セラミックコンデンサの焼成時に内部電極層2が収縮し部分的に不連続な状態となり、静電容量の低下を招く惧れがあるために本実施の形態では2.5μmの厚さに塗工した。尚、導電ペーストはニッケル粉末100重量部、有機バインダーとしてエチルセルロース6重量部、可塑剤として(表1)に示す材料をエチルセルロースに対し0〜100重量部、有機溶剤として脂肪族ナフサ、テルピネオールの混合物を60重量部を混合したものを用いた。
【0021】
また、ベースフィルム6はその臨界表面張力が35dyne/cmで、各々の導電ペーストの表面張力より大きいものを用いた。これにより導電ペーストの印刷時に、ベースフィルム6面に精度良く内部電極層2が塗工形成できるように配慮した。導電ペーストの表面張力がベースフィルム6の臨界表面張力より大きくなると、導電ペーストとベースフィルム6との濡れ性が低下し、印刷時にはじきが発生し、精度良く内部電極層2を塗工することができなくなる。
【0022】
次に、セラミックグリーンシート4面にベースフィルム6面に塗工形成したそれぞれの組成の内部電極層2を85℃、12MPaの圧力で熱転写を行う。
【0023】
これとは別に、ベースフィルム5面に形成したセラミックグリーンシート4を剥がし複数枚積層加圧して上部、下部、無効層(図示せず)を作製する。
【0024】
次いで、下部無効層の上に熱転写した第一層目のセラミックグリーンシート4を積層加圧し、続いて第二層目の内部電極層2を印刷したセラミックグリーンシート4を第一層目の内部電極層2の長手方向に所定寸法ずらして積層加圧する。更に第三層目の内部電極層2を印刷したセラミックグリーンシート4を第一層目の内部電極の真上に重なるようにして積層加圧し、またその上に第四層目の内部電極層2を印刷したセラミックグリーンシート4を積層加圧する。このようにして順次、内部電極層2を印刷したセラミックシート14を一層ごと交互に所定寸法ずらしながら100層積層した後、最後に上部無効層を積層加圧して複数層積層加圧した積層グリーンブロック(図示せず)を作製する。
【0025】
その後、積層グリーンブロックを焼成後の寸法が長さ3.1×幅1.5mmとなるように切断しグリーンチップ(図示せず)を作製する。得られたグリーンチップはその長手方向の両端面には内部電極層2がセラミックグリーンシート4を挟んで一層おきに相対する異なる端面に交互に露出した構成となっている。
【0026】
次に、グリーンチップを大気中350℃の温度で脱脂を行った後、グリーンガスからなる還元雰囲気中1300℃の温度で焼成を行い焼結体(図示せず)を得る。還元雰囲気中で焼成するのは内部電極層2にニッケルを用いているため、その酸化するのを防止する目的からである。また得られた焼結体の誘電体セラミック層1の厚みは5μm、内部電極層2の厚みは1.8μmであった。
【0027】
次いで、焼結体の両端面に露出した内部電極層2と電気的に接続するように、焼結体端部に銅を主成分とする外部電極3を形成し、図2に示す積層セラミックコンデンサを完成させる。
【0028】
その後、完成した積層セラミックコンデンサの静電容量と、焼結体の外観、内部構造欠陥の発生状況およびセラミックグリーンシート4面に内部電極層2の熱転写性として内部電極層2をセラミックグリーンシート4面に熱転写した時、セラミックグリーンシート4面に転写された内部電極層2の重量と残存した内部電極層2の重量で評価を行い、その結果を併せて(表1)に示した。
【0029】
【表1】

