JP2002246256A - Conductive paste and multiplayer capacitor using it - Google Patents

Conductive paste and multiplayer capacitor using it

Info

Publication number
JP2002246256A
JP2002246256A JP2001035505A JP2001035505A JP2002246256A JP 2002246256 A JP2002246256 A JP 2002246256A JP 2001035505 A JP2001035505 A JP 2001035505A JP 2001035505 A JP2001035505 A JP 2001035505A JP 2002246256 A JP2002246256 A JP 2002246256A
Authority
JP
Japan
Prior art keywords
conductive paste
nickel powder
nickel
capacitor
multilayer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001035505A
Other languages
Japanese (ja)
Inventor
Yoshie Tani
佳枝 谷
Masatoshi Mashima
正利 真嶋
Shinji Inasawa
信二 稲澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001035505A priority Critical patent/JP2002246256A/en
Publication of JP2002246256A publication Critical patent/JP2002246256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive paste or multiplayer capacitors that has improved thin film formation capacity and electric conductivity, and has small manufacturing costs, and to provide a multiplayer capacitor using the conductive paste. SOLUTION: Nickel powder where a titanium compound is reduced as a reducing agent from solution containing nickel ions is mixed with an organic binder such as an epoxy resin to obtain conductive paste. Further, the conductive paste is printed and applied to a ceramic dielectric layer, is laminated in a number of layers, and then is burned at approximately 1000 deg.C, thus forming the multiplayer capacitor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層コンデンサ用
に用いられる導電性ペーストおよびそれを用いた積層コ
ンデンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive paste used for a multilayer capacitor and a multilayer capacitor using the same.

【0002】[0002]

【従来の技術】近年、他の電子部品と同様、積層コンデ
ンサも小型化高容量化・高信頼性・低価格化がより一層
求められている。これに応えるべく、高誘電率材料の開
発、誘電体層の無欠陥化、薄膜化、内部電極材料のコス
トダウンなどの開発が進められている。
2. Description of the Related Art In recent years, like other electronic components, multilayer capacitors have been further required to be smaller, have higher capacity, have higher reliability, and have lower cost. In order to respond to this demand, development of a material having a high dielectric constant, a defect-free dielectric layer, a thin film, a reduction in the cost of an internal electrode material, and the like are being advanced.

【0003】積層コンデンサは、薄い誘導体セラミクス
層と導電性ペーストを焼成して得られる内部電極層が交
互に重ねられた積層構造を有している。
A multilayer capacitor has a multilayer structure in which thin dielectric ceramic layers and internal electrode layers obtained by firing a conductive paste are alternately stacked.

【0004】従来、積層コンデンサの内部電極用材料に
は、パラジウム、白金などの貴金属が主として使用され
てきた。しかしコンデンサの高容量化のために、積層数
が増加し、前述のような貴金属を使用したのでは原料費
が高価になるという問題があり、最近はコスト削減のた
めにニッケル粉末が多用されている。
Conventionally, noble metals such as palladium and platinum have been mainly used as materials for internal electrodes of multilayer capacitors. However, in order to increase the capacity of the capacitor, the number of layers increases, and there is a problem in that the use of the above-mentioned noble metals increases the cost of raw materials. Recently, nickel powder has been frequently used to reduce costs. I have.

【0005】ニッケル粉末を有機バインダー中に分散さ
せてペーストとし、基板上に印刷塗布し、誘導体セラミ
クス層と積み重ねて多層化し、圧着しながら還元雰囲気
下で焼成してコンデンサを形成させる。近年コンデンサ
の小型化・高容量化に伴い、電極においても薄い膜を形
成する必要性が出てきたが、薄膜化すると、絶縁破壊に
よる信頼性の低下が問題となる。これは薄膜化が進むほ
ど、誘電体層の厚みも薄くなるためニッケル電極層表面
の突起部分により絶縁破壊が生じ易くなるためである。
[0005] Nickel powder is dispersed in an organic binder to form a paste, printed and coated on a substrate, stacked with a derivative ceramic layer to form a multilayer, and fired in a reducing atmosphere while being pressed to form a capacitor. In recent years, as capacitors have become smaller and have higher capacities, it has become necessary to form thin films on the electrodes. However, if the electrodes are made thinner, there is a problem of deterioration in reliability due to dielectric breakdown. This is because the dielectric layer becomes thinner as the thickness of the dielectric layer becomes thinner as the film becomes thinner.