Figure 0003603655
【0030】
(表1)に示すように可塑剤としてフタル酸エステル系(ジブチルフタレート、ベンジルブチルフタレート、ジ−2−エチルヘキシルフタレート)を使用し、その添加量を有機バインダー100に対し60以上とした導電ペーストは転写がほぼ確実に行われているが、60より少ない場合は、転写性が低下し静電容量が低く、また内部構造欠陥が多発している。一方、フタル酸エステル以外のリン酸トリクレシル、オレイン酸ブチルは添加量が多くなるに従って転写性が向上するが十分満足できるものではない。この結果から、導電ペースト中の可塑剤の種類およびバインダーに対する添加量を制御することにより、セラミックグリーンシート4面への転写性を確保することができることが明らかとなる。これにより内部電極層2の転写不良による静電容量の低下及び焼結体の内部構造欠陥の発生を抑制し、安定した特性の積層セラミックコンデンサを歩留まり良く生産するのに多大な効果がある。
【0031】
尚、本実施の形態は、積層セラミックコンデンサを例に示したが、積層工程を有する一般的なセラミック電子部品の積層バリスタや積層コイル、多層基板等の製造方法にも十分に適用することができる。
【0032】
【発明の効果】
以上本発明によれば、金属粉末、有機バインダー、可塑剤からなる導電層をベースフィルム面に塗工、形成に用いる導電性ペーストにおいて、有機バインダーと可塑剤との比率を100対60〜100とし、これに適量の有機溶剤を加えて構成した導電性ペーストを用いることにより、ベースフィルム面に塗工形成した導電層をセラミックグリーンシートに効率よく熱転写させることが可能となる。この結果、積層工程を有するセラミック電子部品を歩留まり良く生産することが可能となる。
【図面の簡単な説明】
【図1】本発明のセラミック電子部品の製造方法におけるベースフィルム面に形成した導電層の断面図
【図2】同方法により製造した積層セラミックコンデンサの断面図
【図3】同ベースフィルム面に形成した誘電体セラミック層のセラミックグリーンシートの断面図
【符号の説明】
1 誘電体セラミック層
2 内部電極層
3 外部電極
4 セラミックグリーンシート
5,6 ベースフィルム[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive paste widely used for various electric products such as an electronic tuner of a passive machine of a television, a liquid crystal television, and a mobile phone, and a method of manufacturing a ceramic electronic component using the same.
[0002]
[Prior art]
FIG. 2 shows a multilayer ceramic capacitor as a typical example of a ceramic electronic component. In the figure, 1 is a dielectric ceramic layer, 2 is an internal electrode layer, and 3 is an external electrode.
[0003]
Hereinafter, a conventional method for manufacturing a ceramic electronic component will be described with reference to an example of a method for manufacturing a multilayer ceramic capacitor which is a representative example of a ceramic electronic component.
[0004]
The conventional method for manufacturing a multilayer ceramic capacitor is as follows: first, a dielectric material powder such as barium titanate is added with polyvinyl butyral as a binder component, benzyl butyl phthalate as a plasticizer component, and butyl acetate as a solvent component, mixed and slurried. Thereafter, the slurry is applied on a base film such as PET by using a doctor blade method and dried to form a ceramic green sheet for the dielectric ceramic 1 having a thickness of 5 to 50 μm.
[0005]
Separately, a plurality of internal electrode layers 2 having a thickness of 2 to 4 μm are arranged in parallel on a base film such as PET by a printing method using a conductive paste containing nickel as a main component. When the thickness of the internal electrode layer 2 is small, the internal electrode layer 2 contracts during firing of the multilayer ceramic capacitor and becomes partially discontinuous, which may cause a decrease in capacitance. It is necessary to apply 2 μm or more.
[0006]
Next, the internal electrode layer 2 applied to the base film surface is thermally transferred to the ceramic green sheet surface. A plurality of ceramic green sheets subjected to thermal transfer are laminated and pressed to produce a laminated green block (not shown). The lamination of the ceramic green sheets is performed with a predetermined dimension shifted in the longitudinal direction of the internal electrode layers 2 transferred alternately one by one.
[0007]
Next, the laminated green block is cut into a predetermined size and fired under a predetermined condition to produce a sintered body. The sintered body has a configuration in which internal electrode layers 2 are exposed at different end faces facing each other with the dielectric ceramic layer 1 interposed therebetween at both end faces in the longitudinal direction.
[0008]
An external electrode 3 is provided on the end surface of the obtained sintered body where the internal electrode layer 2 is exposed, thereby completing a multilayer ceramic capacitor. For example, Japanese Patent Publication No. 5-25381 discloses the method.
[0009]
[Problems to be solved by the invention]
However, when the internal electrode layer 2 applied on the base film is thermally transferred to the surface of the ceramic green sheet, the internal electrode layer 2 may not be completely transferred to the surface of the ceramic green sheet. 2 is discontinuous, and the designed capacitance cannot be obtained. In addition, when the internal electrode layer 2 is adhered to the base film when the base film is peeled off after the internal electrode layer 2 is thermally transferred, the ceramic green sheet is adhered and peeled to the adhered portion, and the dielectric of the portion is removed. The body ceramic layer 1 may be missing and the sintered body may cause short-circuit failure between the internal electrode layers 2 and cause cracks or structural defects in the sintered body.
[0010]
The present invention has been made in view of the above problems, by using an internal electrode layer coated on a base film using a conductive paste that enables the internal electrode layer to be reliably thermally transferred from the base film to the ceramic green sheet surface. Another object of the present invention is to provide a method for manufacturing a ceramic electronic component having stable electrical characteristics without occurrence of structural defects or the like.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is to mix an organic binder, a plasticizer, and an organic solvent in a metal powder, and by controlling the mixing ratio of the organic binder and the plasticizer to a range of 100 to 60 to 100. Use a conductive paste that weakens the adhesion between the organic binder and the base film , apply this to the base film surface, and thermally transfer the dried internal electrode layer to the ceramic green sheet surface, and use this conductive paste. By doing so, the coated internal electrode layer has good releasability from the base film, and the intended purpose can be achieved.
[0012]
In general, conductive paste for internal electrodes used in the manufacture of ceramic electronic components is used when a plasticizer is added to reduce the elastic modulus and glass transition point of the organic binder contained in the paste and ensure printing and moldability. However, to simply improve the printing and moldability, the ratio of the plasticizer to the organic binder 100 is 50 or less, although it depends on the type of the organic binder used. The conductive paste of the present invention uses a mixture of 60 or more plasticizers with 100 organic binders, thereby improving the releasability of the internal electrode layer from the base film and reliably transferring heat to the ceramic green sheet surface. It becomes. That is, a large amount of plasticizer is adsorbed on the surface of the organic binder molecule, thereby reducing the intermolecular adsorption force acting between the base film surface and the organic binder in the applied internal electrode layer, and reducing the adhesive force. The weakening is based on a mechanism that the peeling from the base film is facilitated and the thermal transfer can be reliably performed.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention includes a step of producing a ceramic green sheet from a slurry comprising a ceramic powder, an organic binder, and a plasticizer; and the step of forming a ceramic green sheet on a base film, comprising a metal powder, an organic binder, and a plasticizer. Forming a conductive layer by applying and drying a conductive paste having a reduced adhesiveness between the organic binder and the base film by setting the ratio of the binder and the plasticizer to 100 to 60 to 100; Thermally transferring the dried conductive layer to a ceramic green sheet, and laminating a plurality of ceramic green sheets to which the conductive layer has been thermally transferred to produce a laminated green block. by plasticizer a conductive layer is 60 to 100, a large amount of plasticizer Yes against Adsorbed on the surface of the binder molecule, reduces the intermolecular adsorption force acting between the base film surface and the organic binder in the coated internal electrode layer, and weakens the adhesive force, making it easy to peel off from the base film This has the effect that the thermal transfer can be reliably performed.
[0017]
Hereinafter, an embodiment of the present invention will be described with reference to the drawings, using a multilayer ceramic capacitor as a representative example of a ceramic electronic component.
[0018]
FIG. 1 is a cross-sectional view of the internal electrode layer 2 formed by coating on the base film 6 of the present embodiment, and FIG. 3 is a cross-sectional view of the dielectric ceramic layer ceramic green sheet 4 formed on the base film 5. In FIG. 2, the finished product of the multilayer ceramic capacitor is the same as that of the conventional example, and is used.
[0019]
The manufacturing method of the multilayer ceramic capacitor is as follows. First, a dielectric material powder such as barium titanate is added with polyvinyl butyral as a binder component, benzyl butyl phthalate as a plasticizer component, and butyl acetate as a solvent component, and then mixed to form a slurry. The slurry is applied to the surface of the PET base film 5 using a doctor blade method and dried to form a 9 μm-thick ceramic green sheet 4 for the dielectric ceramic layer 1.
[0020]
Separately, a plurality of 2.5 μm-thick internal electrode layers 2 are coated side by side with a conductive paste mainly composed of nickel by screen printing on the surface of a PET base film 6. Perform drying. When the thickness of the internal electrode layer 2 is small, the internal electrode layer 2 contracts during firing of the multilayer ceramic capacitor and becomes partially discontinuous, which may cause a decrease in capacitance. In the embodiment, the coating is performed to a thickness of 2.5 μm. The conductive paste was 100 parts by weight of nickel powder, 6 parts by weight of ethyl cellulose as an organic binder, 0 to 100 parts by weight of a material shown in Table 1 with respect to ethyl cellulose as a plasticizer, and a mixture of aliphatic naphtha and terpineol as an organic solvent. A mixture of 60 parts by weight was used.
[0021]
The base film 6 used had a critical surface tension of 35 dyne / cm and was larger than the surface tension of each conductive paste. Thereby, consideration was given so that the internal electrode layer 2 can be applied and formed with high accuracy on the surface of the base film 6 when printing the conductive paste. When the surface tension of the conductive paste becomes larger than the critical surface tension of the base film 6, the wettability between the conductive paste and the base film 6 is reduced, and repelling occurs during printing, so that the internal electrode layer 2 can be coated with high accuracy. become unable.
[0022]
Next, the internal electrode layers 2 having the respective compositions formed by coating the ceramic green sheets 4 on the base film 6 are thermally transferred at 85 ° C. and a pressure of 12 MPa.
[0023]
Separately, the ceramic green sheets 4 formed on the surface of the base film 5 are peeled off, and a plurality of sheets are laminated and pressed to produce upper, lower and ineffective layers (not shown).