【0006】内部電極用材料として使用されるニッケル
粉末の粒径が小さく均一であれば有機バインダーによる
分散性がよくなり、電極表面の突起が起こりにくくな
り、絶縁破壊による信頼性の低下がふせげる。またニッ
ケル粉末の粒径が小さく均一であれば有機バインダーに
対する充填密度を上げることが出来、良好な電気伝導性
の膜を得ることが出来る。
[0006] If the particle size of the nickel powder used as the material for the internal electrode is small and uniform, the dispersibility by the organic binder is improved, projections on the electrode surface are less likely to occur, and reliability is reduced due to dielectric breakdown. . If the particle size of the nickel powder is small and uniform, the packing density with respect to the organic binder can be increased, and a good electric conductive film can be obtained.

【0007】また、内部電極の厚みが薄膜化されるにし
たがって内部電極に用いられる金属の電気伝導率も問題
になってくる。内部電極に用いられる金属の電気伝導率
が低いと、電荷の充放電を繰り返すたびにジュール熱を
発生し、エネルギー変換効率が悪い。また、内部電極の
温度が高くなって、その部分の電気伝導率が低くなり、
積層コンデンサとして設計されたときの静電容量を確保
できなくなる。この電気伝導率をよくするためには、内
部電極に用いられる金属の高純度化が必要である。
Further, as the thickness of the internal electrode is reduced, the electric conductivity of the metal used for the internal electrode also becomes a problem. When the electric conductivity of the metal used for the internal electrode is low, Joule heat is generated each time charge and discharge are repeated, resulting in poor energy conversion efficiency. Also, the temperature of the internal electrode increases, the electrical conductivity of that part decreases,
The capacitance when designed as a multilayer capacitor cannot be secured. In order to improve the electric conductivity, it is necessary to refine the metal used for the internal electrodes.

【0008】粒径の小さい金属粉末を作る方法として、
例えば特開平11−302709号公報には、金属イオ
ンをヒドラジンもしくはヒドラジン化合物、次亜リン酸
アルカリ、水素化ホウ素アルカリなどの還元剤により還
元・析出し、0.01〜3μmのニッケル粉末を得る方法が記
載されている。また、特開平11−80816公報に
は、気相還元反応により、粒径が0.1μm〜1.0μmの球
状ニッケル粉末を製造する方法が示されている。
As a method for producing a metal powder having a small particle size,
For example, JP-A-11-302709 describes a method of reducing and depositing metal ions with a reducing agent such as hydrazine or a hydrazine compound, alkali hypophosphite, or alkali borohydride to obtain a nickel powder of 0.01 to 3 μm. Have been. Japanese Patent Application Laid-Open No. 11-80816 discloses a method for producing spherical nickel powder having a particle size of 0.1 μm to 1.0 μm by a gas phase reduction reaction.

【0009】しかしながら、これらの方法により得られ
たニッケル粉末は、不純物や製造コストの問題がある。
特開平11−302709号公報で示された方法で、次
亜リン酸アルカリ、水素化ホウ素アルカリなどの還元剤
を用いる場合、金属中にりんやホウ素が共析して、得ら
れた金属粉の電気伝導率が低くなる。またヒドラジンも
しくはヒドラジン化合物は危険物であり、これらを還元
剤に用いる場合は取扱いの厳格な管理が必要で、生産コ
ストを増大させる。また特開平11−80816公報に
記載の方法で得られたニッケル粉末は、硫黄を500pp
mから2000ppm含有することとなり、電気伝導率が低
くなる。
However, the nickel powder obtained by these methods has problems of impurities and production costs.
When a reducing agent such as alkali hypophosphite or alkali borohydride is used in the method disclosed in JP-A-11-302709, phosphorus and boron are co-deposited in the metal, and the resulting metal powder Electric conductivity decreases. Hydrazine or hydrazine compounds are dangerous substances, and when they are used as a reducing agent, strict control of handling is required, which increases the production cost. The nickel powder obtained by the method described in JP-A-11-80816 contains 500 ppm of sulfur.
From 2000 to 2000 ppm, the electric conductivity is lowered.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、薄膜
形成能、電気伝導性に優れ、かつ製造コストの低い積層
コンデンサ用導電性ペースト及びそれを用いた積層コン
デンサを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a conductive paste for a multilayer capacitor which is excellent in thin film forming ability and electric conductivity and low in production cost, and a multilayer capacitor using the same.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、積層コンデンサ用として、ニッケルイオ
ンを含む水溶液からチタン化合物を還元剤として析出せ
しめたニッケル粉末を、有機バインダーに混合した導電
性ペーストを用いる。さらにこの導電性ペーストを用い
て積層コンデンサを形成する。
In order to achieve the above-mentioned object, the present invention relates to a conductive material for a multilayer capacitor in which nickel powder obtained by precipitating a titanium compound as a reducing agent from an aqueous solution containing nickel ions is mixed with an organic binder. Use a conductive paste. Further, a multilayer capacitor is formed using the conductive paste.

【0012】[0012]

【発明の実施の形態】本発明の還元剤として使用するチ
タン化合物は、3価のチタンイオンを含むものであれば
使用可能であるが、特に工業的に入手容易な三塩化チタ
ンが好適に使用できる。また、この三塩化チタンに四塩
化チタン及びクエン酸の混合物を添加するものも好適に
用いられる。
DETAILED DESCRIPTION OF THE INVENTION The titanium compound used as a reducing agent of the present invention can be used as long as it contains a trivalent titanium ion. Particularly, titanium trichloride which is industrially easily available is preferably used. it can. Further, a mixture of titanium tetrachloride and citric acid added to the titanium trichloride is also preferably used.

【0013】また、ニッケルイオンは硫酸ニッケル、塩
化ニッケル、炭酸ニッケルの群より少なくとも一つ選択
されたニッケル化合物に由来するものであればいずれで
も使用可能である。溶解度と残存する陰イオンの蓄積に
よる悪影響が少ないことから硫酸ニッケルが好適に使用
できる。
Further, any nickel ions can be used as long as they are derived from at least one nickel compound selected from the group consisting of nickel sulfate, nickel chloride and nickel carbonate. Nickel sulfate can be suitably used because it has little adverse effect due to solubility and accumulation of remaining anions.

【0014】本発明の導電性ペーストに用いられるニッ
ケル粉末は、水溶液中に溶解されたニッケルイオンを三
価のチタンが四価に酸化する際の電子の授受で還元せし
め金属ニッケルとして析出させる。ニッケル粉末を析出
させる際、燐酸化合物やヒドラジンでは還元能力が大き
すぎ一旦析出したニッケル粉末上に連続して析出が起こ
るため粒子成長が起こる。我々はニッケル析出が連続し
て起こりにくい条件としてチタンイオンを含む還元剤を
見出した。また、ニッケル析出後もしくは析出の中途段
階でも、酸化した四価のチタンイオンを、電解セルにて
陰極還元処理を実施することで三価のチタンイオンに還
元することが可能である。 すなわち、ニッケルイオン
を補充することでチタンイオンを含有する還元剤は半永
久的に使用でき低コストが期待できる。還元剤であるチ
タンイオンはイオン化傾向が非常に大きく金属チタンを
して水溶液中では存在不可能であるためチタンイオンに
由来するチタンをニッケル粉末中に実質的に含まれず
(100ppm以下)、極めて高純度のものである。従って、
電気伝導率が損なわれることはない。このため、本発明
の導電性ペーストを用いて製作された積層コンデンサも
優れた電気特性を示す。
The nickel powder used in the conductive paste of the present invention reduces nickel ions dissolved in an aqueous solution by transfer of electrons when trivalent titanium is oxidized to tetravalent, and is precipitated as metallic nickel. When depositing nickel powder, a phosphoric acid compound or hydrazine has too large a reducing ability, so that precipitation occurs continuously on nickel powder once deposited, so that particle growth occurs. We have found a reducing agent containing titanium ions as a condition under which nickel deposition is unlikely to occur continuously. Also, after or during the deposition of nickel, oxidized tetravalent titanium ions can be reduced to trivalent titanium ions by performing a cathodic reduction treatment in an electrolytic cell. That is, by replenishing nickel ions, the reducing agent containing titanium ions can be used semipermanently, and low cost can be expected. Titanium ion, which is a reducing agent, has a very high ionization tendency and cannot be present in an aqueous solution since it is metallic titanium. Therefore, titanium derived from titanium ions is not substantially contained in nickel powder (100 ppm or less), and is extremely high. Of purity. Therefore,
The electrical conductivity is not impaired. For this reason, the multilayer capacitor manufactured using the conductive paste of the present invention also shows excellent electric characteristics.