[0024]
Next, the first-layer ceramic green sheet 4 thermally transferred onto the lower ineffective layer is laminated and pressed, and then the ceramic green sheet 4 on which the second-layer internal electrode layer 2 is printed is applied to the first-layer internal electrode. The layer 2 is shifted by a predetermined dimension in the longitudinal direction, and the layers are pressed. Further, the ceramic green sheet 4 on which the third-layer internal electrode layer 2 is printed is laminated and pressed so as to be directly over the first-layer internal electrode, and the fourth-layer internal electrode layer 2 is further formed thereon. Are laminated and pressed. In this way, the ceramic sheets 14 on which the internal electrode layers 2 are sequentially printed are alternately shifted one by one by a predetermined size, and 100 layers are stacked. Finally, the upper ineffective layer is stacked and pressed to stack a plurality of stacked green blocks. (Not shown).
[0025]
Thereafter, the laminated green block is cut so as to have a size of 3.1 × 1.5 mm in length after firing to produce a green chip (not shown). The obtained green chip has a configuration in which the internal electrode layers 2 are alternately exposed to different end surfaces facing each other with the ceramic green sheet 4 interposed therebetween at both end surfaces in the longitudinal direction.
[0026]
Next, the green chip is degreased at a temperature of 350 ° C. in the atmosphere, and then fired at a temperature of 1300 ° C. in a reducing atmosphere made of a green gas to obtain a sintered body (not shown). The firing in the reducing atmosphere is performed for the purpose of preventing the internal electrode layer 2 from being oxidized because nickel is used for the internal electrode layer 2. The thickness of the dielectric ceramic layer 1 of the obtained sintered body was 5 μm, and the thickness of the internal electrode layer 2 was 1.8 μm.
[0027]
Next, external electrodes 3 mainly composed of copper are formed at the ends of the sintered body so as to be electrically connected to the internal electrode layers 2 exposed at both end surfaces of the sintered body. To complete.
[0028]
Then, the internal electrode layer 2 is applied to the surface of the ceramic green sheet 4 as the capacitance of the completed multilayer ceramic capacitor, the appearance of the sintered body, the occurrence state of internal structural defects, and the thermal transferability of the internal electrode layer 2 to the surface of the ceramic green sheet 4. When thermal transfer was performed, the weight of the internal electrode layer 2 transferred to the surface of the ceramic green sheet 4 and the weight of the remaining internal electrode layer 2 were evaluated. The results are also shown in Table 1.
[0029]
[Table 1]
Figure 0003603655
[0030]
As shown in (Table 1), a conductive paste in which a phthalate ester type (dibutyl phthalate, benzyl butyl phthalate, di-2-ethylhexyl phthalate) was used as a plasticizer, and the amount of addition was 60 or more with respect to 100 organic binders was used. The transfer is almost certainly performed, but when it is less than 60, the transferability is reduced, the capacitance is low, and internal structural defects occur frequently. On the other hand, tricresyl phosphate and butyl oleate other than the phthalate ester improve the transferability as the added amount increases, but are not sufficiently satisfactory. From this result, it is clear that the transferability to the ceramic green sheet 4 surface can be ensured by controlling the type of the plasticizer in the conductive paste and the amount added to the binder. As a result, a reduction in capacitance due to transfer failure of the internal electrode layer 2 and the occurrence of internal structural defects in the sintered body are suppressed, and there is a great effect in producing a multilayer ceramic capacitor having stable characteristics with good yield.
[0031]
Although the present embodiment has been described by taking a multilayer ceramic capacitor as an example, the present embodiment can be sufficiently applied to a method for manufacturing a multilayer varistor, a multilayer coil, a multilayer substrate, and the like of a general ceramic electronic component having a lamination process. .
[0032]
【The invention's effect】
According to the present invention, a metal powder, an organic binder, and a conductive layer made of a plasticizer are applied to the base film surface, and the conductive paste used for formation has a ratio of the organic binder and the plasticizer of 100 to 60 to 100. By using a conductive paste formed by adding an appropriate amount of an organic solvent thereto, it is possible to efficiently transfer the conductive layer formed on the base film surface to the ceramic green sheet by thermal transfer. As a result, it becomes possible to produce a ceramic electronic component having a lamination step with a high yield.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a conductive layer formed on a base film surface in a method of manufacturing a ceramic electronic component of the present invention. FIG. 2 is a cross-sectional view of a multilayer ceramic capacitor manufactured by the same method. Sectional view of a ceramic green sheet with a dielectric ceramic layer formed [Description of symbols]
REFERENCE SIGNS LIST 1 dielectric ceramic layer 2 internal electrode layer 3 external electrode 4 ceramic green sheet 5, 6 base film