【0015】また、本発明の導電性ペーストに用いられ
るニッケル粉末は、粒径が小さく、球状で粒径分布が狭
いという特徴を有する。このため、このニッケル粉末
は,有機バインダーによる分散性に優れ、本発明の導電
性ペーストから形成された電極表面は滑らかで突起が少
なく、絶縁破壊が生じにくい。
[0015] The nickel powder used in the conductive paste of the present invention is characterized in that it has a small particle size, is spherical and has a narrow particle size distribution. For this reason, this nickel powder is excellent in dispersibility by an organic binder, the electrode surface formed from the conductive paste of the present invention is smooth, has few protrusions, and is unlikely to cause dielectric breakdown.

【0016】粒径はニッケルイオンの種類、還元剤の濃
度、析出速度を適宜選択することにより変えることがで
きるが、本発明では、平均粒径が10nm〜300nmのニッ
ケル粉末が好適に用いられる。なお、平均粒径とは、一
次粒子の平均径で、高分解能走査型電子顕微鏡を用いて
10万倍で観察した場合において、球状の長軸をa短軸を
bとしたとき、(a+b)/2で求められるものである。
The particle size can be changed by appropriately selecting the type of nickel ions, the concentration of the reducing agent, and the deposition rate. In the present invention, nickel powder having an average particle size of 10 nm to 300 nm is preferably used. The average particle diameter is the average diameter of the primary particles, using a high-resolution scanning electron microscope.
When observed at a magnification of 100,000 times, when the major axis of the sphere is a and the minor axis is b, it is determined by (a + b) / 2.

【0017】平均粒径が小さくなるに従い、表面の酸化
膜の影響が大となり、導電性を損なうようになる。これ
らから、平均粒径は10nm以上であることが好ましい。
一方、平均粒径が300nmより大きくなると、導電性ペー
ストを塗布した際の粉末間の空隙が大きくなる、言い換
えると単位体積あたりの充填量が少なくなるため、導電
性が悪くなる。そこで本発明の導電性ペーストに用いら
れるニッケル粉末は、平均粒径が10nm〜300nmである
ことが好ましい。また、平均粒径は、40〜100nmであ
ることが更に好ましい。表面の酸化膜の影響が小さく、
充填量も高く、導電性の一層優れた導電性ペーストが得
られる。
As the average particle diameter decreases, the influence of the oxide film on the surface increases, and the conductivity is impaired. From these, the average particle size is preferably 10 nm or more.
On the other hand, when the average particle size is larger than 300 nm, the gap between the powders when the conductive paste is applied becomes large, in other words, the filling amount per unit volume becomes small, so that the conductivity becomes poor. Therefore, the nickel powder used in the conductive paste of the present invention preferably has an average particle size of 10 nm to 300 nm. Further, the average particle size is more preferably 40 to 100 nm. The influence of the oxide film on the surface is small,
A conductive paste having a higher filling amount and more excellent conductivity can be obtained.

【0018】本発明の導電性ペーストは、上記ニッケル
粉末を公知の有機バインダーに混合して得る。有機バイ
ンダーは、エポキシ樹脂、アクリル樹脂、フェノール樹
脂などの樹脂に、必要に応じて溶媒を加えたものが使用
される。混合する割合は、有機バインダーの種類で異な
るが、本発明のニッケル粉末の分散性が優れているた
め、ニッケル粉末を80重量%含んだ導電性ペーストも
可能である。
The conductive paste of the present invention is obtained by mixing the above nickel powder with a known organic binder. As the organic binder, a resin obtained by adding a solvent as necessary to a resin such as an epoxy resin, an acrylic resin, or a phenol resin is used. The mixing ratio varies depending on the type of the organic binder, but since the nickel powder of the present invention is excellent in dispersibility, a conductive paste containing 80% by weight of the nickel powder is also possible.

【0019】この導電性ペーストを、例えば、セラミッ
クス誘電体層に印刷塗布し、多数積層後、約1000℃
で焼結することで積層コンデンサが形成される。
This conductive paste is printed and coated on, for example, a ceramic dielectric layer, and after laminating a large number, a temperature of about 1000 ° C.
To form a multilayer capacitor.

【0020】[0020]

【実施例】(実施例1)表1に記しためっき液を調合
し、浴温を60℃に保ちながらアンモニアを加えpH9.
0に調整して、ニッケル粉を析出させた。浴中から取り
出し、水道水と純水により洗浄し、乾燥させて、平均粒
径20nmのニッケル粉末を得た。この粉末を70重量%、ビ
スAエポキシ樹脂(旭チバ(株)製アラルダイトAERグレ
ード6051N75) 7重量%、 ビスFエポキシ樹脂(油化シェ
ルエポキシ(株)製エピコート815)7重量%、他エポキ
シ樹脂15重量%、硬化剤 1%の割合で混合し導電性ペー
ストを得た。更にこの導電ペーストをスクリーン印刷法
によりセラミックス層と交互になるように400層積層し
た後焼成し積層コンデンサを作製した。積層コンデンサ
をそれぞれ100個ずつ準備し、それぞれの静電容量を測
定し、電極間での直流120Vショート不良について調べ
た。
EXAMPLES (Example 1) The plating solutions shown in Table 1 were prepared, and ammonia was added while maintaining the bath temperature at 60 ° C. to adjust the pH to 9.
It was adjusted to 0 to precipitate nickel powder. It was taken out of the bath, washed with tap water and pure water, and dried to obtain a nickel powder having an average particle size of 20 nm. 70% by weight of this powder, 7% by weight of bis-A epoxy resin (Araldite AER grade 6051N75 manufactured by Asahi Chiba Co., Ltd.), 7% by weight of bis-F epoxy resin (Epicoat 815 manufactured by Yuka Shell Epoxy Co., Ltd.), and other epoxy resins A conductive paste was obtained by mixing 15% by weight and 1% of a curing agent. Furthermore, 400 layers of this conductive paste were laminated by a screen printing method so as to be alternated with the ceramic layers, and then fired to produce a multilayer capacitor. 100 multilayer capacitors were prepared, and the capacitance of each was measured, and a 120 V DC short circuit between the electrodes was examined.

【0021】[0021]

【表1】 [Table 1]

【0022】(実施例2)表1に記しためっき液を、浴
温50℃、pH9.2の条件に調整し、平均粒径50nmの
ニッケル粉末を得た。この粉末を実施例1と同様の方法
を用いて導電性ペーストおよび積層コンデンサを作製し
た。
Example 2 The plating solutions shown in Table 1 were adjusted to a bath temperature of 50 ° C. and a pH of 9.2 to obtain nickel powder having an average particle size of 50 nm. Using this powder, a conductive paste and a multilayer capacitor were produced in the same manner as in Example 1.

【0023】(比較例1)CVD反応装置で塩化ニッケル
を蒸発させ、キャリアーガス(窒素ガス) を用いてキャ
リアーガス中での塩化ニッケル量を5.0g/リットルにな
るように調節し、反応温度1000℃で還元させる気相法に
て平均粒径800nmのニッケル粉末を作製した。この粉末
を実施例1と同様の方法を用いて導電性ペーストおよび
積層コンデンサを作製した。
(Comparative Example 1) Nickel chloride was evaporated in a CVD reactor, and the amount of nickel chloride in the carrier gas was adjusted to 5.0 g / liter using a carrier gas (nitrogen gas). A nickel powder having an average particle size of 800 nm was produced by a gas phase method of reducing at a temperature of ° C. Using this powder, a conductive paste and a multilayer capacitor were produced in the same manner as in Example 1.

【0024】[0024]

【表2】 [Table 2]

【0025】膜厚についてはサンプルを樹脂に埋めこみ
断面研磨した後電子顕微鏡で観測し測定した。表面粗さ
はJIS B0601-1994に基づき測定し、平均静電容量はク
ーロンメーターによって測定した。ショート不良率につ
いては100個検査し求めた。
The film thickness was measured by embedding the sample in a resin, polishing the cross section, and then observing it with an electron microscope. The surface roughness was measured based on JIS B0601-1994, and the average capacitance was measured with a coulomb meter. The short defect rate was determined by inspecting 100 pieces.