Claims (1)

セラミック粉末、有機バインダー、可塑剤からなるスラリーからセラミックグリーンシートを作製する工程と、ベースフィルム上に金属粉末と有機バインダーと可塑剤とを含み前記有機バインダーと前記可塑剤の比率を100対60〜100とすることにより前記有機バインダーと前記ベースフィルムとの接着性を弱めた導電性ペーストを塗工し乾燥して導電層を形成する工程と、前記セラミックグリーンシートに前記乾燥後の導電層を熱転写する工程とを有し、導電層を熱転写したセラミックグリーンシートを複数積層し積層体グリーンブロックを作製するセラミック電子部品の製造方法。Ceramic powder, an organic binder, a step of preparing a ceramic green sheet from a slurry comprising a plasticizer, and a base film containing a metal powder, an organic binder and a plasticizer, wherein the ratio of the organic binder and the plasticizer is 100 to 60 to 60 to 60; Forming a conductive layer by applying and drying a conductive paste having reduced adhesion between the organic binder and the base film by setting it to 100; and thermally transferring the dried conductive layer to the ceramic green sheet. And a step of stacking a plurality of ceramic green sheets on which conductive layers have been thermally transferred to form a stacked green block.
JP08113699A 1999-03-25 1999-03-25 Conductive paste and method for manufacturing ceramic electronic component using the same Expired - Fee Related JP3603655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08113699A JP3603655B2 (en) 1999-03-25 1999-03-25 Conductive paste and method for manufacturing ceramic electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08113699A JP3603655B2 (en) 1999-03-25 1999-03-25 Conductive paste and method for manufacturing ceramic electronic component using the same