【0026】従来400層形成した積層コンデンサは0.8mm
の厚さであったが、実施例1は(誘電体+導電層)/2を
1.8μmまで薄膜化しても絶縁破壊が起こらず、結果とし
て400層積層したコンデンサでも0.45mm厚さで作製する
ことが可能であった。更に、ニッケル粉末粒径を微細化
することにより、直流印加時の絶縁破壊も、抑制される
ことが判明した。粒径の大きな比較例1の積層セラミッ
クコンデンサは設計した100nFの静電容量が確保でき
なかった。実施例1,2については静電容量が設計値を
満足し、また不良率は20nmの平均粒径で3%まで低減で
き、更に50nmでは絶縁破壊不良は全く起こらなかった。
Conventionally, a multilayer capacitor formed of 400 layers is 0.8 mm.
In Example 1, (dielectric + conductive layer) / 2 was used.
Dielectric breakdown did not occur even when the thickness was reduced to 1.8 μm, and as a result, a capacitor with a 400-layer stack could be manufactured with a thickness of 0.45 mm. Furthermore, it has been found that by making the nickel powder particle size finer, dielectric breakdown when a direct current is applied is also suppressed. The multilayer ceramic capacitor of Comparative Example 1 having a large particle size could not secure the designed capacitance of 100 nF. In Examples 1 and 2, the capacitance satisfied the design value, the defect rate could be reduced to 3% at an average particle diameter of 20 nm, and no insulation failure occurred at 50 nm.

【0027】[0027]

【発明の効果】以上説明したように、本発明の導電性ペ
ーストは、薄膜形成能、電気伝導性に優れ、かつ製造コ
ストが低いので、これを用いることにより、薄く、高容
量化が可能で、コスト的に有位な積層コンデンサを作製
することができる。
As described above, the conductive paste of the present invention is excellent in thin film forming ability and electric conductivity and low in production cost. Thus, a multilayer capacitor that is superior in cost can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲澤 信二 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 Fターム(参考) 5E001 AB03 AH01 AH09 AJ01 AJ02 5E082 AA01 AB03 EE04 EE23 EE35 FF05 FG26 FG46 5G301 DA10 DD01  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shinji Inazawa 1-3-1 Shimaya, Konohana-ku, Osaka-shi F-term in Sumitomo Electric Industries, Ltd. Osaka Works 5E001 AB03 AH01 AH09 AJ01 AJ02 5E082 AA01 AB03 EE04 EE23 EE35 FF05 FG26 FG46 5G301 DA10 DD01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ニッケルイオンを含む水溶液からチタン化
合物を還元剤として析出せしめたニッケル粉末が、有機
バインダーに混合されてなることを特徴とする積層コン
デンサ用導電性ペースト。
1. A conductive paste for a multilayer capacitor, wherein nickel powder obtained by depositing a titanium compound as a reducing agent from an aqueous solution containing nickel ions is mixed with an organic binder.
【請求項2】ニッケル粉末のチタン含有量が100ppm以下
であることを特徴とする請求項1記載の積層コンデンサ
用導電性ペースト。
2. The conductive paste according to claim 1, wherein the titanium content of the nickel powder is 100 ppm or less.
【請求項3】ニッケル粉末の平均粒径が10nm〜300nm
であることを特徴とする請求項1又は2に記載の積層コ
ンデンサ用導電性ペースト。
3. The nickel powder has an average particle size of 10 nm to 300 nm.
The conductive paste for a multilayer capacitor according to claim 1, wherein:
【請求項4】請求項1ないし3に記載の導電性ペースト
を用いた積層コンデンサ
4. A multilayer capacitor using the conductive paste according to claim 1.
JP2001035505A 2001-02-13 2001-02-13 Conductive paste and multiplayer capacitor using it Pending JP2002246256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001035505A JP2002246256A (en) 2001-02-13 2001-02-13 Conductive paste and multiplayer capacitor using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001035505A JP2002246256A (en) 2001-02-13 2001-02-13 Conductive paste and multiplayer capacitor using it

Publications (1)

Publication Number Publication Date
JP2002246256A true JP2002246256A (en) 2002-08-30

Family

ID=18898939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001035505A Pending JP2002246256A (en) 2001-02-13 2001-02-13 Conductive paste and multiplayer capacitor using it

Country Status (1)

Country Link
JP (1) JP2002246256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311265A (en) * 2003-04-09 2004-11-04 Sumitomo Electric Ind Ltd Conductive ink and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325688A (en) * 1991-04-26 1992-11-16 Murata Mfg Co Ltd Electroless plating bath
JPH11251173A (en) * 1998-03-03 1999-09-17 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2000100251A (en) * 1998-09-21 2000-04-07 Sumitomo Metal Mining Co Ltd Nickel powder and nickel paste using it
JP2000276944A (en) * 1999-03-25 2000-10-06 Matsushita Electric Ind Co Ltd Conductive paste and manufacture of ceramic electronic component using it
JP2000353527A (en) * 1999-04-06 2000-12-19 Sumitomo Electric Ind Ltd Conductive porous body and metallic porous body and cell electrode plate using thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325688A (en) * 1991-04-26 1992-11-16 Murata Mfg Co Ltd Electroless plating bath
JPH11251173A (en) * 1998-03-03 1999-09-17 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2000100251A (en) * 1998-09-21 2000-04-07 Sumitomo Metal Mining Co Ltd Nickel powder and nickel paste using it
JP2000276944A (en) * 1999-03-25 2000-10-06 Matsushita Electric Ind Co Ltd Conductive paste and manufacture of ceramic electronic component using it
JP2000353527A (en) * 1999-04-06 2000-12-19 Sumitomo Electric Ind Ltd Conductive porous body and metallic porous body and cell electrode plate using thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311265A (en) * 2003-04-09 2004-11-04 Sumitomo Electric Ind Ltd Conductive ink and its manufacturing method

Similar Documents

Publication Publication Date Title
US20170271080A1 (en) Method for forming a boron-containing thin film and multilayer structure
JP5407495B2 (en) Metal powder, metal powder manufacturing method, conductive paste, and multilayer ceramic capacitor
KR101407197B1 (en) Nickel powder and its production method
KR101224064B1 (en) Electrode structure, capacitor and method for producing electrode structure
CZ306436B6 (en) A tantalum powder and the method of its production and the electrolytic capacitor anode
WO2010021202A1 (en) Nickel powder or alloy powder comprising nickel as main component, method for producing the same, conductive paste and laminated ceramic capacitor
EP3034201B1 (en) Method for producing surface-treated metal powder
JP2002053904A (en) Method for producing metal powder, metal powder, electrically conductive past using the same, and laminated ceramic electronic parts using the same
WO2013176390A1 (en) Highly functional composite nanoparticles and method for producing same
JP2008248267A (en) Method of manufacturing copper alloy fine particle and copper alloy fine particle obtained by the same method
TWI271385B (en) Manufacturing method of ITO powder with tin dissolved in indium oxide, and manufacturing method of ITO target
CN113622008A (en) Conductive film and preparation method thereof
JP4100244B2 (en) Nickel powder and method for producing the same
US20100170800A1 (en) Composite material and method of manufacturing the same
JP2004323866A (en) Method for manufacturing nickel powder, and nickel powder
JP5566743B2 (en) Method for producing copper alloy fine particles
TW201006946A (en) Sputtering target
JP5339346B2 (en) Method for producing aluminum-substituted α-type nickel hydroxide
JP2002246256A (en) Conductive paste and multiplayer capacitor using it
US8486492B2 (en) Complex oxide film and method for producing same, composite body and method for producing same, dielectric material, piezoelectric material, capacitor, piezoelectric element and electronic device
JP4085049B2 (en) Copper alloy powder for conductive paste, method for producing copper alloy powder for conductive paste excellent in oxidation resistance, copper alloy powder for inkjet, and method for producing the same
JP2009079269A (en) Copper powder for electroconductive paste, production method therefor and electroconductive paste
EP2109124B1 (en) Capacitor material, method for manufacturing the capacitor material, capacitor containing the capacitor material, wiring board and electronic device
JP2009024204A (en) Carbide-coated nickel powder and method for producing the same
JP2002080902A (en) Method for producing electrically conductive powder, electrically conductive powder, electrically conductive paste and laminated ceramic electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413