Publications (2)

Publication Number Publication Date
JP2000276944A JP2000276944A (en) 2000-10-06
JP3603655B2 true JP3603655B2 (en) 2004-12-22

Family

ID=13737997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08113699A Expired - Fee Related JP3603655B2 (en) 1999-03-25 1999-03-25 Conductive paste and method for manufacturing ceramic electronic component using the same

Country Status (1)

Country Link
JP (1) JP3603655B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246256A (en) * 2001-02-13 2002-08-30 Sumitomo Electric Ind Ltd Conductive paste and multiplayer capacitor using it
JP4602592B2 (en) * 2001-03-31 2010-12-22 日本特殊陶業株式会社 Unfired ceramic sheet for laminated gas sensor element and method for producing the same
JP2007095883A (en) * 2005-09-28 2007-04-12 Nippon Telegr & Teleph Corp <Ntt> Thin film forming method and sheet film
JP5378937B2 (en) * 2009-09-30 2013-12-25 大日本塗料株式会社 Conductive water-based primer composition and primer coating film
JP5524776B2 (en) * 2010-09-10 2014-06-18 日本電信電話株式会社 Thin film forming method and sheet film
JP6080054B2 (en) 2012-09-25 2017-02-15 国立研究開発法人産業技術総合研究所 Pattern formation method
EP4053235A4 (en) * 2019-12-18 2023-01-04 LG Energy Solution, Ltd. Electrode inorganic layer coating tape and manufacturing method therefor

Also Published As

Publication number Publication date
JP2000276944A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
JP3760942B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3603655B2 (en) Conductive paste and method for manufacturing ceramic electronic component using the same
TWI388533B (en) Manufacturing method of ceramic molded body
JP2001044071A (en) Manufacture of ceramic electronic component
JP3602368B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2002343674A (en) Manufacturing method of laminated ceramic capacitor
JP2998476B2 (en) Method of manufacturing green body for multilayer ceramic capacitor
JP3196713B2 (en) Manufacturing method of ceramic electronic components
JPH0590069A (en) Manufacture of laminated ceramic elements
JPH0396207A (en) Manufacture of laminated ceramic electronic part
JP2001044064A (en) Manufacture of ceramic electronic component
JP2004304000A (en) Laminate unit for laminated ceramic electronic component and method for manufacturing same
JPH04305996A (en) Fabrication of multilayer interconnection board
JP2003017357A (en) Method of manufacturing laminated ceramic electronic component
JP2615477B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH08181032A (en) Laminated ceramic capacitor
JP2671444B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2005297339A (en) Method for manufacturing multi-layer ceramic sheet and method for manufacturing ceramic electronic component
JPH0236512A (en) Manufacture of laminated ceramic electronic component
JPH0379007A (en) Green sheet for laminated ceramic capacitor and manufacture of laminated ceramic capacitor
JP2671445B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2004304007A (en) Method for manufacturing laminate unit for laminate ceramic electronic parts
JP5035471B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2001196256A (en) Manufacturing method of ceramic electronic component
JP2003282352A (en) Manufacturing method of laminated capacitor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees